Properties

Label 294.8.a.c
Level 294294
Weight 88
Character orbit 294.a
Self dual yes
Analytic conductor 91.84191.841
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 91.841197492391.8411974923
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8q227q3+64q4+122q5+216q6512q8+729q9976q101012q111728q123126q133294q15+4096q16+28294q175832q18+22228q19+737748q99+O(q100) q - 8 q^{2} - 27 q^{3} + 64 q^{4} + 122 q^{5} + 216 q^{6} - 512 q^{8} + 729 q^{9} - 976 q^{10} - 1012 q^{11} - 1728 q^{12} - 3126 q^{13} - 3294 q^{15} + 4096 q^{16} + 28294 q^{17} - 5832 q^{18} + 22228 q^{19}+ \cdots - 737748 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−8.00000 −27.0000 64.0000 122.000 216.000 0 −512.000 729.000 −976.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.8.a.c 1
7.b odd 2 1 42.8.a.c 1
7.c even 3 2 294.8.e.n 2
7.d odd 6 2 294.8.e.j 2
21.c even 2 1 126.8.a.g 1
28.d even 2 1 336.8.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.a.c 1 7.b odd 2 1
126.8.a.g 1 21.c even 2 1
294.8.a.c 1 1.a even 1 1 trivial
294.8.e.j 2 7.d odd 6 2
294.8.e.n 2 7.c even 3 2
336.8.a.d 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5122 T_{5} - 122 acting on S8new(Γ0(294))S_{8}^{\mathrm{new}}(\Gamma_0(294)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+8 T + 8 Copy content Toggle raw display
33 T+27 T + 27 Copy content Toggle raw display
55 T122 T - 122 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+1012 T + 1012 Copy content Toggle raw display
1313 T+3126 T + 3126 Copy content Toggle raw display
1717 T28294 T - 28294 Copy content Toggle raw display
1919 T22228 T - 22228 Copy content Toggle raw display
2323 T+108640 T + 108640 Copy content Toggle raw display
2929 T+41354 T + 41354 Copy content Toggle raw display
3131 T+46656 T + 46656 Copy content Toggle raw display
3737 T+85714 T + 85714 Copy content Toggle raw display
4141 T155694 T - 155694 Copy content Toggle raw display
4343 T926804 T - 926804 Copy content Toggle raw display
4747 T529152 T - 529152 Copy content Toggle raw display
5353 T+294066 T + 294066 Copy content Toggle raw display
5959 T667292 T - 667292 Copy content Toggle raw display
6161 T+833430 T + 833430 Copy content Toggle raw display
6767 T1153996 T - 1153996 Copy content Toggle raw display
7171 T3842336 T - 3842336 Copy content Toggle raw display
7373 T+1483690 T + 1483690 Copy content Toggle raw display
7979 T+3763824 T + 3763824 Copy content Toggle raw display
8383 T5393092 T - 5393092 Copy content Toggle raw display
8989 T+2502690 T + 2502690 Copy content Toggle raw display
9797 T4597550 T - 4597550 Copy content Toggle raw display
show more
show less