Properties

Label 296.2.u
Level $296$
Weight $2$
Character orbit 296.u
Rep. character $\chi_{296}(9,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $54$
Newform subspaces $2$
Sturm bound $76$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.u (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(76\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).

Total New Old
Modular forms 252 54 198
Cusp forms 204 54 150
Eisenstein series 48 0 48

Trace form

\( 54 q - 3 q^{5} - 6 q^{7} + O(q^{10}) \) \( 54 q - 3 q^{5} - 6 q^{7} - 18 q^{11} + 12 q^{13} - 18 q^{15} - 3 q^{17} + 6 q^{19} - 6 q^{21} - 21 q^{25} - 6 q^{27} + 24 q^{31} + 30 q^{35} + 6 q^{37} - 30 q^{39} + 3 q^{41} + 48 q^{45} - 30 q^{49} - 18 q^{53} + 12 q^{55} + 54 q^{57} + 30 q^{61} - 42 q^{63} - 39 q^{65} - 18 q^{67} - 36 q^{69} - 6 q^{71} - 30 q^{73} + 24 q^{75} - 72 q^{77} - 54 q^{79} - 24 q^{81} + 21 q^{85} - 96 q^{87} - 12 q^{89} - 24 q^{91} - 60 q^{93} + 42 q^{95} - 12 q^{97} - 24 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
296.2.u.a 296.u 37.f $24$ $2.364$ None 296.2.u.a \(0\) \(0\) \(3\) \(-3\) $\mathrm{SU}(2)[C_{9}]$
296.2.u.b 296.u 37.f $30$ $2.364$ None 296.2.u.b \(0\) \(0\) \(-6\) \(-3\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(296, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(296, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 2}\)