Properties

Label 294.8.e.d
Level $294$
Weight $8$
Character orbit 294.e
Analytic conductor $91.841$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.8411974923\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 \zeta_{6} q^{2} + ( - 27 \zeta_{6} + 27) q^{3} + (64 \zeta_{6} - 64) q^{4} - 114 \zeta_{6} q^{5} - 216 q^{6} + 512 q^{8} - 729 \zeta_{6} q^{9} + (912 \zeta_{6} - 912) q^{10} + (7332 \zeta_{6} - 7332) q^{11} + \cdots + 5345028 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 27 q^{3} - 64 q^{4} - 114 q^{5} - 432 q^{6} + 1024 q^{8} - 729 q^{9} - 912 q^{10} - 7332 q^{11} + 1728 q^{12} + 7604 q^{13} - 6156 q^{15} - 4096 q^{16} - 6606 q^{17} - 5832 q^{18} + 24860 q^{19}+ \cdots + 10690056 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−4.00000 6.92820i 13.5000 23.3827i −32.0000 + 55.4256i −57.0000 98.7269i −216.000 0 512.000 −364.500 631.333i −456.000 + 789.815i
79.1 −4.00000 + 6.92820i 13.5000 + 23.3827i −32.0000 55.4256i −57.0000 + 98.7269i −216.000 0 512.000 −364.500 + 631.333i −456.000 789.815i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.8.e.d 2
7.b odd 2 1 294.8.e.c 2
7.c even 3 1 294.8.a.l 1
7.c even 3 1 inner 294.8.e.d 2
7.d odd 6 1 6.8.a.a 1
7.d odd 6 1 294.8.e.c 2
21.g even 6 1 18.8.a.a 1
28.f even 6 1 48.8.a.b 1
35.i odd 6 1 150.8.a.e 1
35.k even 12 2 150.8.c.k 2
56.j odd 6 1 192.8.a.f 1
56.m even 6 1 192.8.a.n 1
63.i even 6 1 162.8.c.i 2
63.k odd 6 1 162.8.c.d 2
63.s even 6 1 162.8.c.i 2
63.t odd 6 1 162.8.c.d 2
84.j odd 6 1 144.8.a.h 1
105.p even 6 1 450.8.a.ba 1
105.w odd 12 2 450.8.c.a 2
168.ba even 6 1 576.8.a.h 1
168.be odd 6 1 576.8.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.8.a.a 1 7.d odd 6 1
18.8.a.a 1 21.g even 6 1
48.8.a.b 1 28.f even 6 1
144.8.a.h 1 84.j odd 6 1
150.8.a.e 1 35.i odd 6 1
150.8.c.k 2 35.k even 12 2
162.8.c.d 2 63.k odd 6 1
162.8.c.d 2 63.t odd 6 1
162.8.c.i 2 63.i even 6 1
162.8.c.i 2 63.s even 6 1
192.8.a.f 1 56.j odd 6 1
192.8.a.n 1 56.m even 6 1
294.8.a.l 1 7.c even 3 1
294.8.e.c 2 7.b odd 2 1
294.8.e.c 2 7.d odd 6 1
294.8.e.d 2 1.a even 1 1 trivial
294.8.e.d 2 7.c even 3 1 inner
450.8.a.ba 1 105.p even 6 1
450.8.c.a 2 105.w odd 12 2
576.8.a.h 1 168.ba even 6 1
576.8.a.i 1 168.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 114T_{5} + 12996 \) acting on \(S_{8}^{\mathrm{new}}(294, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$3$ \( T^{2} - 27T + 729 \) Copy content Toggle raw display
$5$ \( T^{2} + 114T + 12996 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 7332 T + 53758224 \) Copy content Toggle raw display
$13$ \( (T - 3802)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 6606 T + 43639236 \) Copy content Toggle raw display
$19$ \( T^{2} - 24860 T + 618019600 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1717936704 \) Copy content Toggle raw display
$29$ \( (T + 41610)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 1099055104 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 1329769156 \) Copy content Toggle raw display
$41$ \( (T - 639078)^{2} \) Copy content Toggle raw display
$43$ \( (T + 156412)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 188161618176 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 617918622084 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 555233619600 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2757652141924 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 10829601578896 \) Copy content Toggle raw display
$71$ \( (T - 5716152)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 7075057370404 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 14496599353600 \) Copy content Toggle raw display
$83$ \( (T + 2229468)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 35894597264100 \) Copy content Toggle raw display
$97$ \( (T - 4060126)^{2} \) Copy content Toggle raw display
show more
show less