Defining parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 36 | 4 |
Cusp forms | 36 | 36 | 0 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
296.2.c.a | $4$ | $2.364$ | \(\Q(i, \sqrt{29})\) | None | \(-4\) | \(0\) | \(0\) | \(-8\) | \(q+(-1-\beta _{2})q^{2}+\beta _{1}q^{3}+2\beta _{2}q^{4}+\cdots\) |
296.2.c.b | $4$ | $2.364$ | \(\Q(i, \sqrt{5})\) | None | \(4\) | \(0\) | \(0\) | \(0\) | \(q+(1+\beta _{3})q^{2}+(-\beta _{1}+\beta _{3})q^{3}+2\beta _{3}q^{4}+\cdots\) |
296.2.c.c | $28$ | $2.364$ | None | \(0\) | \(0\) | \(0\) | \(8\) |