Defining parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.bj (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 296 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 480 | 0 |
Cusp forms | 432 | 432 | 0 |
Eisenstein series | 48 | 48 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
296.2.bj.a | $432$ | $2.364$ | None | \(-12\) | \(-24\) | \(0\) | \(0\) |