Properties

Label 296.2.y
Level 296296
Weight 22
Character orbit 296.y
Rep. character χ296(51,)\chi_{296}(51,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 144144
Newform subspaces 33
Sturm bound 7676
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 296=2337 296 = 2^{3} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 296.y (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 296 296
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 3 3
Sturm bound: 7676
Trace bound: 22
Distinguishing TpT_p: 33, 55

Dimensions

The following table gives the dimensions of various subspaces of M2(296,[χ])M_{2}(296, [\chi]).

Total New Old
Modular forms 160 160 0
Cusp forms 144 144 0
Eisenstein series 16 16 0

Trace form

144q2q212q38q68q8+60q98q1014q1216q1412q164q17+10q188q1910q208q22+22q2424q258q266q28++96q99+O(q100) 144 q - 2 q^{2} - 12 q^{3} - 8 q^{6} - 8 q^{8} + 60 q^{9} - 8 q^{10} - 14 q^{12} - 16 q^{14} - 12 q^{16} - 4 q^{17} + 10 q^{18} - 8 q^{19} - 10 q^{20} - 8 q^{22} + 22 q^{24} - 24 q^{25} - 8 q^{26} - 6 q^{28}+ \cdots + 96 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(296,[χ])S_{2}^{\mathrm{new}}(296, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
296.2.y.a 296.y 296.y 44 2.3642.364 Q(ζ12)\Q(\zeta_{12}) None 296.2.y.a 4-4 6-6 2-2 6-6 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(1+ζ123)q2+(1ζ12ζ122+)q3+q+(-1+\zeta_{12}^{3})q^{2}+(-1-\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{3}+\cdots
296.2.y.b 296.y 296.y 44 2.3642.364 Q(ζ12)\Q(\zeta_{12}) None 296.2.y.a 22 6-6 22 66 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(1ζ12ζ122)q2+(1ζ12+)q3+q+(1-\zeta_{12}-\zeta_{12}^{2})q^{2}+(-1-\zeta_{12}+\cdots)q^{3}+\cdots
296.2.y.c 296.y 296.y 136136 2.3642.364 None 296.2.y.c 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}]