Properties

Label 296.2.y
Level $296$
Weight $2$
Character orbit 296.y
Rep. character $\chi_{296}(51,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $144$
Newform subspaces $3$
Sturm bound $76$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.y (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 296 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(76\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(296, [\chi])\).

Total New Old
Modular forms 160 160 0
Cusp forms 144 144 0
Eisenstein series 16 16 0

Trace form

\( 144 q - 2 q^{2} - 12 q^{3} - 8 q^{6} - 8 q^{8} + 60 q^{9} - 8 q^{10} - 14 q^{12} - 16 q^{14} - 12 q^{16} - 4 q^{17} + 10 q^{18} - 8 q^{19} - 10 q^{20} - 8 q^{22} + 22 q^{24} - 24 q^{25} - 8 q^{26} - 6 q^{28}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(296, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
296.2.y.a 296.y 296.y $4$ $2.364$ \(\Q(\zeta_{12})\) None 296.2.y.a \(-4\) \(-6\) \(-2\) \(-6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1+\zeta_{12}^{3})q^{2}+(-1-\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
296.2.y.b 296.y 296.y $4$ $2.364$ \(\Q(\zeta_{12})\) None 296.2.y.a \(2\) \(-6\) \(2\) \(6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}-\zeta_{12}^{2})q^{2}+(-1-\zeta_{12}+\cdots)q^{3}+\cdots\)
296.2.y.c 296.y 296.y $136$ $2.364$ None 296.2.y.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$