Properties

Label 2960.1.fm.a.1453.1
Level 29602960
Weight 11
Character 2960.1453
Analytic conductor 1.4771.477
Analytic rank 00
Dimension 44
Projective image S4S_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2960,1,Mod(1157,2960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2960, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2960.1157");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2960=24537 2960 = 2^{4} \cdot 5 \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2960.fm (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.477232437391.47723243739
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.0.350464000.5

Embedding invariants

Embedding label 1453.1
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 2960.1453
Dual form 2960.1.fm.a.2357.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8660250.500000i)q2+(0.866025+0.500000i)q3+(0.500000+0.866025i)q4+(0.8660250.500000i)q5+1.00000q6+(0.3660251.36603i)q71.00000iq81.00000q10+(1.000001.00000i)q11+(0.8660250.500000i)q12+(0.8660250.500000i)q13+(1.00000+1.00000i)q14+(0.500000+0.866025i)q15+(0.500000+0.866025i)q16+(0.866025+0.500000i)q20+(0.366025+1.36603i)q21+(1.36603+0.366025i)q22+(1.000001.00000i)q23+(0.500000+0.866025i)q24+(0.5000000.866025i)q251.00000q261.00000iq27+(1.366030.366025i)q28+(0.8660250.500000i)q301.00000q31+(0.8660250.500000i)q32+(0.366025+1.36603i)q33+(0.3660251.36603i)q35+(0.866025+0.500000i)q37+(0.500000+0.866025i)q39+(0.5000000.866025i)q40+(0.866025+0.500000i)q41+(0.3660251.36603i)q421.00000q43+(1.36603+0.366025i)q44+(1.36603+0.366025i)q461.00000iq48+(0.8660250.500000i)q49+(0.866025+0.500000i)q50+(0.866025+0.500000i)q52+(0.500000+0.866025i)q53+(0.500000+0.866025i)q54+(0.3660251.36603i)q55+(1.366030.366025i)q56+(1.366030.366025i)q591.00000q60+(0.366025+1.36603i)q61+(0.866025+0.500000i)q621.00000q64+(0.5000000.866025i)q65+(1.000001.00000i)q66+(0.366025+1.36603i)q69+(0.366025+1.36603i)q70+(1.73205+1.00000i)q71+1.00000q74+1.00000iq75+(1.000001.73205i)q77+(0.8660250.500000i)q78+1.00000iq80+(0.500000+0.866025i)q81+1.00000q82+(1.00000+1.00000i)q84+(0.866025+0.500000i)q86+(1.000001.00000i)q88+(0.3660251.36603i)q91+(1.36603+0.366025i)q92+(0.8660250.500000i)q93+(0.500000+0.866025i)q96+(0.500000+0.866025i)q98+O(q100)q+(-0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.866025 - 0.500000i) q^{5} +1.00000 q^{6} +(0.366025 - 1.36603i) q^{7} -1.00000i q^{8} -1.00000 q^{10} +(1.00000 - 1.00000i) q^{11} +(-0.866025 - 0.500000i) q^{12} +(0.866025 - 0.500000i) q^{13} +(-1.00000 + 1.00000i) q^{14} +(-0.500000 + 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.866025 + 0.500000i) q^{20} +(0.366025 + 1.36603i) q^{21} +(-1.36603 + 0.366025i) q^{22} +(1.00000 - 1.00000i) q^{23} +(0.500000 + 0.866025i) q^{24} +(0.500000 - 0.866025i) q^{25} -1.00000 q^{26} -1.00000i q^{27} +(1.36603 - 0.366025i) q^{28} +(0.866025 - 0.500000i) q^{30} -1.00000 q^{31} +(0.866025 - 0.500000i) q^{32} +(-0.366025 + 1.36603i) q^{33} +(-0.366025 - 1.36603i) q^{35} +(-0.866025 + 0.500000i) q^{37} +(-0.500000 + 0.866025i) q^{39} +(-0.500000 - 0.866025i) q^{40} +(-0.866025 + 0.500000i) q^{41} +(0.366025 - 1.36603i) q^{42} -1.00000 q^{43} +(1.36603 + 0.366025i) q^{44} +(-1.36603 + 0.366025i) q^{46} -1.00000i q^{48} +(-0.866025 - 0.500000i) q^{49} +(-0.866025 + 0.500000i) q^{50} +(0.866025 + 0.500000i) q^{52} +(-0.500000 + 0.866025i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(0.366025 - 1.36603i) q^{55} +(-1.36603 - 0.366025i) q^{56} +(1.36603 - 0.366025i) q^{59} -1.00000 q^{60} +(-0.366025 + 1.36603i) q^{61} +(0.866025 + 0.500000i) q^{62} -1.00000 q^{64} +(0.500000 - 0.866025i) q^{65} +(1.00000 - 1.00000i) q^{66} +(-0.366025 + 1.36603i) q^{69} +(-0.366025 + 1.36603i) q^{70} +(-1.73205 + 1.00000i) q^{71} +1.00000 q^{74} +1.00000i q^{75} +(-1.00000 - 1.73205i) q^{77} +(0.866025 - 0.500000i) q^{78} +1.00000i q^{80} +(0.500000 + 0.866025i) q^{81} +1.00000 q^{82} +(-1.00000 + 1.00000i) q^{84} +(0.866025 + 0.500000i) q^{86} +(-1.00000 - 1.00000i) q^{88} +(-0.366025 - 1.36603i) q^{91} +(1.36603 + 0.366025i) q^{92} +(0.866025 - 0.500000i) q^{93} +(-0.500000 + 0.866025i) q^{96} +(0.500000 + 0.866025i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+4q62q74q10+4q114q142q152q162q212q22+4q23+2q24+2q254q26+2q284q31+2q33+2q352q39++2q98+O(q100) 4 q + 2 q^{4} + 4 q^{6} - 2 q^{7} - 4 q^{10} + 4 q^{11} - 4 q^{14} - 2 q^{15} - 2 q^{16} - 2 q^{21} - 2 q^{22} + 4 q^{23} + 2 q^{24} + 2 q^{25} - 4 q^{26} + 2 q^{28} - 4 q^{31} + 2 q^{33} + 2 q^{35} - 2 q^{39}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2960Z)×\left(\mathbb{Z}/2960\mathbb{Z}\right)^\times.

nn 741741 17771777 24812481 25912591
χ(n)\chi(n) e(34)e\left(\frac{3}{4}\right) e(34)e\left(\frac{3}{4}\right) e(23)e\left(\frac{2}{3}\right) 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.866025 0.500000i −0.866025 0.500000i
33 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
44 0.500000 + 0.866025i 0.500000 + 0.866025i
55 0.866025 0.500000i 0.866025 0.500000i
66 1.00000 1.00000
77 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
88 1.00000i 1.00000i
99 0 0
1010 −1.00000 −1.00000
1111 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
1212 −0.866025 0.500000i −0.866025 0.500000i
1313 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1414 −1.00000 + 1.00000i −1.00000 + 1.00000i
1515 −0.500000 + 0.866025i −0.500000 + 0.866025i
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
1818 0 0
1919 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
2020 0.866025 + 0.500000i 0.866025 + 0.500000i
2121 0.366025 + 1.36603i 0.366025 + 1.36603i
2222 −1.36603 + 0.366025i −1.36603 + 0.366025i
2323 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
2424 0.500000 + 0.866025i 0.500000 + 0.866025i
2525 0.500000 0.866025i 0.500000 0.866025i
2626 −1.00000 −1.00000
2727 1.00000i 1.00000i
2828 1.36603 0.366025i 1.36603 0.366025i
2929 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3030 0.866025 0.500000i 0.866025 0.500000i
3131 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0.866025 0.500000i 0.866025 0.500000i
3333 −0.366025 + 1.36603i −0.366025 + 1.36603i
3434 0 0
3535 −0.366025 1.36603i −0.366025 1.36603i
3636 0 0
3737 −0.866025 + 0.500000i −0.866025 + 0.500000i
3838 0 0
3939 −0.500000 + 0.866025i −0.500000 + 0.866025i
4040 −0.500000 0.866025i −0.500000 0.866025i
4141 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
4242 0.366025 1.36603i 0.366025 1.36603i
4343 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 1.36603 + 0.366025i 1.36603 + 0.366025i
4545 0 0
4646 −1.36603 + 0.366025i −1.36603 + 0.366025i
4747 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4848 1.00000i 1.00000i
4949 −0.866025 0.500000i −0.866025 0.500000i
5050 −0.866025 + 0.500000i −0.866025 + 0.500000i
5151 0 0
5252 0.866025 + 0.500000i 0.866025 + 0.500000i
5353 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
5454 −0.500000 + 0.866025i −0.500000 + 0.866025i
5555 0.366025 1.36603i 0.366025 1.36603i
5656 −1.36603 0.366025i −1.36603 0.366025i
5757 0 0
5858 0 0
5959 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6060 −1.00000 −1.00000
6161 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6262 0.866025 + 0.500000i 0.866025 + 0.500000i
6363 0 0
6464 −1.00000 −1.00000
6565 0.500000 0.866025i 0.500000 0.866025i
6666 1.00000 1.00000i 1.00000 1.00000i
6767 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6868 0 0
6969 −0.366025 + 1.36603i −0.366025 + 1.36603i
7070 −0.366025 + 1.36603i −0.366025 + 1.36603i
7171 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
7272 0 0
7373 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
7474 1.00000 1.00000
7575 1.00000i 1.00000i
7676 0 0
7777 −1.00000 1.73205i −1.00000 1.73205i
7878 0.866025 0.500000i 0.866025 0.500000i
7979 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8080 1.00000i 1.00000i
8181 0.500000 + 0.866025i 0.500000 + 0.866025i
8282 1.00000 1.00000
8383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 −1.00000 + 1.00000i −1.00000 + 1.00000i
8585 0 0
8686 0.866025 + 0.500000i 0.866025 + 0.500000i
8787 0 0
8888 −1.00000 1.00000i −1.00000 1.00000i
8989 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
9090 0 0
9191 −0.366025 1.36603i −0.366025 1.36603i
9292 1.36603 + 0.366025i 1.36603 + 0.366025i
9393 0.866025 0.500000i 0.866025 0.500000i
9494 0 0
9595 0 0
9696 −0.500000 + 0.866025i −0.500000 + 0.866025i
9797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
9898 0.500000 + 0.866025i 0.500000 + 0.866025i
9999 0 0
100100 1.00000 1.00000
101101 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
102102 0 0
103103 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
104104 −0.500000 0.866025i −0.500000 0.866025i
105105 1.00000 + 1.00000i 1.00000 + 1.00000i
106106 0.866025 0.500000i 0.866025 0.500000i
107107 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
108108 0.866025 0.500000i 0.866025 0.500000i
109109 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
110110 −1.00000 + 1.00000i −1.00000 + 1.00000i
111111 0.500000 0.866025i 0.500000 0.866025i
112112 1.00000 + 1.00000i 1.00000 + 1.00000i
113113 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
114114 0 0
115115 0.366025 1.36603i 0.366025 1.36603i
116116 0 0
117117 0 0
118118 −1.36603 0.366025i −1.36603 0.366025i
119119 0 0
120120 0.866025 + 0.500000i 0.866025 + 0.500000i
121121 1.00000i 1.00000i
122122 1.00000 1.00000i 1.00000 1.00000i
123123 0.500000 0.866025i 0.500000 0.866025i
124124 −0.500000 0.866025i −0.500000 0.866025i
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
128128 0.866025 + 0.500000i 0.866025 + 0.500000i
129129 0.866025 0.500000i 0.866025 0.500000i
130130 −0.866025 + 0.500000i −0.866025 + 0.500000i
131131 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
132132 −1.36603 + 0.366025i −1.36603 + 0.366025i
133133 0 0
134134 0 0
135135 −0.500000 0.866025i −0.500000 0.866025i
136136 0 0
137137 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
138138 1.00000 1.00000i 1.00000 1.00000i
139139 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
140140 1.00000 1.00000i 1.00000 1.00000i
141141 0 0
142142 2.00000 2.00000
143143 0.366025 1.36603i 0.366025 1.36603i
144144 0 0
145145 0 0
146146 0 0
147147 1.00000 1.00000
148148 −0.866025 0.500000i −0.866025 0.500000i
149149 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
150150 0.500000 0.866025i 0.500000 0.866025i
151151 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 2.00000i 2.00000i
155155 −0.866025 + 0.500000i −0.866025 + 0.500000i
156156 −1.00000 −1.00000
157157 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
158158 0 0
159159 1.00000i 1.00000i
160160 0.500000 0.866025i 0.500000 0.866025i
161161 −1.00000 1.73205i −1.00000 1.73205i
162162 1.00000i 1.00000i
163163 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
164164 −0.866025 0.500000i −0.866025 0.500000i
165165 0.366025 + 1.36603i 0.366025 + 1.36603i
166166 0 0
167167 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
168168 1.36603 0.366025i 1.36603 0.366025i
169169 0 0
170170 0 0
171171 0 0
172172 −0.500000 0.866025i −0.500000 0.866025i
173173 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
174174 0 0
175175 −1.00000 1.00000i −1.00000 1.00000i
176176 0.366025 + 1.36603i 0.366025 + 1.36603i
177177 −1.00000 + 1.00000i −1.00000 + 1.00000i
178178 0 0
179179 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
180180 0 0
181181 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
182182 −0.366025 + 1.36603i −0.366025 + 1.36603i
183183 −0.366025 1.36603i −0.366025 1.36603i
184184 −1.00000 1.00000i −1.00000 1.00000i
185185 −0.500000 + 0.866025i −0.500000 + 0.866025i
186186 −1.00000 −1.00000
187187 0 0
188188 0 0
189189 −1.36603 0.366025i −1.36603 0.366025i
190190 0 0
191191 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0.866025 0.500000i 0.866025 0.500000i
193193 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
194194 0 0
195195 1.00000i 1.00000i
196196 1.00000i 1.00000i
197197 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
198198 0 0
199199 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 −0.866025 0.500000i −0.866025 0.500000i
201201 0 0
202202 −1.36603 + 0.366025i −1.36603 + 0.366025i
203203 0 0
204204 0 0
205205 −0.500000 + 0.866025i −0.500000 + 0.866025i
206206 1.36603 0.366025i 1.36603 0.366025i
207207 0 0
208208 1.00000i 1.00000i
209209 0 0
210210 −0.366025 1.36603i −0.366025 1.36603i
211211 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
212212 −1.00000 −1.00000
213213 1.00000 1.73205i 1.00000 1.73205i
214214 −1.00000 −1.00000
215215 −0.866025 + 0.500000i −0.866025 + 0.500000i
216216 −1.00000 −1.00000
217217 −0.366025 + 1.36603i −0.366025 + 1.36603i
218218 0 0
219219 0 0
220220 1.36603 0.366025i 1.36603 0.366025i
221221 0 0
222222 −0.866025 + 0.500000i −0.866025 + 0.500000i
223223 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
224224 −0.366025 1.36603i −0.366025 1.36603i
225225 0 0
226226 0 0
227227 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
228228 0 0
229229 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
230230 −1.00000 + 1.00000i −1.00000 + 1.00000i
231231 1.73205 + 1.00000i 1.73205 + 1.00000i
232232 0 0
233233 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
234234 0 0
235235 0 0
236236 1.00000 + 1.00000i 1.00000 + 1.00000i
237237 0 0
238238 0 0
239239 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
240240 −0.500000 0.866025i −0.500000 0.866025i
241241 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
242242 −0.500000 + 0.866025i −0.500000 + 0.866025i
243243 0 0
244244 −1.36603 + 0.366025i −1.36603 + 0.366025i
245245 −1.00000 −1.00000
246246 −0.866025 + 0.500000i −0.866025 + 0.500000i
247247 0 0
248248 1.00000i 1.00000i
249249 0 0
250250 −0.500000 + 0.866025i −0.500000 + 0.866025i
251251 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
252252 0 0
253253 2.00000i 2.00000i
254254 0 0
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
258258 −1.00000 −1.00000
259259 0.366025 + 1.36603i 0.366025 + 1.36603i
260260 1.00000 1.00000
261261 0 0
262262 −1.36603 0.366025i −1.36603 0.366025i
263263 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
264264 1.36603 + 0.366025i 1.36603 + 0.366025i
265265 1.00000i 1.00000i
266266 0 0
267267 0 0
268268 0 0
269269 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
270270 1.00000i 1.00000i
271271 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
272272 0 0
273273 1.00000 + 1.00000i 1.00000 + 1.00000i
274274 0 0
275275 −0.366025 1.36603i −0.366025 1.36603i
276276 −1.36603 + 0.366025i −1.36603 + 0.366025i
277277 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
278278 0 0
279279 0 0
280280 −1.36603 + 0.366025i −1.36603 + 0.366025i
281281 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 −1.73205 1.00000i −1.73205 1.00000i
285285 0 0
286286 −1.00000 + 1.00000i −1.00000 + 1.00000i
287287 0.366025 + 1.36603i 0.366025 + 1.36603i
288288 0 0
289289 0.866025 0.500000i 0.866025 0.500000i
290290 0 0
291291 0 0
292292 0 0
293293 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
294294 −0.866025 0.500000i −0.866025 0.500000i
295295 1.00000 1.00000i 1.00000 1.00000i
296296 0.500000 + 0.866025i 0.500000 + 0.866025i
297297 −1.00000 1.00000i −1.00000 1.00000i
298298 −0.366025 1.36603i −0.366025 1.36603i
299299 0.366025 1.36603i 0.366025 1.36603i
300300 −0.866025 + 0.500000i −0.866025 + 0.500000i
301301 −0.366025 + 1.36603i −0.366025 + 1.36603i
302302 1.00000 1.00000
303303 −0.366025 + 1.36603i −0.366025 + 1.36603i
304304 0 0
305305 0.366025 + 1.36603i 0.366025 + 1.36603i
306306 0 0
307307 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 1.00000 1.73205i 1.00000 1.73205i
309309 0.366025 1.36603i 0.366025 1.36603i
310310 1.00000 1.00000
311311 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
312312 0.866025 + 0.500000i 0.866025 + 0.500000i
313313 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 −0.866025 + 0.500000i −0.866025 + 0.500000i
315315 0 0
316316 0 0
317317 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
318318 −0.500000 + 0.866025i −0.500000 + 0.866025i
319319 0 0
320320 −0.866025 + 0.500000i −0.866025 + 0.500000i
321321 −0.500000 + 0.866025i −0.500000 + 0.866025i
322322 2.00000i 2.00000i
323323 0 0
324324 −0.500000 + 0.866025i −0.500000 + 0.866025i
325325 1.00000i 1.00000i
326326 0.500000 + 0.866025i 0.500000 + 0.866025i
327327 0 0
328328 0.500000 + 0.866025i 0.500000 + 0.866025i
329329 0 0
330330 0.366025 1.36603i 0.366025 1.36603i
331331 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
332332 0 0
333333 0 0
334334 1.00000 1.00000i 1.00000 1.00000i
335335 0 0
336336 −1.36603 0.366025i −1.36603 0.366025i
337337 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
338338 0 0
339339 0 0
340340 0 0
341341 −1.00000 + 1.00000i −1.00000 + 1.00000i
342342 0 0
343343 0 0
344344 1.00000i 1.00000i
345345 0.366025 + 1.36603i 0.366025 + 1.36603i
346346 −1.00000 1.73205i −1.00000 1.73205i
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
350350 0.366025 + 1.36603i 0.366025 + 1.36603i
351351 −0.500000 0.866025i −0.500000 0.866025i
352352 0.366025 1.36603i 0.366025 1.36603i
353353 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
354354 1.36603 0.366025i 1.36603 0.366025i
355355 −1.00000 + 1.73205i −1.00000 + 1.73205i
356356 0 0
357357 0 0
358358 −1.36603 + 0.366025i −1.36603 + 0.366025i
359359 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 −0.866025 0.500000i −0.866025 0.500000i
362362 0 0
363363 0.500000 + 0.866025i 0.500000 + 0.866025i
364364 1.00000 1.00000i 1.00000 1.00000i
365365 0 0
366366 −0.366025 + 1.36603i −0.366025 + 1.36603i
367367 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
368368 0.366025 + 1.36603i 0.366025 + 1.36603i
369369 0 0
370370 0.866025 0.500000i 0.866025 0.500000i
371371 1.00000 + 1.00000i 1.00000 + 1.00000i
372372 0.866025 + 0.500000i 0.866025 + 0.500000i
373373 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 0.500000 + 0.866025i 0.500000 + 0.866025i
376376 0 0
377377 0 0
378378 1.00000 + 1.00000i 1.00000 + 1.00000i
379379 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
380380 0 0
381381 0 0
382382 0.866025 + 0.500000i 0.866025 + 0.500000i
383383 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
384384 −1.00000 −1.00000
385385 −1.73205 1.00000i −1.73205 1.00000i
386386 0 0
387387 0 0
388388 0 0
389389 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
390390 0.500000 0.866025i 0.500000 0.866025i
391391 0 0
392392 −0.500000 + 0.866025i −0.500000 + 0.866025i
393393 −1.00000 + 1.00000i −1.00000 + 1.00000i
394394 0.500000 + 0.866025i 0.500000 + 0.866025i
395395 0 0
396396 0 0
397397 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 −0.866025 0.500000i −0.866025 0.500000i
399399 0 0
400400 0.500000 + 0.866025i 0.500000 + 0.866025i
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 −0.866025 + 0.500000i −0.866025 + 0.500000i
404404 1.36603 + 0.366025i 1.36603 + 0.366025i
405405 0.866025 + 0.500000i 0.866025 + 0.500000i
406406 0 0
407407 −0.366025 + 1.36603i −0.366025 + 1.36603i
408408 0 0
409409 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
410410 0.866025 0.500000i 0.866025 0.500000i
411411 0 0
412412 −1.36603 0.366025i −1.36603 0.366025i
413413 2.00000i 2.00000i
414414 0 0
415415 0 0
416416 0.500000 0.866025i 0.500000 0.866025i
417417 0 0
418418 0 0
419419 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
420420 −0.366025 + 1.36603i −0.366025 + 1.36603i
421421 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
422422 0 0
423423 0 0
424424 0.866025 + 0.500000i 0.866025 + 0.500000i
425425 0 0
426426 −1.73205 + 1.00000i −1.73205 + 1.00000i
427427 1.73205 + 1.00000i 1.73205 + 1.00000i
428428 0.866025 + 0.500000i 0.866025 + 0.500000i
429429 0.366025 + 1.36603i 0.366025 + 1.36603i
430430 1.00000 1.00000
431431 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
432432 0.866025 + 0.500000i 0.866025 + 0.500000i
433433 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
434434 1.00000 1.00000i 1.00000 1.00000i
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
440440 −1.36603 0.366025i −1.36603 0.366025i
441441 0 0
442442 0 0
443443 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 1.00000 1.00000
445445 0 0
446446 0 0
447447 −1.36603 0.366025i −1.36603 0.366025i
448448 −0.366025 + 1.36603i −0.366025 + 1.36603i
449449 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
450450 0 0
451451 −0.366025 + 1.36603i −0.366025 + 1.36603i
452452 0 0
453453 0.500000 0.866025i 0.500000 0.866025i
454454 1.00000i 1.00000i
455455 −1.00000 1.00000i −1.00000 1.00000i
456456 0 0
457457 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
458458 0 0
459459 0 0
460460 1.36603 0.366025i 1.36603 0.366025i
461461 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
462462 −1.00000 1.73205i −1.00000 1.73205i
463463 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
464464 0 0
465465 0.500000 0.866025i 0.500000 0.866025i
466466 0 0
467467 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
468468 0 0
469469 0 0
470470 0 0
471471 1.00000i 1.00000i
472472 −0.366025 1.36603i −0.366025 1.36603i
473473 −1.00000 + 1.00000i −1.00000 + 1.00000i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 −1.00000 1.73205i −1.00000 1.73205i
479479 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
480480 1.00000i 1.00000i
481481 −0.500000 + 0.866025i −0.500000 + 0.866025i
482482 0 0
483483 1.73205 + 1.00000i 1.73205 + 1.00000i
484484 0.866025 0.500000i 0.866025 0.500000i
485485 0 0
486486 0 0
487487 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
488488 1.36603 + 0.366025i 1.36603 + 0.366025i
489489 1.00000 1.00000
490490 0.866025 + 0.500000i 0.866025 + 0.500000i
491491 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
492492 1.00000 1.00000
493493 0 0
494494 0 0
495495 0 0
496496 0.500000 0.866025i 0.500000 0.866025i
497497 0.732051 + 2.73205i 0.732051 + 2.73205i
498498 0 0
499499 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
500500 0.866025 0.500000i 0.866025 0.500000i
501501 −0.366025 1.36603i −0.366025 1.36603i
502502 −1.36603 + 0.366025i −1.36603 + 0.366025i
503503 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
504504 0 0
505505 0.366025 1.36603i 0.366025 1.36603i
506506 −1.00000 + 1.73205i −1.00000 + 1.73205i
507507 0 0
508508 0 0
509509 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 −0.366025 + 1.36603i −0.366025 + 1.36603i
515515 −0.366025 + 1.36603i −0.366025 + 1.36603i
516516 0.866025 + 0.500000i 0.866025 + 0.500000i
517517 0 0
518518 0.366025 1.36603i 0.366025 1.36603i
519519 −2.00000 −2.00000
520520 −0.866025 0.500000i −0.866025 0.500000i
521521 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
522522 0 0
523523 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 1.00000 + 1.00000i 1.00000 + 1.00000i
525525 1.36603 + 0.366025i 1.36603 + 0.366025i
526526 1.00000 + 1.00000i 1.00000 + 1.00000i
527527 0 0
528528 −1.00000 1.00000i −1.00000 1.00000i
529529 1.00000i 1.00000i
530530 0.500000 0.866025i 0.500000 0.866025i
531531 0 0
532532 0 0
533533 −0.500000 + 0.866025i −0.500000 + 0.866025i
534534 0 0
535535 0.500000 0.866025i 0.500000 0.866025i
536536 0 0
537537 −0.366025 + 1.36603i −0.366025 + 1.36603i
538538 −1.36603 + 0.366025i −1.36603 + 0.366025i
539539 −1.36603 + 0.366025i −1.36603 + 0.366025i
540540 0.500000 0.866025i 0.500000 0.866025i
541541 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
542542 0.866025 0.500000i 0.866025 0.500000i
543543 0 0
544544 0 0
545545 0 0
546546 −0.366025 1.36603i −0.366025 1.36603i
547547 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
548548 0 0
549549 0 0
550550 −0.366025 + 1.36603i −0.366025 + 1.36603i
551551 0 0
552552 1.36603 + 0.366025i 1.36603 + 0.366025i
553553 0 0
554554 −1.00000 −1.00000
555555 1.00000i 1.00000i
556556 0 0
557557 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
558558 0 0
559559 −0.866025 + 0.500000i −0.866025 + 0.500000i
560560 1.36603 + 0.366025i 1.36603 + 0.366025i
561561 0 0
562562 −0.500000 0.866025i −0.500000 0.866025i
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 1.00000i 1.00000i
567567 1.36603 0.366025i 1.36603 0.366025i
568568 1.00000 + 1.73205i 1.00000 + 1.73205i
569569 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 1.36603 0.366025i 1.36603 0.366025i
573573 0.866025 0.500000i 0.866025 0.500000i
574574 0.366025 1.36603i 0.366025 1.36603i
575575 −0.366025 1.36603i −0.366025 1.36603i
576576 0 0
577577 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
578578 −1.00000 −1.00000
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0.366025 + 1.36603i 0.366025 + 1.36603i
584584 0 0
585585 0 0
586586 1.00000i 1.00000i
587587 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
588588 0.500000 + 0.866025i 0.500000 + 0.866025i
589589 0 0
590590 −1.36603 + 0.366025i −1.36603 + 0.366025i
591591 1.00000 1.00000
592592 1.00000i 1.00000i
593593 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
594594 0.366025 + 1.36603i 0.366025 + 1.36603i
595595 0 0
596596 −0.366025 + 1.36603i −0.366025 + 1.36603i
597597 −0.866025 + 0.500000i −0.866025 + 0.500000i
598598 −1.00000 + 1.00000i −1.00000 + 1.00000i
599599 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 1.00000 1.00000
601601 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
602602 1.00000 1.00000i 1.00000 1.00000i
603603 0 0
604604 −0.866025 0.500000i −0.866025 0.500000i
605605 −0.500000 0.866025i −0.500000 0.866025i
606606 1.00000 1.00000i 1.00000 1.00000i
607607 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 0 0
609609 0 0
610610 0.366025 1.36603i 0.366025 1.36603i
611611 0 0
612612 0 0
613613 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
614614 −0.866025 0.500000i −0.866025 0.500000i
615615 1.00000i 1.00000i
616616 −1.73205 + 1.00000i −1.73205 + 1.00000i
617617 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
618618 −1.00000 + 1.00000i −1.00000 + 1.00000i
619619 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
620620 −0.866025 0.500000i −0.866025 0.500000i
621621 −1.00000 1.00000i −1.00000 1.00000i
622622 −0.500000 0.866025i −0.500000 0.866025i
623623 0 0
624624 −0.500000 0.866025i −0.500000 0.866025i
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0.366025 1.36603i 0.366025 1.36603i
627627 0 0
628628 1.00000 1.00000
629629 0 0
630630 0 0
631631 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 0.866025 0.500000i 0.866025 0.500000i
635635 0 0
636636 0.866025 0.500000i 0.866025 0.500000i
637637 −1.00000 −1.00000
638638 0 0
639639 0 0
640640 1.00000 1.00000
641641 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
642642 0.866025 0.500000i 0.866025 0.500000i
643643 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 1.00000 1.73205i 1.00000 1.73205i
645645 0.500000 0.866025i 0.500000 0.866025i
646646 0 0
647647 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
648648 0.866025 0.500000i 0.866025 0.500000i
649649 1.00000 1.73205i 1.00000 1.73205i
650650 −0.500000 + 0.866025i −0.500000 + 0.866025i
651651 −0.366025 1.36603i −0.366025 1.36603i
652652 1.00000i 1.00000i
653653 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 1.00000 1.00000i 1.00000 1.00000i
656656 1.00000i 1.00000i
657657 0 0
658658 0 0
659659 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
660660 −1.00000 + 1.00000i −1.00000 + 1.00000i
661661 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 −1.36603 + 0.366025i −1.36603 + 0.366025i
669669 0 0
670670 0 0
671671 1.00000 + 1.73205i 1.00000 + 1.73205i
672672 1.00000 + 1.00000i 1.00000 + 1.00000i
673673 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
674674 0 0
675675 −0.866025 0.500000i −0.866025 0.500000i
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0.866025 + 0.500000i 0.866025 + 0.500000i
682682 1.36603 0.366025i 1.36603 0.366025i
683683 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0.500000 0.866025i 0.500000 0.866025i
689689 1.00000i 1.00000i
690690 0.366025 1.36603i 0.366025 1.36603i
691691 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
692692 2.00000i 2.00000i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 −0.366025 + 1.36603i −0.366025 + 1.36603i
699699 0 0
700700 0.366025 1.36603i 0.366025 1.36603i
701701 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
702702 1.00000i 1.00000i
703703 0 0
704704 −1.00000 + 1.00000i −1.00000 + 1.00000i
705705 0 0
706706 0 0
707707 −1.00000 1.73205i −1.00000 1.73205i
708708 −1.36603 0.366025i −1.36603 0.366025i
709709 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
710710 1.73205 1.00000i 1.73205 1.00000i
711711 0 0
712712 0 0
713713 −1.00000 + 1.00000i −1.00000 + 1.00000i
714714 0 0
715715 −0.366025 1.36603i −0.366025 1.36603i
716716 1.36603 + 0.366025i 1.36603 + 0.366025i
717717 −2.00000 −2.00000
718718 0.866025 + 0.500000i 0.866025 + 0.500000i
719719 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
720720 0 0
721721 1.00000 + 1.73205i 1.00000 + 1.73205i
722722 0.500000 + 0.866025i 0.500000 + 0.866025i
723723 0 0
724724 0 0
725725 0 0
726726 1.00000i 1.00000i
727727 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
728728 −1.36603 + 0.366025i −1.36603 + 0.366025i
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 1.00000 1.00000i 1.00000 1.00000i
733733 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 1.00000 + 1.00000i 1.00000 + 1.00000i
735735 0.866025 0.500000i 0.866025 0.500000i
736736 0.366025 1.36603i 0.366025 1.36603i
737737 0 0
738738 0 0
739739 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
740740 −1.00000 −1.00000
741741 0 0
742742 −0.366025 1.36603i −0.366025 1.36603i
743743 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 −0.500000 0.866025i −0.500000 0.866025i
745745 1.36603 + 0.366025i 1.36603 + 0.366025i
746746 1.00000i 1.00000i
747747 0 0
748748 0 0
749749 −0.366025 1.36603i −0.366025 1.36603i
750750 1.00000i 1.00000i
751751 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 −0.366025 + 1.36603i −0.366025 + 1.36603i
754754 0 0
755755 −0.500000 + 0.866025i −0.500000 + 0.866025i
756756 −0.366025 1.36603i −0.366025 1.36603i
757757 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
758758 1.36603 + 0.366025i 1.36603 + 0.366025i
759759 1.00000 + 1.73205i 1.00000 + 1.73205i
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 −0.500000 0.866025i −0.500000 0.866025i
765765 0 0
766766 −1.00000 + 1.00000i −1.00000 + 1.00000i
767767 1.00000 1.00000i 1.00000 1.00000i
768768 0.866025 + 0.500000i 0.866025 + 0.500000i
769769 0 0 1.00000 00
−1.00000 π\pi
770770 1.00000 + 1.73205i 1.00000 + 1.73205i
771771 1.00000 + 1.00000i 1.00000 + 1.00000i
772772 0 0
773773 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
774774 0 0
775775 −0.500000 + 0.866025i −0.500000 + 0.866025i
776776 0 0
777777 −1.00000 1.00000i −1.00000 1.00000i
778778 1.00000 1.00000i 1.00000 1.00000i
779779 0 0
780780 −0.866025 + 0.500000i −0.866025 + 0.500000i
781781 −0.732051 + 2.73205i −0.732051 + 2.73205i
782782 0 0
783783 0 0
784784 0.866025 0.500000i 0.866025 0.500000i
785785 1.00000i 1.00000i
786786 1.36603 0.366025i 1.36603 0.366025i
787787 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 1.00000i 1.00000i
789789 1.36603 0.366025i 1.36603 0.366025i
790790 0 0
791791 0 0
792792 0 0
793793 0.366025 + 1.36603i 0.366025 + 1.36603i
794794 0.866025 + 0.500000i 0.866025 + 0.500000i
795795 −0.500000 0.866025i −0.500000 0.866025i
796796 0.500000 + 0.866025i 0.500000 + 0.866025i
797797 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
798798 0 0
799799 0 0
800800 1.00000i 1.00000i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 −1.73205 1.00000i −1.73205 1.00000i
806806 1.00000 1.00000
807807 −0.366025 + 1.36603i −0.366025 + 1.36603i
808808 −1.00000 1.00000i −1.00000 1.00000i
809809 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 −0.500000 0.866025i −0.500000 0.866025i
811811 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
812812 0 0
813813 1.00000i 1.00000i
814814 1.00000 1.00000i 1.00000 1.00000i
815815 −1.00000 −1.00000
816816 0 0
817817 0 0
818818 0.866025 0.500000i 0.866025 0.500000i
819819 0 0
820820 −1.00000 −1.00000
821821 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
822822 0 0
823823 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
824824 1.00000 + 1.00000i 1.00000 + 1.00000i
825825 1.00000 + 1.00000i 1.00000 + 1.00000i
826826 −1.00000 + 1.73205i −1.00000 + 1.73205i
827827 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
828828 0 0
829829 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
830830 0 0
831831 −0.500000 + 0.866025i −0.500000 + 0.866025i
832832 −0.866025 + 0.500000i −0.866025 + 0.500000i
833833 0 0
834834 0 0
835835 0.366025 + 1.36603i 0.366025 + 1.36603i
836836 0 0
837837 1.00000i 1.00000i
838838 0.366025 1.36603i 0.366025 1.36603i
839839 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
840840 1.00000 1.00000i 1.00000 1.00000i
841841 1.00000i 1.00000i
842842 −1.36603 + 0.366025i −1.36603 + 0.366025i
843843 −1.00000 −1.00000
844844 0 0
845845 0 0
846846 0 0
847847 −1.36603 0.366025i −1.36603 0.366025i
848848 −0.500000 0.866025i −0.500000 0.866025i
849849 −0.866025 0.500000i −0.866025 0.500000i
850850 0 0
851851 −0.366025 + 1.36603i −0.366025 + 1.36603i
852852 2.00000 2.00000
853853 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
854854 −1.00000 1.73205i −1.00000 1.73205i
855855 0 0
856856 −0.500000 0.866025i −0.500000 0.866025i
857857 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
858858 0.366025 1.36603i 0.366025 1.36603i
859859 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
860860 −0.866025 0.500000i −0.866025 0.500000i
861861 −1.00000 1.00000i −1.00000 1.00000i
862862 1.00000i 1.00000i
863863 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
864864 −0.500000 0.866025i −0.500000 0.866025i
865865 2.00000 2.00000
866866 0 0
867867 −0.500000 + 0.866025i −0.500000 + 0.866025i
868868 −1.36603 + 0.366025i −1.36603 + 0.366025i
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −1.36603 0.366025i −1.36603 0.366025i
876876 0 0
877877 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 1.00000i 1.00000i
879879 −0.866025 0.500000i −0.866025 0.500000i
880880 1.00000 + 1.00000i 1.00000 + 1.00000i
881881 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
882882 0 0
883883 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
884884 0 0
885885 −0.366025 + 1.36603i −0.366025 + 1.36603i
886886 −0.866025 0.500000i −0.866025 0.500000i
887887 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
888888 −0.866025 0.500000i −0.866025 0.500000i
889889 0 0
890890 0 0
891891 1.36603 + 0.366025i 1.36603 + 0.366025i
892892 0 0
893893 0 0
894894 1.00000 + 1.00000i 1.00000 + 1.00000i
895895 0.366025 1.36603i 0.366025 1.36603i
896896 1.00000 1.00000i 1.00000 1.00000i
897897 0.366025 + 1.36603i 0.366025 + 1.36603i
898898 −1.00000 −1.00000
899899 0 0
900900 0 0
901901 0 0
902902 1.00000 1.00000i 1.00000 1.00000i
903903 −0.366025 1.36603i −0.366025 1.36603i
904904 0 0
905905 0 0
906906 −0.866025 + 0.500000i −0.866025 + 0.500000i
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0.500000 0.866025i 0.500000 0.866025i
909909 0 0
910910 0.366025 + 1.36603i 0.366025 + 1.36603i
911911 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
912912 0 0
913913 0 0
914914 0 0
915915 −1.00000 1.00000i −1.00000 1.00000i
916916 0 0
917917 2.00000i 2.00000i
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 −1.36603 0.366025i −1.36603 0.366025i
921921 −0.866025 + 0.500000i −0.866025 + 0.500000i
922922 −1.36603 0.366025i −1.36603 0.366025i
923923 −1.00000 + 1.73205i −1.00000 + 1.73205i
924924 2.00000i 2.00000i
925925 1.00000i 1.00000i
926926 1.00000 1.00000i 1.00000 1.00000i
927927 0 0
928928 0 0
929929 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
930930 −0.866025 + 0.500000i −0.866025 + 0.500000i
931931 0 0
932932 0 0
933933 −1.00000 −1.00000
934934 0.866025 + 0.500000i 0.866025 + 0.500000i
935935 0 0
936936 0 0
937937 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
938938 0 0
939939 −1.00000 1.00000i −1.00000 1.00000i
940940 0 0
941941 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
942942 0.500000 0.866025i 0.500000 0.866025i
943943 −0.366025 + 1.36603i −0.366025 + 1.36603i
944944 −0.366025 + 1.36603i −0.366025 + 1.36603i
945945 −1.36603 + 0.366025i −1.36603 + 0.366025i
946946 1.36603 0.366025i 1.36603 0.366025i
947947 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
948948 0 0
949949 0 0
950950 0 0
951951 1.00000i 1.00000i
952952 0 0
953953 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
954954 0 0
955955 −0.866025 + 0.500000i −0.866025 + 0.500000i
956956 2.00000i 2.00000i
957957 0 0
958958 −0.500000 0.866025i −0.500000 0.866025i
959959 0 0
960960 0.500000 0.866025i 0.500000 0.866025i
961961 0 0
962962 0.866025 0.500000i 0.866025 0.500000i
963963 0 0
964964 0 0
965965 0 0
966966 −1.00000 1.73205i −1.00000 1.73205i
967967 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
968968 −1.00000 −1.00000
969969 0 0
970970 0 0
971971 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 0 0
974974 −0.366025 1.36603i −0.366025 1.36603i
975975 0.500000 + 0.866025i 0.500000 + 0.866025i
976976 −1.00000 1.00000i −1.00000 1.00000i
977977 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
978978 −0.866025 0.500000i −0.866025 0.500000i
979979 0 0
980980 −0.500000 0.866025i −0.500000 0.866025i
981981 0 0
982982 1.36603 0.366025i 1.36603 0.366025i
983983 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
984984 −0.866025 0.500000i −0.866025 0.500000i
985985 −1.00000 −1.00000
986986 0 0
987987 0 0
988988 0 0
989989 −1.00000 + 1.00000i −1.00000 + 1.00000i
990990 0 0
991991 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
992992 −0.866025 + 0.500000i −0.866025 + 0.500000i
993993 0 0
994994 0.732051 2.73205i 0.732051 2.73205i
995995 0.866025 0.500000i 0.866025 0.500000i
996996 0 0
997997 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 0.500000 + 0.866025i 0.500000 + 0.866025i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2960.1.fm.a.1453.1 yes 4
5.2 odd 4 2960.1.dn.a.2637.1 yes 4
16.5 even 4 2960.1.dn.a.2933.1 yes 4
37.26 even 3 inner 2960.1.fm.a.2653.1 yes 4
80.37 odd 4 inner 2960.1.fm.a.1157.1 yes 4
185.137 odd 12 2960.1.dn.a.877.1 4
592.581 even 12 2960.1.dn.a.1173.1 yes 4
2960.2357 odd 12 inner 2960.1.fm.a.2357.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2960.1.dn.a.877.1 4 185.137 odd 12
2960.1.dn.a.1173.1 yes 4 592.581 even 12
2960.1.dn.a.2637.1 yes 4 5.2 odd 4
2960.1.dn.a.2933.1 yes 4 16.5 even 4
2960.1.fm.a.1157.1 yes 4 80.37 odd 4 inner
2960.1.fm.a.1453.1 yes 4 1.1 even 1 trivial
2960.1.fm.a.2357.1 yes 4 2960.2357 odd 12 inner
2960.1.fm.a.2653.1 yes 4 37.26 even 3 inner