Properties

Label 296.2.bj
Level $296$
Weight $2$
Character orbit 296.bj
Rep. character $\chi_{296}(19,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $432$
Newform subspaces $1$
Sturm bound $76$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.bj (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 296 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 1 \)
Sturm bound: \(76\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).

Total New Old
Modular forms 480 480 0
Cusp forms 432 432 0
Eisenstein series 48 48 0

Trace form

\( 432 q - 12 q^{2} - 24 q^{3} - 18 q^{4} - 12 q^{6} - 6 q^{8} - 24 q^{9} - 6 q^{10} - 36 q^{11} - 12 q^{12} - 12 q^{14} + 18 q^{16} - 24 q^{17} - 42 q^{18} - 24 q^{19} - 12 q^{20} - 24 q^{22} - 84 q^{24}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
296.2.bj.a 296.bj 296.aj $432$ $2.364$ None 296.2.bj.a \(-12\) \(-24\) \(0\) \(0\) $\mathrm{SU}(2)[C_{36}]$