Properties

Label 2940.2.a.t
Level $2940$
Weight $2$
Character orbit 2940.a
Self dual yes
Analytic conductor $23.476$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2940,2,Mod(1,2940)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2940, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2940.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + q^{5} + q^{9} + (2 \beta + 2) q^{11} + q^{15} - 2 \beta q^{17} + \beta q^{19} + ( - \beta + 2) q^{23} + q^{25} + q^{27} - 2 q^{29} + ( - \beta + 4) q^{31} + (2 \beta + 2) q^{33} + (2 \beta + 6) q^{37} + \cdots + (2 \beta + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 2 q^{9} + 4 q^{11} + 2 q^{15} + 4 q^{23} + 2 q^{25} + 2 q^{27} - 4 q^{29} + 8 q^{31} + 4 q^{33} + 12 q^{37} + 12 q^{41} + 2 q^{45} - 4 q^{47} + 4 q^{53} + 4 q^{55} + 8 q^{67} + 4 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 1.00000 0 1.00000 0 0 0 1.00000 0
1.2 0 1.00000 0 1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2940.2.a.t yes 2
3.b odd 2 1 8820.2.a.bd 2
7.b odd 2 1 2940.2.a.n 2
7.c even 3 2 2940.2.q.o 4
7.d odd 6 2 2940.2.q.s 4
21.c even 2 1 8820.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2940.2.a.n 2 7.b odd 2 1
2940.2.a.t yes 2 1.a even 1 1 trivial
2940.2.q.o 4 7.c even 3 2
2940.2.q.s 4 7.d odd 6 2
8820.2.a.bd 2 3.b odd 2 1
8820.2.a.bi 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2940))\):

\( T_{11}^{2} - 4T_{11} - 4 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{2} - 8 \) Copy content Toggle raw display
\( T_{31}^{2} - 8T_{31} + 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 8 \) Copy content Toggle raw display
$19$ \( T^{2} - 2 \) Copy content Toggle raw display
$23$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 8T + 14 \) Copy content Toggle raw display
$37$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$41$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} - 32 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$53$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$59$ \( T^{2} - 72 \) Copy content Toggle raw display
$61$ \( T^{2} - 50 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T + 8 \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 112 \) Copy content Toggle raw display
$79$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$89$ \( T^{2} - 4T - 68 \) Copy content Toggle raw display
$97$ \( T^{2} + 24T + 136 \) Copy content Toggle raw display
show more
show less