Defining parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.y (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 296 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 160 | 0 |
Cusp forms | 144 | 144 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
296.2.y.a | $4$ | $2.364$ | \(\Q(\zeta_{12})\) | None | \(-4\) | \(-6\) | \(-2\) | \(-6\) | \(q+(-1+\zeta_{12}^{3})q^{2}+(-1-\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\) |
296.2.y.b | $4$ | $2.364$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(-6\) | \(2\) | \(6\) | \(q+(1-\zeta_{12}-\zeta_{12}^{2})q^{2}+(-1-\zeta_{12}+\cdots)q^{3}+\cdots\) |
296.2.y.c | $136$ | $2.364$ | None | \(0\) | \(0\) | \(0\) | \(0\) |