Properties

Label 294.8.a.b
Level $294$
Weight $8$
Character orbit 294.a
Self dual yes
Analytic conductor $91.841$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(91.8411974923\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 8 q^{2} - 27 q^{3} + 64 q^{4} - 165 q^{5} + 216 q^{6} - 512 q^{8} + 729 q^{9} + 1320 q^{10} - 2055 q^{11} - 1728 q^{12} - 2720 q^{13} + 4455 q^{15} + 4096 q^{16} + 15708 q^{17} - 5832 q^{18} - 6752 q^{19}+ \cdots - 1498095 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−8.00000 −27.0000 64.0000 −165.000 216.000 0 −512.000 729.000 1320.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.8.a.b 1
7.b odd 2 1 294.8.a.i 1
7.c even 3 2 294.8.e.p 2
7.d odd 6 2 42.8.e.a 2
21.g even 6 2 126.8.g.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.e.a 2 7.d odd 6 2
126.8.g.b 2 21.g even 6 2
294.8.a.b 1 1.a even 1 1 trivial
294.8.a.i 1 7.b odd 2 1
294.8.e.p 2 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 165 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(294))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 8 \) Copy content Toggle raw display
$3$ \( T + 27 \) Copy content Toggle raw display
$5$ \( T + 165 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 2055 \) Copy content Toggle raw display
$13$ \( T + 2720 \) Copy content Toggle raw display
$17$ \( T - 15708 \) Copy content Toggle raw display
$19$ \( T + 6752 \) Copy content Toggle raw display
$23$ \( T - 30828 \) Copy content Toggle raw display
$29$ \( T + 118305 \) Copy content Toggle raw display
$31$ \( T - 147517 \) Copy content Toggle raw display
$37$ \( T - 311732 \) Copy content Toggle raw display
$41$ \( T - 491400 \) Copy content Toggle raw display
$43$ \( T + 577174 \) Copy content Toggle raw display
$47$ \( T - 854862 \) Copy content Toggle raw display
$53$ \( T - 1166883 \) Copy content Toggle raw display
$59$ \( T - 167079 \) Copy content Toggle raw display
$61$ \( T + 1027274 \) Copy content Toggle raw display
$67$ \( T + 3268114 \) Copy content Toggle raw display
$71$ \( T - 3046842 \) Copy content Toggle raw display
$73$ \( T - 3209110 \) Copy content Toggle raw display
$79$ \( T - 7127987 \) Copy content Toggle raw display
$83$ \( T + 4365909 \) Copy content Toggle raw display
$89$ \( T - 11996214 \) Copy content Toggle raw display
$97$ \( T + 13343639 \) Copy content Toggle raw display
show more
show less