Properties

Label 296.2.c
Level $296$
Weight $2$
Character orbit 296.c
Rep. character $\chi_{296}(149,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $3$
Sturm bound $76$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(76\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).

Total New Old
Modular forms 40 36 4
Cusp forms 36 36 0
Eisenstein series 4 0 4

Trace form

\( 36 q - 4 q^{4} + 2 q^{6} - 36 q^{9} + O(q^{10}) \) \( 36 q - 4 q^{4} + 2 q^{6} - 36 q^{9} + 2 q^{10} + 14 q^{12} + 2 q^{14} + 8 q^{15} - 12 q^{16} - 6 q^{18} - 8 q^{20} + 10 q^{22} - 12 q^{23} - 8 q^{24} - 36 q^{25} - 14 q^{26} + 8 q^{28} + 20 q^{30} - 4 q^{31} - 20 q^{32} + 8 q^{33} - 24 q^{34} + 22 q^{36} - 16 q^{38} + 8 q^{39} - 6 q^{40} - 8 q^{41} - 34 q^{42} + 30 q^{44} + 38 q^{46} - 24 q^{47} + 10 q^{48} + 36 q^{49} + 4 q^{50} + 36 q^{52} - 6 q^{54} + 16 q^{55} - 16 q^{56} - 8 q^{57} + 10 q^{58} - 40 q^{60} + 6 q^{62} - 4 q^{64} + 26 q^{66} - 16 q^{68} + 48 q^{70} + 32 q^{71} - 24 q^{72} + 48 q^{76} + 10 q^{78} + 36 q^{79} + 28 q^{81} - 34 q^{82} + 40 q^{84} - 28 q^{86} - 48 q^{87} - 8 q^{88} + 16 q^{89} + 40 q^{90} - 32 q^{92} + 6 q^{94} - 16 q^{95} + 40 q^{96} + 16 q^{97} - 30 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
296.2.c.a 296.c 8.b $4$ $2.364$ \(\Q(i, \sqrt{29})\) None 296.2.c.a \(-4\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{2})q^{2}+\beta _{1}q^{3}+2\beta _{2}q^{4}+\cdots\)
296.2.c.b 296.c 8.b $4$ $2.364$ \(\Q(i, \sqrt{5})\) None 296.2.c.b \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{3})q^{2}+(-\beta _{1}+\beta _{3})q^{3}+2\beta _{3}q^{4}+\cdots\)
296.2.c.c 296.c 8.b $28$ $2.364$ None 296.2.c.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$