Defining parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 296 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 80 | 0 |
Cusp forms | 72 | 72 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
296.2.j.a | $8$ | $2.364$ | 8.0.\(\cdots\).12 | None | \(-8\) | \(0\) | \(0\) | \(0\) | \(q+(-1+\beta _{2})q^{2}+(-\beta _{2}-\beta _{6})q^{3}-2\beta _{2}q^{4}+\cdots\) |
296.2.j.b | $64$ | $2.364$ | None | \(4\) | \(0\) | \(0\) | \(0\) |