Properties

Label 294.8.a.b
Level 294294
Weight 88
Character orbit 294.a
Self dual yes
Analytic conductor 91.84191.841
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 91.841197492391.8411974923
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8q227q3+64q4165q5+216q6512q8+729q9+1320q102055q111728q122720q13+4455q15+4096q16+15708q175832q186752q19+1498095q99+O(q100) q - 8 q^{2} - 27 q^{3} + 64 q^{4} - 165 q^{5} + 216 q^{6} - 512 q^{8} + 729 q^{9} + 1320 q^{10} - 2055 q^{11} - 1728 q^{12} - 2720 q^{13} + 4455 q^{15} + 4096 q^{16} + 15708 q^{17} - 5832 q^{18} - 6752 q^{19}+ \cdots - 1498095 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−8.00000 −27.0000 64.0000 −165.000 216.000 0 −512.000 729.000 1320.00
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.8.a.b 1
7.b odd 2 1 294.8.a.i 1
7.c even 3 2 294.8.e.p 2
7.d odd 6 2 42.8.e.a 2
21.g even 6 2 126.8.g.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.e.a 2 7.d odd 6 2
126.8.g.b 2 21.g even 6 2
294.8.a.b 1 1.a even 1 1 trivial
294.8.a.i 1 7.b odd 2 1
294.8.e.p 2 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+165 T_{5} + 165 acting on S8new(Γ0(294))S_{8}^{\mathrm{new}}(\Gamma_0(294)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+8 T + 8 Copy content Toggle raw display
33 T+27 T + 27 Copy content Toggle raw display
55 T+165 T + 165 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+2055 T + 2055 Copy content Toggle raw display
1313 T+2720 T + 2720 Copy content Toggle raw display
1717 T15708 T - 15708 Copy content Toggle raw display
1919 T+6752 T + 6752 Copy content Toggle raw display
2323 T30828 T - 30828 Copy content Toggle raw display
2929 T+118305 T + 118305 Copy content Toggle raw display
3131 T147517 T - 147517 Copy content Toggle raw display
3737 T311732 T - 311732 Copy content Toggle raw display
4141 T491400 T - 491400 Copy content Toggle raw display
4343 T+577174 T + 577174 Copy content Toggle raw display
4747 T854862 T - 854862 Copy content Toggle raw display
5353 T1166883 T - 1166883 Copy content Toggle raw display
5959 T167079 T - 167079 Copy content Toggle raw display
6161 T+1027274 T + 1027274 Copy content Toggle raw display
6767 T+3268114 T + 3268114 Copy content Toggle raw display
7171 T3046842 T - 3046842 Copy content Toggle raw display
7373 T3209110 T - 3209110 Copy content Toggle raw display
7979 T7127987 T - 7127987 Copy content Toggle raw display
8383 T+4365909 T + 4365909 Copy content Toggle raw display
8989 T11996214 T - 11996214 Copy content Toggle raw display
9797 T+13343639 T + 13343639 Copy content Toggle raw display
show more
show less