Properties

Label 297.2.e.e.100.1
Level $297$
Weight $2$
Character 297.100
Analytic conductor $2.372$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(100,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.508277025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 15x^{5} + 21x^{4} + 3x^{3} - 22x^{2} + 3x + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.1
Root \(1.86526 + 0.199842i\) of defining polynomial
Character \(\chi\) \(=\) 297.100
Dual form 297.2.e.e.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36526 + 2.36469i) q^{2} +(-2.72785 - 4.72478i) q^{4} +(-0.468293 - 0.811107i) q^{5} +(0.259560 - 0.449571i) q^{7} +9.43585 q^{8} +2.55736 q^{10} +(0.500000 - 0.866025i) q^{11} +(2.35267 + 4.07494i) q^{13} +(0.708733 + 1.22756i) q^{14} +(-7.42666 + 12.8634i) q^{16} +2.69227 q^{17} +3.41747 q^{19} +(-2.55487 + 4.42516i) q^{20} +(1.36526 + 2.36469i) q^{22} +(3.48741 + 6.04038i) q^{23} +(2.06140 - 3.57046i) q^{25} -12.8480 q^{26} -2.83217 q^{28} +(2.09311 - 3.62537i) q^{29} +(-2.59311 - 4.49140i) q^{31} +(-10.8427 - 18.7802i) q^{32} +(-3.67564 + 6.36640i) q^{34} -0.486201 q^{35} +2.06874 q^{37} +(-4.66572 + 8.08126i) q^{38} +(-4.41875 - 7.65349i) q^{40} +(0.0865763 + 0.149955i) q^{41} +(1.13474 - 1.96543i) q^{43} -5.45571 q^{44} -19.0449 q^{46} +(-0.153863 + 0.266499i) q^{47} +(3.36526 + 5.82880i) q^{49} +(5.62869 + 9.74918i) q^{50} +(12.8355 - 22.2317i) q^{52} +1.89835 q^{53} -0.936586 q^{55} +(2.44917 - 4.24209i) q^{56} +(5.71527 + 9.89913i) q^{58} +(1.98741 + 3.44230i) q^{59} +(-2.25956 + 3.91367i) q^{61} +14.1610 q^{62} +29.5059 q^{64} +(2.20348 - 3.81654i) q^{65} +(-1.68823 - 2.92410i) q^{67} +(-7.34413 - 12.7204i) q^{68} +(0.663789 - 1.14972i) q^{70} -2.90367 q^{71} +9.52444 q^{73} +(-2.82436 + 4.89193i) q^{74} +(-9.32234 - 16.1468i) q^{76} +(-0.259560 - 0.449571i) q^{77} +(1.02178 - 1.76978i) q^{79} +13.9114 q^{80} -0.472796 q^{82} +(7.02970 - 12.1758i) q^{83} +(-1.26077 - 2.18372i) q^{85} +(3.09843 + 5.36664i) q^{86} +(4.71793 - 8.17169i) q^{88} -7.53751 q^{89} +2.44264 q^{91} +(19.0263 - 32.9545i) q^{92} +(-0.420126 - 0.727680i) q^{94} +(-1.60038 - 2.77193i) q^{95} +(-8.16710 + 14.1458i) q^{97} -18.3778 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 11 q^{4} + 4 q^{5} - q^{7} + 2 q^{10} + 4 q^{11} - 7 q^{13} + q^{14} - 17 q^{16} + 10 q^{17} + 18 q^{19} - 10 q^{20} - q^{22} + 14 q^{23} - 14 q^{25} - 44 q^{26} - 2 q^{28} - 6 q^{29}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36526 + 2.36469i −0.965382 + 1.67209i −0.256799 + 0.966465i \(0.582668\pi\)
−0.708584 + 0.705627i \(0.750666\pi\)
\(3\) 0 0
\(4\) −2.72785 4.72478i −1.36393 2.36239i
\(5\) −0.468293 0.811107i −0.209427 0.362738i 0.742107 0.670281i \(-0.233827\pi\)
−0.951534 + 0.307543i \(0.900493\pi\)
\(6\) 0 0
\(7\) 0.259560 0.449571i 0.0981045 0.169922i −0.812796 0.582549i \(-0.802055\pi\)
0.910900 + 0.412627i \(0.135389\pi\)
\(8\) 9.43585 3.33608
\(9\) 0 0
\(10\) 2.55736 0.808709
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0 0
\(13\) 2.35267 + 4.07494i 0.652513 + 1.13019i 0.982511 + 0.186205i \(0.0596187\pi\)
−0.329998 + 0.943982i \(0.607048\pi\)
\(14\) 0.708733 + 1.22756i 0.189417 + 0.328080i
\(15\) 0 0
\(16\) −7.42666 + 12.8634i −1.85667 + 3.21584i
\(17\) 2.69227 0.652972 0.326486 0.945202i \(-0.394135\pi\)
0.326486 + 0.945202i \(0.394135\pi\)
\(18\) 0 0
\(19\) 3.41747 0.784020 0.392010 0.919961i \(-0.371780\pi\)
0.392010 + 0.919961i \(0.371780\pi\)
\(20\) −2.55487 + 4.42516i −0.571286 + 0.989497i
\(21\) 0 0
\(22\) 1.36526 + 2.36469i 0.291074 + 0.504155i
\(23\) 3.48741 + 6.04038i 0.727176 + 1.25951i 0.958072 + 0.286527i \(0.0925009\pi\)
−0.230896 + 0.972978i \(0.574166\pi\)
\(24\) 0 0
\(25\) 2.06140 3.57046i 0.412281 0.714091i
\(26\) −12.8480 −2.51970
\(27\) 0 0
\(28\) −2.83217 −0.535230
\(29\) 2.09311 3.62537i 0.388681 0.673215i −0.603592 0.797294i \(-0.706264\pi\)
0.992272 + 0.124079i \(0.0395976\pi\)
\(30\) 0 0
\(31\) −2.59311 4.49140i −0.465736 0.806679i 0.533498 0.845801i \(-0.320877\pi\)
−0.999234 + 0.0391223i \(0.987544\pi\)
\(32\) −10.8427 18.7802i −1.91674 3.31990i
\(33\) 0 0
\(34\) −3.67564 + 6.36640i −0.630368 + 1.09183i
\(35\) −0.486201 −0.0821830
\(36\) 0 0
\(37\) 2.06874 0.340098 0.170049 0.985436i \(-0.445607\pi\)
0.170049 + 0.985436i \(0.445607\pi\)
\(38\) −4.66572 + 8.08126i −0.756880 + 1.31095i
\(39\) 0 0
\(40\) −4.41875 7.65349i −0.698665 1.21012i
\(41\) 0.0865763 + 0.149955i 0.0135209 + 0.0234190i 0.872707 0.488245i \(-0.162363\pi\)
−0.859186 + 0.511664i \(0.829029\pi\)
\(42\) 0 0
\(43\) 1.13474 1.96543i 0.173047 0.299726i −0.766437 0.642320i \(-0.777972\pi\)
0.939484 + 0.342594i \(0.111306\pi\)
\(44\) −5.45571 −0.822479
\(45\) 0 0
\(46\) −19.0449 −2.80801
\(47\) −0.153863 + 0.266499i −0.0224433 + 0.0388729i −0.877029 0.480438i \(-0.840478\pi\)
0.854586 + 0.519311i \(0.173811\pi\)
\(48\) 0 0
\(49\) 3.36526 + 5.82880i 0.480751 + 0.832685i
\(50\) 5.62869 + 9.74918i 0.796017 + 1.37874i
\(51\) 0 0
\(52\) 12.8355 22.2317i 1.77996 3.08298i
\(53\) 1.89835 0.260758 0.130379 0.991464i \(-0.458381\pi\)
0.130379 + 0.991464i \(0.458381\pi\)
\(54\) 0 0
\(55\) −0.936586 −0.126289
\(56\) 2.44917 4.24209i 0.327284 0.566873i
\(57\) 0 0
\(58\) 5.71527 + 9.89913i 0.750451 + 1.29982i
\(59\) 1.98741 + 3.44230i 0.258739 + 0.448149i 0.965904 0.258899i \(-0.0833596\pi\)
−0.707165 + 0.707048i \(0.750026\pi\)
\(60\) 0 0
\(61\) −2.25956 + 3.91367i −0.289307 + 0.501094i −0.973645 0.228071i \(-0.926758\pi\)
0.684337 + 0.729165i \(0.260092\pi\)
\(62\) 14.1610 1.79845
\(63\) 0 0
\(64\) 29.5059 3.68824
\(65\) 2.20348 3.81654i 0.273308 0.473383i
\(66\) 0 0
\(67\) −1.68823 2.92410i −0.206250 0.357236i 0.744280 0.667868i \(-0.232793\pi\)
−0.950530 + 0.310632i \(0.899459\pi\)
\(68\) −7.34413 12.7204i −0.890606 1.54257i
\(69\) 0 0
\(70\) 0.663789 1.14972i 0.0793380 0.137417i
\(71\) −2.90367 −0.344602 −0.172301 0.985044i \(-0.555120\pi\)
−0.172301 + 0.985044i \(0.555120\pi\)
\(72\) 0 0
\(73\) 9.52444 1.11475 0.557376 0.830260i \(-0.311808\pi\)
0.557376 + 0.830260i \(0.311808\pi\)
\(74\) −2.82436 + 4.89193i −0.328325 + 0.568675i
\(75\) 0 0
\(76\) −9.32234 16.1468i −1.06935 1.85216i
\(77\) −0.259560 0.449571i −0.0295796 0.0512334i
\(78\) 0 0
\(79\) 1.02178 1.76978i 0.114959 0.199115i −0.802804 0.596243i \(-0.796660\pi\)
0.917764 + 0.397127i \(0.129993\pi\)
\(80\) 13.9114 1.55534
\(81\) 0 0
\(82\) −0.472796 −0.0522115
\(83\) 7.02970 12.1758i 0.771609 1.33647i −0.165071 0.986282i \(-0.552785\pi\)
0.936681 0.350185i \(-0.113881\pi\)
\(84\) 0 0
\(85\) −1.26077 2.18372i −0.136750 0.236858i
\(86\) 3.09843 + 5.36664i 0.334112 + 0.578700i
\(87\) 0 0
\(88\) 4.71793 8.17169i 0.502933 0.871105i
\(89\) −7.53751 −0.798974 −0.399487 0.916739i \(-0.630812\pi\)
−0.399487 + 0.916739i \(0.630812\pi\)
\(90\) 0 0
\(91\) 2.44264 0.256058
\(92\) 19.0263 32.9545i 1.98363 3.43575i
\(93\) 0 0
\(94\) −0.420126 0.727680i −0.0433327 0.0750545i
\(95\) −1.60038 2.77193i −0.164195 0.284394i
\(96\) 0 0
\(97\) −8.16710 + 14.1458i −0.829243 + 1.43629i 0.0693892 + 0.997590i \(0.477895\pi\)
−0.898633 + 0.438702i \(0.855438\pi\)
\(98\) −18.3778 −1.85643
\(99\) 0 0
\(100\) −22.4928 −2.24928
\(101\) −4.99129 + 8.64516i −0.496652 + 0.860226i −0.999993 0.00386211i \(-0.998771\pi\)
0.503341 + 0.864088i \(0.332104\pi\)
\(102\) 0 0
\(103\) −3.27747 5.67674i −0.322939 0.559346i 0.658154 0.752883i \(-0.271337\pi\)
−0.981093 + 0.193537i \(0.938004\pi\)
\(104\) 22.1995 + 38.4506i 2.17684 + 3.77039i
\(105\) 0 0
\(106\) −2.59173 + 4.48901i −0.251731 + 0.436011i
\(107\) −14.5151 −1.40323 −0.701614 0.712557i \(-0.747537\pi\)
−0.701614 + 0.712557i \(0.747537\pi\)
\(108\) 0 0
\(109\) 11.6802 1.11876 0.559379 0.828912i \(-0.311040\pi\)
0.559379 + 0.828912i \(0.311040\pi\)
\(110\) 1.27868 2.21474i 0.121917 0.211167i
\(111\) 0 0
\(112\) 3.85533 + 6.67763i 0.364295 + 0.630977i
\(113\) −0.603036 1.04449i −0.0567289 0.0982573i 0.836266 0.548323i \(-0.184734\pi\)
−0.892995 + 0.450066i \(0.851400\pi\)
\(114\) 0 0
\(115\) 3.26626 5.65733i 0.304581 0.527549i
\(116\) −22.8388 −2.12053
\(117\) 0 0
\(118\) −10.8533 −0.999129
\(119\) 0.698807 1.21037i 0.0640595 0.110954i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −6.16976 10.6863i −0.558584 0.967496i
\(123\) 0 0
\(124\) −14.1472 + 24.5038i −1.27046 + 2.20050i
\(125\) −8.54429 −0.764225
\(126\) 0 0
\(127\) −10.4533 −0.927579 −0.463789 0.885945i \(-0.653511\pi\)
−0.463789 + 0.885945i \(0.653511\pi\)
\(128\) −18.5976 + 32.2120i −1.64381 + 2.84717i
\(129\) 0 0
\(130\) 6.01663 + 10.4211i 0.527693 + 0.913991i
\(131\) −6.73051 11.6576i −0.588048 1.01853i −0.994488 0.104851i \(-0.966563\pi\)
0.406440 0.913677i \(-0.366770\pi\)
\(132\) 0 0
\(133\) 0.887038 1.53640i 0.0769160 0.133222i
\(134\) 9.21948 0.796442
\(135\) 0 0
\(136\) 25.4039 2.17837
\(137\) 10.4318 18.0684i 0.891250 1.54369i 0.0528716 0.998601i \(-0.483163\pi\)
0.838378 0.545089i \(-0.183504\pi\)
\(138\) 0 0
\(139\) −0.433925 0.751581i −0.0368051 0.0637482i 0.847036 0.531535i \(-0.178385\pi\)
−0.883841 + 0.467787i \(0.845051\pi\)
\(140\) 1.32628 + 2.29719i 0.112092 + 0.194148i
\(141\) 0 0
\(142\) 3.96425 6.86628i 0.332673 0.576206i
\(143\) 4.70534 0.393480
\(144\) 0 0
\(145\) −3.92076 −0.325601
\(146\) −13.0033 + 22.5224i −1.07616 + 1.86397i
\(147\) 0 0
\(148\) −5.64321 9.77432i −0.463869 0.803444i
\(149\) 3.28272 + 5.68584i 0.268931 + 0.465802i 0.968586 0.248679i \(-0.0799963\pi\)
−0.699655 + 0.714481i \(0.746663\pi\)
\(150\) 0 0
\(151\) −6.32096 + 10.9482i −0.514393 + 0.890954i 0.485468 + 0.874255i \(0.338649\pi\)
−0.999861 + 0.0166998i \(0.994684\pi\)
\(152\) 32.2467 2.61555
\(153\) 0 0
\(154\) 1.41747 0.114223
\(155\) −2.42867 + 4.20658i −0.195076 + 0.337881i
\(156\) 0 0
\(157\) −7.00919 12.1403i −0.559395 0.968900i −0.997547 0.0699992i \(-0.977700\pi\)
0.438152 0.898901i \(-0.355633\pi\)
\(158\) 2.78999 + 4.83240i 0.221960 + 0.384445i
\(159\) 0 0
\(160\) −10.1552 + 17.5893i −0.802836 + 1.39055i
\(161\) 3.62078 0.285357
\(162\) 0 0
\(163\) −21.6245 −1.69376 −0.846881 0.531783i \(-0.821522\pi\)
−0.846881 + 0.531783i \(0.821522\pi\)
\(164\) 0.472335 0.818108i 0.0368832 0.0638835i
\(165\) 0 0
\(166\) 19.1947 + 33.2462i 1.48980 + 2.58040i
\(167\) 2.51058 + 4.34844i 0.194274 + 0.336493i 0.946662 0.322227i \(-0.104432\pi\)
−0.752388 + 0.658720i \(0.771098\pi\)
\(168\) 0 0
\(169\) −4.57012 + 7.91567i −0.351547 + 0.608898i
\(170\) 6.88512 0.528064
\(171\) 0 0
\(172\) −12.3816 −0.944092
\(173\) 0.229066 0.396754i 0.0174155 0.0301646i −0.857186 0.515006i \(-0.827790\pi\)
0.874602 + 0.484842i \(0.161123\pi\)
\(174\) 0 0
\(175\) −1.07012 1.85350i −0.0808932 0.140111i
\(176\) 7.42666 + 12.8634i 0.559806 + 0.969612i
\(177\) 0 0
\(178\) 10.2906 17.8239i 0.771316 1.33596i
\(179\) −9.19929 −0.687587 −0.343794 0.939045i \(-0.611712\pi\)
−0.343794 + 0.939045i \(0.611712\pi\)
\(180\) 0 0
\(181\) 15.1557 1.12652 0.563258 0.826281i \(-0.309548\pi\)
0.563258 + 0.826281i \(0.309548\pi\)
\(182\) −3.33483 + 5.77609i −0.247194 + 0.428153i
\(183\) 0 0
\(184\) 32.9067 + 56.9961i 2.42592 + 4.20181i
\(185\) −0.968774 1.67797i −0.0712257 0.123367i
\(186\) 0 0
\(187\) 1.34614 2.33158i 0.0984393 0.170502i
\(188\) 1.67887 0.122444
\(189\) 0 0
\(190\) 8.73969 0.634044
\(191\) −10.4716 + 18.1373i −0.757699 + 1.31237i 0.186323 + 0.982489i \(0.440343\pi\)
−0.944021 + 0.329884i \(0.892990\pi\)
\(192\) 0 0
\(193\) 5.22446 + 9.04903i 0.376065 + 0.651364i 0.990486 0.137615i \(-0.0439436\pi\)
−0.614421 + 0.788978i \(0.710610\pi\)
\(194\) −22.3004 38.6254i −1.60107 2.77314i
\(195\) 0 0
\(196\) 18.3599 31.8002i 1.31142 2.27144i
\(197\) 20.9855 1.49515 0.747576 0.664176i \(-0.231217\pi\)
0.747576 + 0.664176i \(0.231217\pi\)
\(198\) 0 0
\(199\) −19.0502 −1.35043 −0.675216 0.737620i \(-0.735950\pi\)
−0.675216 + 0.737620i \(0.735950\pi\)
\(200\) 19.4511 33.6903i 1.37540 2.38226i
\(201\) 0 0
\(202\) −13.6288 23.6057i −0.958917 1.66089i
\(203\) −1.08658 1.88201i −0.0762627 0.132091i
\(204\) 0 0
\(205\) 0.0810862 0.140445i 0.00566330 0.00980913i
\(206\) 17.8983 1.24704
\(207\) 0 0
\(208\) −69.8899 −4.84600
\(209\) 1.70873 2.95961i 0.118196 0.204721i
\(210\) 0 0
\(211\) −8.14459 14.1068i −0.560697 0.971155i −0.997436 0.0715668i \(-0.977200\pi\)
0.436739 0.899588i \(-0.356133\pi\)
\(212\) −5.17841 8.96926i −0.355654 0.616012i
\(213\) 0 0
\(214\) 19.8168 34.3238i 1.35465 2.34632i
\(215\) −2.12557 −0.144963
\(216\) 0 0
\(217\) −2.69227 −0.182763
\(218\) −15.9464 + 27.6200i −1.08003 + 1.87066i
\(219\) 0 0
\(220\) 2.55487 + 4.42516i 0.172249 + 0.298344i
\(221\) 6.33403 + 10.9709i 0.426073 + 0.737980i
\(222\) 0 0
\(223\) 4.52251 7.83322i 0.302850 0.524551i −0.673930 0.738795i \(-0.735395\pi\)
0.976780 + 0.214244i \(0.0687286\pi\)
\(224\) −11.2574 −0.752165
\(225\) 0 0
\(226\) 3.29320 0.219060
\(227\) −2.58585 + 4.47882i −0.171629 + 0.297269i −0.938989 0.343946i \(-0.888236\pi\)
0.767361 + 0.641216i \(0.221570\pi\)
\(228\) 0 0
\(229\) −8.01186 13.8769i −0.529438 0.917014i −0.999410 0.0343328i \(-0.989069\pi\)
0.469972 0.882681i \(-0.344264\pi\)
\(230\) 8.91858 + 15.4474i 0.588074 + 1.01857i
\(231\) 0 0
\(232\) 19.7503 34.2085i 1.29667 2.24590i
\(233\) 16.9177 1.10832 0.554158 0.832412i \(-0.313040\pi\)
0.554158 + 0.832412i \(0.313040\pi\)
\(234\) 0 0
\(235\) 0.288213 0.0188009
\(236\) 10.8427 18.7802i 0.705803 1.22249i
\(237\) 0 0
\(238\) 1.90810 + 3.30493i 0.123684 + 0.214227i
\(239\) 0.361215 + 0.625643i 0.0233651 + 0.0404695i 0.877472 0.479629i \(-0.159229\pi\)
−0.854106 + 0.520098i \(0.825895\pi\)
\(240\) 0 0
\(241\) −6.82346 + 11.8186i −0.439537 + 0.761301i −0.997654 0.0684616i \(-0.978191\pi\)
0.558116 + 0.829763i \(0.311524\pi\)
\(242\) 2.73051 0.175524
\(243\) 0 0
\(244\) 24.6550 1.57837
\(245\) 3.15185 5.45917i 0.201364 0.348774i
\(246\) 0 0
\(247\) 8.04017 + 13.9260i 0.511584 + 0.886089i
\(248\) −24.4682 42.3802i −1.55373 2.69114i
\(249\) 0 0
\(250\) 11.6652 20.2046i 0.737769 1.27785i
\(251\) −20.5733 −1.29858 −0.649288 0.760542i \(-0.724933\pi\)
−0.649288 + 0.760542i \(0.724933\pi\)
\(252\) 0 0
\(253\) 6.97483 0.438504
\(254\) 14.2714 24.7188i 0.895468 1.55100i
\(255\) 0 0
\(256\) −21.2752 36.8497i −1.32970 2.30311i
\(257\) 2.63208 + 4.55890i 0.164185 + 0.284376i 0.936365 0.351027i \(-0.114167\pi\)
−0.772181 + 0.635403i \(0.780834\pi\)
\(258\) 0 0
\(259\) 0.536961 0.930044i 0.0333652 0.0577901i
\(260\) −24.0431 −1.49109
\(261\) 0 0
\(262\) 36.7555 2.27076
\(263\) 1.29918 2.25025i 0.0801110 0.138756i −0.823186 0.567771i \(-0.807806\pi\)
0.903297 + 0.429015i \(0.141139\pi\)
\(264\) 0 0
\(265\) −0.888982 1.53976i −0.0546097 0.0945868i
\(266\) 2.42207 + 4.19515i 0.148507 + 0.257221i
\(267\) 0 0
\(268\) −9.21049 + 15.9530i −0.562620 + 0.974487i
\(269\) 10.0952 0.615516 0.307758 0.951465i \(-0.400421\pi\)
0.307758 + 0.951465i \(0.400421\pi\)
\(270\) 0 0
\(271\) 32.3022 1.96222 0.981111 0.193447i \(-0.0619667\pi\)
0.981111 + 0.193447i \(0.0619667\pi\)
\(272\) −19.9946 + 34.6317i −1.21235 + 2.09985i
\(273\) 0 0
\(274\) 28.4842 + 49.3361i 1.72079 + 2.98050i
\(275\) −2.06140 3.57046i −0.124307 0.215307i
\(276\) 0 0
\(277\) −16.1690 + 28.0055i −0.971499 + 1.68269i −0.280463 + 0.959865i \(0.590488\pi\)
−0.691036 + 0.722820i \(0.742845\pi\)
\(278\) 2.36968 0.142124
\(279\) 0 0
\(280\) −4.58772 −0.274169
\(281\) −4.77135 + 8.26422i −0.284635 + 0.493002i −0.972521 0.232817i \(-0.925206\pi\)
0.687886 + 0.725819i \(0.258539\pi\)
\(282\) 0 0
\(283\) 2.96038 + 5.12752i 0.175976 + 0.304800i 0.940499 0.339797i \(-0.110358\pi\)
−0.764522 + 0.644597i \(0.777025\pi\)
\(284\) 7.92078 + 13.7192i 0.470012 + 0.814084i
\(285\) 0 0
\(286\) −6.42400 + 11.1267i −0.379859 + 0.657935i
\(287\) 0.0898871 0.00530587
\(288\) 0 0
\(289\) −9.75167 −0.573627
\(290\) 5.35284 9.27139i 0.314330 0.544435i
\(291\) 0 0
\(292\) −25.9813 45.0009i −1.52044 2.63348i
\(293\) 7.21454 + 12.4959i 0.421478 + 0.730021i 0.996084 0.0884090i \(-0.0281783\pi\)
−0.574607 + 0.818430i \(0.694845\pi\)
\(294\) 0 0
\(295\) 1.86138 3.22401i 0.108374 0.187709i
\(296\) 19.5203 1.13459
\(297\) 0 0
\(298\) −17.9270 −1.03849
\(299\) −16.4095 + 28.4220i −0.948984 + 1.64369i
\(300\) 0 0
\(301\) −0.589068 1.02030i −0.0339533 0.0588089i
\(302\) −17.2595 29.8943i −0.993171 1.72022i
\(303\) 0 0
\(304\) −25.3804 + 43.9601i −1.45566 + 2.52128i
\(305\) 4.23255 0.242355
\(306\) 0 0
\(307\) 9.60611 0.548250 0.274125 0.961694i \(-0.411612\pi\)
0.274125 + 0.961694i \(0.411612\pi\)
\(308\) −1.41608 + 2.45273i −0.0806889 + 0.139757i
\(309\) 0 0
\(310\) −6.63152 11.4861i −0.376645 0.652368i
\(311\) 0.171704 + 0.297401i 0.00973646 + 0.0168641i 0.870853 0.491544i \(-0.163567\pi\)
−0.861116 + 0.508408i \(0.830234\pi\)
\(312\) 0 0
\(313\) 4.17952 7.23914i 0.236240 0.409180i −0.723392 0.690437i \(-0.757418\pi\)
0.959632 + 0.281257i \(0.0907514\pi\)
\(314\) 38.2774 2.16012
\(315\) 0 0
\(316\) −11.1491 −0.627185
\(317\) −6.70413 + 11.6119i −0.376541 + 0.652189i −0.990556 0.137106i \(-0.956220\pi\)
0.614015 + 0.789294i \(0.289553\pi\)
\(318\) 0 0
\(319\) −2.09311 3.62537i −0.117192 0.202982i
\(320\) −13.8174 23.9324i −0.772416 1.33786i
\(321\) 0 0
\(322\) −4.94329 + 8.56203i −0.275479 + 0.477143i
\(323\) 9.20075 0.511943
\(324\) 0 0
\(325\) 19.3992 1.07607
\(326\) 29.5230 51.1353i 1.63513 2.83212i
\(327\) 0 0
\(328\) 0.816922 + 1.41495i 0.0451069 + 0.0781275i
\(329\) 0.0798737 + 0.138345i 0.00440358 + 0.00762722i
\(330\) 0 0
\(331\) 14.9247 25.8504i 0.820337 1.42086i −0.0850951 0.996373i \(-0.527119\pi\)
0.905432 0.424492i \(-0.139547\pi\)
\(332\) −76.7039 −4.20967
\(333\) 0 0
\(334\) −13.7103 −0.750196
\(335\) −1.58117 + 2.73867i −0.0863888 + 0.149630i
\(336\) 0 0
\(337\) 10.8619 + 18.8133i 0.591683 + 1.02483i 0.994006 + 0.109328i \(0.0348698\pi\)
−0.402322 + 0.915498i \(0.631797\pi\)
\(338\) −12.4788 21.6139i −0.678755 1.17564i
\(339\) 0 0
\(340\) −6.87841 + 11.9137i −0.373034 + 0.646114i
\(341\) −5.18622 −0.280850
\(342\) 0 0
\(343\) 7.12779 0.384865
\(344\) 10.7073 18.5455i 0.577297 0.999908i
\(345\) 0 0
\(346\) 0.625467 + 1.08334i 0.0336253 + 0.0582408i
\(347\) −14.1149 24.4477i −0.757727 1.31242i −0.944007 0.329925i \(-0.892977\pi\)
0.186280 0.982497i \(-0.440357\pi\)
\(348\) 0 0
\(349\) 3.57851 6.19817i 0.191553 0.331780i −0.754212 0.656631i \(-0.771981\pi\)
0.945765 + 0.324851i \(0.105314\pi\)
\(350\) 5.84394 0.312372
\(351\) 0 0
\(352\) −21.6855 −1.15584
\(353\) −14.8149 + 25.6602i −0.788518 + 1.36575i 0.138357 + 0.990382i \(0.455818\pi\)
−0.926875 + 0.375371i \(0.877515\pi\)
\(354\) 0 0
\(355\) 1.35977 + 2.35519i 0.0721689 + 0.125000i
\(356\) 20.5612 + 35.6131i 1.08974 + 1.88749i
\(357\) 0 0
\(358\) 12.5594 21.7535i 0.663785 1.14971i
\(359\) 13.0116 0.686726 0.343363 0.939203i \(-0.388434\pi\)
0.343363 + 0.939203i \(0.388434\pi\)
\(360\) 0 0
\(361\) −7.32093 −0.385312
\(362\) −20.6915 + 35.8387i −1.08752 + 1.88364i
\(363\) 0 0
\(364\) −6.66316 11.5409i −0.349244 0.604909i
\(365\) −4.46023 7.72534i −0.233459 0.404363i
\(366\) 0 0
\(367\) −16.0581 + 27.8134i −0.838225 + 1.45185i 0.0531526 + 0.998586i \(0.483073\pi\)
−0.891378 + 0.453262i \(0.850260\pi\)
\(368\) −103.599 −5.40049
\(369\) 0 0
\(370\) 5.29050 0.275040
\(371\) 0.492735 0.853442i 0.0255815 0.0443085i
\(372\) 0 0
\(373\) −17.4578 30.2378i −0.903931 1.56565i −0.822346 0.568988i \(-0.807335\pi\)
−0.0815849 0.996666i \(-0.525998\pi\)
\(374\) 3.67564 + 6.36640i 0.190063 + 0.329199i
\(375\) 0 0
\(376\) −1.45183 + 2.51465i −0.0748726 + 0.129683i
\(377\) 19.6976 1.01448
\(378\) 0 0
\(379\) −11.4728 −0.589320 −0.294660 0.955602i \(-0.595206\pi\)
−0.294660 + 0.955602i \(0.595206\pi\)
\(380\) −8.73118 + 15.1228i −0.447900 + 0.775786i
\(381\) 0 0
\(382\) −28.5929 49.5243i −1.46294 2.53388i
\(383\) 15.1180 + 26.1851i 0.772492 + 1.33800i 0.936193 + 0.351485i \(0.114323\pi\)
−0.163701 + 0.986510i \(0.552343\pi\)
\(384\) 0 0
\(385\) −0.243100 + 0.421062i −0.0123895 + 0.0214593i
\(386\) −28.5309 −1.45219
\(387\) 0 0
\(388\) 89.1146 4.52411
\(389\) −13.0540 + 22.6101i −0.661863 + 1.14638i 0.318263 + 0.948002i \(0.396900\pi\)
−0.980126 + 0.198377i \(0.936433\pi\)
\(390\) 0 0
\(391\) 9.38907 + 16.2623i 0.474826 + 0.822422i
\(392\) 31.7541 + 54.9997i 1.60382 + 2.77790i
\(393\) 0 0
\(394\) −28.6506 + 49.6242i −1.44339 + 2.50003i
\(395\) −1.91397 −0.0963024
\(396\) 0 0
\(397\) −9.94467 −0.499109 −0.249554 0.968361i \(-0.580284\pi\)
−0.249554 + 0.968361i \(0.580284\pi\)
\(398\) 26.0084 45.0479i 1.30368 2.25805i
\(399\) 0 0
\(400\) 30.6187 + 53.0331i 1.53093 + 2.65166i
\(401\) −11.7984 20.4354i −0.589183 1.02050i −0.994340 0.106248i \(-0.966116\pi\)
0.405156 0.914247i \(-0.367217\pi\)
\(402\) 0 0
\(403\) 12.2015 21.1336i 0.607798 1.05274i
\(404\) 54.4620 2.70959
\(405\) 0 0
\(406\) 5.93382 0.294491
\(407\) 1.03437 1.79158i 0.0512717 0.0888052i
\(408\) 0 0
\(409\) 1.30329 + 2.25737i 0.0644436 + 0.111620i 0.896447 0.443151i \(-0.146139\pi\)
−0.832003 + 0.554770i \(0.812806\pi\)
\(410\) 0.221407 + 0.383488i 0.0109345 + 0.0189391i
\(411\) 0 0
\(412\) −17.8809 + 30.9706i −0.880929 + 1.52581i
\(413\) 2.06341 0.101534
\(414\) 0 0
\(415\) −13.1678 −0.646383
\(416\) 51.0188 88.3672i 2.50140 4.33256i
\(417\) 0 0
\(418\) 4.66572 + 8.08126i 0.228208 + 0.395267i
\(419\) −8.80232 15.2461i −0.430022 0.744819i 0.566853 0.823819i \(-0.308161\pi\)
−0.996875 + 0.0789996i \(0.974827\pi\)
\(420\) 0 0
\(421\) −3.17824 + 5.50487i −0.154898 + 0.268291i −0.933022 0.359820i \(-0.882838\pi\)
0.778124 + 0.628111i \(0.216172\pi\)
\(422\) 44.4778 2.16515
\(423\) 0 0
\(424\) 17.9125 0.869908
\(425\) 5.54986 9.61264i 0.269208 0.466282i
\(426\) 0 0
\(427\) 1.17298 + 2.03167i 0.0567647 + 0.0983193i
\(428\) 39.5951 + 68.5807i 1.91390 + 3.31497i
\(429\) 0 0
\(430\) 2.90195 5.02632i 0.139944 0.242391i
\(431\) −29.1820 −1.40565 −0.702824 0.711364i \(-0.748078\pi\)
−0.702824 + 0.711364i \(0.748078\pi\)
\(432\) 0 0
\(433\) 13.7210 0.659388 0.329694 0.944088i \(-0.393054\pi\)
0.329694 + 0.944088i \(0.393054\pi\)
\(434\) 3.67564 6.36640i 0.176437 0.305597i
\(435\) 0 0
\(436\) −31.8618 55.1862i −1.52590 2.64294i
\(437\) 11.9181 + 20.6428i 0.570121 + 0.987478i
\(438\) 0 0
\(439\) 1.00243 1.73625i 0.0478431 0.0828667i −0.841112 0.540861i \(-0.818099\pi\)
0.888955 + 0.457994i \(0.151432\pi\)
\(440\) −8.83749 −0.421311
\(441\) 0 0
\(442\) −34.5903 −1.64529
\(443\) 17.2972 29.9597i 0.821817 1.42343i −0.0825115 0.996590i \(-0.526294\pi\)
0.904328 0.426838i \(-0.140373\pi\)
\(444\) 0 0
\(445\) 3.52976 + 6.11373i 0.167327 + 0.289819i
\(446\) 12.3488 + 21.3887i 0.584732 + 1.01279i
\(447\) 0 0
\(448\) 7.65856 13.2650i 0.361833 0.626713i
\(449\) 2.43875 0.115092 0.0575459 0.998343i \(-0.481672\pi\)
0.0575459 + 0.998343i \(0.481672\pi\)
\(450\) 0 0
\(451\) 0.173153 0.00815344
\(452\) −3.28999 + 5.69843i −0.154748 + 0.268031i
\(453\) 0 0
\(454\) −7.06069 12.2295i −0.331374 0.573957i
\(455\) −1.14387 1.98124i −0.0536255 0.0928821i
\(456\) 0 0
\(457\) 20.9497 36.2860i 0.979988 1.69739i 0.317604 0.948223i \(-0.397122\pi\)
0.662384 0.749165i \(-0.269545\pi\)
\(458\) 43.7530 2.04444
\(459\) 0 0
\(460\) −35.6395 −1.66170
\(461\) 19.1941 33.2451i 0.893956 1.54838i 0.0588651 0.998266i \(-0.481252\pi\)
0.835091 0.550112i \(-0.185415\pi\)
\(462\) 0 0
\(463\) 0.121675 + 0.210748i 0.00565472 + 0.00979427i 0.868839 0.495095i \(-0.164867\pi\)
−0.863184 + 0.504889i \(0.831533\pi\)
\(464\) 31.0896 + 53.8488i 1.44330 + 2.49987i
\(465\) 0 0
\(466\) −23.0970 + 40.0052i −1.06995 + 1.85320i
\(467\) 15.6918 0.726129 0.363064 0.931764i \(-0.381731\pi\)
0.363064 + 0.931764i \(0.381731\pi\)
\(468\) 0 0
\(469\) −1.75279 −0.0809363
\(470\) −0.393484 + 0.681535i −0.0181501 + 0.0314369i
\(471\) 0 0
\(472\) 18.7529 + 32.4811i 0.863174 + 1.49506i
\(473\) −1.13474 1.96543i −0.0521755 0.0903707i
\(474\) 0 0
\(475\) 7.04477 12.2019i 0.323236 0.559862i
\(476\) −7.62497 −0.349490
\(477\) 0 0
\(478\) −1.97261 −0.0902249
\(479\) −8.14023 + 14.0993i −0.371937 + 0.644213i −0.989863 0.142022i \(-0.954640\pi\)
0.617927 + 0.786236i \(0.287973\pi\)
\(480\) 0 0
\(481\) 4.86705 + 8.42998i 0.221918 + 0.384374i
\(482\) −18.6315 32.2708i −0.848643 1.46989i
\(483\) 0 0
\(484\) −2.72785 + 4.72478i −0.123993 + 0.214763i
\(485\) 15.2984 0.694664
\(486\) 0 0
\(487\) −32.0421 −1.45197 −0.725983 0.687713i \(-0.758615\pi\)
−0.725983 + 0.687713i \(0.758615\pi\)
\(488\) −21.3209 + 36.9289i −0.965151 + 1.67169i
\(489\) 0 0
\(490\) 8.60618 + 14.9063i 0.388787 + 0.673400i
\(491\) −10.4729 18.1396i −0.472635 0.818627i 0.526875 0.849943i \(-0.323364\pi\)
−0.999510 + 0.0313157i \(0.990030\pi\)
\(492\) 0 0
\(493\) 5.63522 9.76049i 0.253798 0.439591i
\(494\) −43.9076 −1.97550
\(495\) 0 0
\(496\) 77.0326 3.45887
\(497\) −0.753676 + 1.30541i −0.0338070 + 0.0585554i
\(498\) 0 0
\(499\) −3.61552 6.26227i −0.161853 0.280338i 0.773680 0.633576i \(-0.218414\pi\)
−0.935533 + 0.353239i \(0.885080\pi\)
\(500\) 23.3076 + 40.3699i 1.04235 + 1.80540i
\(501\) 0 0
\(502\) 28.0879 48.6496i 1.25362 2.17134i
\(503\) 5.90333 0.263216 0.131608 0.991302i \(-0.457986\pi\)
0.131608 + 0.991302i \(0.457986\pi\)
\(504\) 0 0
\(505\) 9.34954 0.416049
\(506\) −9.52243 + 16.4933i −0.423324 + 0.733218i
\(507\) 0 0
\(508\) 28.5150 + 49.3895i 1.26515 + 2.19130i
\(509\) −5.42002 9.38776i −0.240238 0.416105i 0.720544 0.693409i \(-0.243892\pi\)
−0.960782 + 0.277304i \(0.910559\pi\)
\(510\) 0 0
\(511\) 2.47217 4.28192i 0.109362 0.189421i
\(512\) 41.7940 1.84705
\(513\) 0 0
\(514\) −14.3739 −0.634004
\(515\) −3.06963 + 5.31676i −0.135264 + 0.234284i
\(516\) 0 0
\(517\) 0.153863 + 0.266499i 0.00676691 + 0.0117206i
\(518\) 1.46618 + 2.53950i 0.0644203 + 0.111579i
\(519\) 0 0
\(520\) 20.7917 36.0123i 0.911776 1.57924i
\(521\) −14.7412 −0.645822 −0.322911 0.946429i \(-0.604661\pi\)
−0.322911 + 0.946429i \(0.604661\pi\)
\(522\) 0 0
\(523\) −16.8230 −0.735617 −0.367808 0.929902i \(-0.619892\pi\)
−0.367808 + 0.929902i \(0.619892\pi\)
\(524\) −36.7197 + 63.6004i −1.60411 + 2.77840i
\(525\) 0 0
\(526\) 3.54744 + 6.14434i 0.154676 + 0.267906i
\(527\) −6.98136 12.0921i −0.304113 0.526739i
\(528\) 0 0
\(529\) −12.8241 + 22.2120i −0.557570 + 0.965739i
\(530\) 4.85475 0.210877
\(531\) 0 0
\(532\) −9.67884 −0.419631
\(533\) −0.407371 + 0.705587i −0.0176452 + 0.0305624i
\(534\) 0 0
\(535\) 6.79732 + 11.7733i 0.293874 + 0.509004i
\(536\) −15.9299 27.5914i −0.688067 1.19177i
\(537\) 0 0
\(538\) −13.7826 + 23.8721i −0.594208 + 1.02920i
\(539\) 6.73051 0.289904
\(540\) 0 0
\(541\) −22.5357 −0.968886 −0.484443 0.874823i \(-0.660978\pi\)
−0.484443 + 0.874823i \(0.660978\pi\)
\(542\) −44.1009 + 76.3849i −1.89429 + 3.28101i
\(543\) 0 0
\(544\) −29.1916 50.5614i −1.25158 2.16780i
\(545\) −5.46974 9.47387i −0.234298 0.405816i
\(546\) 0 0
\(547\) −14.2139 + 24.6192i −0.607743 + 1.05264i 0.383869 + 0.923388i \(0.374591\pi\)
−0.991612 + 0.129254i \(0.958742\pi\)
\(548\) −113.826 −4.86240
\(549\) 0 0
\(550\) 11.2574 0.480016
\(551\) 7.15313 12.3896i 0.304734 0.527814i
\(552\) 0 0
\(553\) −0.530427 0.918727i −0.0225561 0.0390683i
\(554\) −44.1496 76.4693i −1.87574 3.24887i
\(555\) 0 0
\(556\) −2.36737 + 4.10040i −0.100399 + 0.173896i
\(557\) −43.1863 −1.82986 −0.914930 0.403612i \(-0.867755\pi\)
−0.914930 + 0.403612i \(0.867755\pi\)
\(558\) 0 0
\(559\) 10.6787 0.451661
\(560\) 3.61085 6.25417i 0.152586 0.264287i
\(561\) 0 0
\(562\) −13.0282 22.5656i −0.549563 0.951871i
\(563\) −0.482261 0.835300i −0.0203249 0.0352037i 0.855684 0.517499i \(-0.173137\pi\)
−0.876009 + 0.482295i \(0.839803\pi\)
\(564\) 0 0
\(565\) −0.564795 + 0.978254i −0.0237611 + 0.0411555i
\(566\) −16.1667 −0.679537
\(567\) 0 0
\(568\) −27.3986 −1.14962
\(569\) 4.26416 7.38575i 0.178763 0.309627i −0.762694 0.646759i \(-0.776124\pi\)
0.941457 + 0.337133i \(0.109457\pi\)
\(570\) 0 0
\(571\) −8.80176 15.2451i −0.368342 0.637988i 0.620964 0.783839i \(-0.286741\pi\)
−0.989307 + 0.145851i \(0.953408\pi\)
\(572\) −12.8355 22.2317i −0.536678 0.929554i
\(573\) 0 0
\(574\) −0.122719 + 0.212555i −0.00512219 + 0.00887189i
\(575\) 28.7559 1.19920
\(576\) 0 0
\(577\) −11.1810 −0.465472 −0.232736 0.972540i \(-0.574768\pi\)
−0.232736 + 0.972540i \(0.574768\pi\)
\(578\) 13.3135 23.0597i 0.553770 0.959157i
\(579\) 0 0
\(580\) 10.6952 + 18.5247i 0.444096 + 0.769197i
\(581\) −3.64926 6.32070i −0.151397 0.262227i
\(582\) 0 0
\(583\) 0.949173 1.64402i 0.0393107 0.0680882i
\(584\) 89.8713 3.71890
\(585\) 0 0
\(586\) −39.3988 −1.62755
\(587\) 10.8373 18.7708i 0.447305 0.774755i −0.550905 0.834568i \(-0.685717\pi\)
0.998210 + 0.0598133i \(0.0190505\pi\)
\(588\) 0 0
\(589\) −8.86187 15.3492i −0.365147 0.632453i
\(590\) 5.08253 + 8.80321i 0.209245 + 0.362422i
\(591\) 0 0
\(592\) −15.3638 + 26.6109i −0.631448 + 1.09370i
\(593\) 7.82200 0.321211 0.160605 0.987019i \(-0.448655\pi\)
0.160605 + 0.987019i \(0.448655\pi\)
\(594\) 0 0
\(595\) −1.30899 −0.0536632
\(596\) 17.9096 31.0203i 0.733605 1.27064i
\(597\) 0 0
\(598\) −44.8063 77.6068i −1.83227 3.17358i
\(599\) −5.25399 9.10018i −0.214672 0.371823i 0.738499 0.674255i \(-0.235535\pi\)
−0.953171 + 0.302432i \(0.902202\pi\)
\(600\) 0 0
\(601\) −18.5488 + 32.1275i −0.756622 + 1.31051i 0.187942 + 0.982180i \(0.439818\pi\)
−0.944564 + 0.328328i \(0.893515\pi\)
\(602\) 3.21692 0.131112
\(603\) 0 0
\(604\) 68.9706 2.80638
\(605\) −0.468293 + 0.811107i −0.0190388 + 0.0329762i
\(606\) 0 0
\(607\) 20.7558 + 35.9501i 0.842451 + 1.45917i 0.887817 + 0.460197i \(0.152221\pi\)
−0.0453658 + 0.998970i \(0.514445\pi\)
\(608\) −37.0547 64.1806i −1.50277 2.60287i
\(609\) 0 0
\(610\) −5.77851 + 10.0087i −0.233965 + 0.405239i
\(611\) −1.44796 −0.0585782
\(612\) 0 0
\(613\) 33.7344 1.36252 0.681259 0.732042i \(-0.261433\pi\)
0.681259 + 0.732042i \(0.261433\pi\)
\(614\) −13.1148 + 22.7155i −0.529271 + 0.916724i
\(615\) 0 0
\(616\) −2.44917 4.24209i −0.0986800 0.170919i
\(617\) −14.0298 24.3003i −0.564817 0.978292i −0.997067 0.0765378i \(-0.975613\pi\)
0.432250 0.901754i \(-0.357720\pi\)
\(618\) 0 0
\(619\) 15.9049 27.5480i 0.639270 1.10725i −0.346323 0.938115i \(-0.612570\pi\)
0.985593 0.169134i \(-0.0540969\pi\)
\(620\) 26.5002 1.06427
\(621\) 0 0
\(622\) −0.937683 −0.0375976
\(623\) −1.95644 + 3.38865i −0.0783830 + 0.135763i
\(624\) 0 0
\(625\) −6.30578 10.9219i −0.252231 0.436877i
\(626\) 11.4122 + 19.7666i 0.456125 + 0.790031i
\(627\) 0 0
\(628\) −38.2401 + 66.2338i −1.52595 + 2.64302i
\(629\) 5.56960 0.222075
\(630\) 0 0
\(631\) −23.4280 −0.932653 −0.466326 0.884613i \(-0.654423\pi\)
−0.466326 + 0.884613i \(0.654423\pi\)
\(632\) 9.64138 16.6994i 0.383513 0.664265i
\(633\) 0 0
\(634\) −18.3057 31.7064i −0.727013 1.25922i
\(635\) 4.89520 + 8.47873i 0.194260 + 0.336468i
\(636\) 0 0
\(637\) −15.8347 + 27.4265i −0.627393 + 1.08668i
\(638\) 11.4305 0.452539
\(639\) 0 0
\(640\) 34.8366 1.37704
\(641\) 7.75779 13.4369i 0.306414 0.530725i −0.671161 0.741312i \(-0.734204\pi\)
0.977575 + 0.210587i \(0.0675374\pi\)
\(642\) 0 0
\(643\) 5.47372 + 9.48075i 0.215862 + 0.373884i 0.953539 0.301270i \(-0.0974104\pi\)
−0.737677 + 0.675154i \(0.764077\pi\)
\(644\) −9.87694 17.1074i −0.389206 0.674125i
\(645\) 0 0
\(646\) −12.5614 + 21.7570i −0.494221 + 0.856016i
\(647\) −16.9732 −0.667287 −0.333643 0.942699i \(-0.608278\pi\)
−0.333643 + 0.942699i \(0.608278\pi\)
\(648\) 0 0
\(649\) 3.97483 0.156026
\(650\) −26.4849 + 45.8732i −1.03882 + 1.79930i
\(651\) 0 0
\(652\) 58.9885 + 102.171i 2.31017 + 4.00133i
\(653\) 0.227291 + 0.393679i 0.00889458 + 0.0154059i 0.870438 0.492277i \(-0.163835\pi\)
−0.861544 + 0.507683i \(0.830502\pi\)
\(654\) 0 0
\(655\) −6.30371 + 10.9183i −0.246306 + 0.426615i
\(656\) −2.57189 −0.100415
\(657\) 0 0
\(658\) −0.436192 −0.0170045
\(659\) −1.57851 + 2.73406i −0.0614901 + 0.106504i −0.895132 0.445802i \(-0.852919\pi\)
0.833642 + 0.552306i \(0.186252\pi\)
\(660\) 0 0
\(661\) 13.2786 + 22.9992i 0.516478 + 0.894566i 0.999817 + 0.0191324i \(0.00609042\pi\)
−0.483339 + 0.875433i \(0.660576\pi\)
\(662\) 40.7521 + 70.5848i 1.58388 + 2.74336i
\(663\) 0 0
\(664\) 66.3312 114.889i 2.57415 4.45856i
\(665\) −1.66158 −0.0644331
\(666\) 0 0
\(667\) 29.1982 1.13056
\(668\) 13.6970 23.7238i 0.529951 0.917903i
\(669\) 0 0
\(670\) −4.31742 7.47799i −0.166796 0.288900i
\(671\) 2.25956 + 3.91367i 0.0872294 + 0.151086i
\(672\) 0 0
\(673\) 13.6485 23.6398i 0.526110 0.911248i −0.473428 0.880833i \(-0.656984\pi\)
0.999537 0.0304158i \(-0.00968314\pi\)
\(674\) −59.3169 −2.28480
\(675\) 0 0
\(676\) 49.8664 1.91794
\(677\) −0.200168 + 0.346700i −0.00769307 + 0.0133248i −0.869846 0.493323i \(-0.835782\pi\)
0.862153 + 0.506648i \(0.169115\pi\)
\(678\) 0 0
\(679\) 4.23971 + 7.34339i 0.162705 + 0.281813i
\(680\) −11.8965 20.6053i −0.456209 0.790177i
\(681\) 0 0
\(682\) 7.08052 12.2638i 0.271127 0.469606i
\(683\) 26.2154 1.00310 0.501552 0.865127i \(-0.332762\pi\)
0.501552 + 0.865127i \(0.332762\pi\)
\(684\) 0 0
\(685\) −19.5406 −0.746607
\(686\) −9.73127 + 16.8550i −0.371541 + 0.643529i
\(687\) 0 0
\(688\) 16.8547 + 29.1932i 0.642579 + 1.11298i
\(689\) 4.46618 + 7.73565i 0.170148 + 0.294705i
\(690\) 0 0
\(691\) 7.79814 13.5068i 0.296655 0.513822i −0.678713 0.734403i \(-0.737462\pi\)
0.975369 + 0.220581i \(0.0707955\pi\)
\(692\) −2.49943 −0.0950141
\(693\) 0 0
\(694\) 77.0818 2.92599
\(695\) −0.406408 + 0.703920i −0.0154160 + 0.0267012i
\(696\) 0 0
\(697\) 0.233087 + 0.403719i 0.00882880 + 0.0152919i
\(698\) 9.77118 + 16.9242i 0.369845 + 0.640590i
\(699\) 0 0
\(700\) −5.83824 + 10.1121i −0.220665 + 0.382203i
\(701\) −27.4965 −1.03853 −0.519265 0.854613i \(-0.673794\pi\)
−0.519265 + 0.854613i \(0.673794\pi\)
\(702\) 0 0
\(703\) 7.06983 0.266644
\(704\) 14.7529 25.5529i 0.556023 0.963059i
\(705\) 0 0
\(706\) −40.4523 70.0655i −1.52244 2.63695i
\(707\) 2.59108 + 4.48788i 0.0974476 + 0.168784i
\(708\) 0 0
\(709\) 15.3257 26.5449i 0.575570 0.996916i −0.420410 0.907334i \(-0.638114\pi\)
0.995979 0.0895815i \(-0.0285529\pi\)
\(710\) −7.42572 −0.278682
\(711\) 0 0
\(712\) −71.1228 −2.66544
\(713\) 18.0865 31.3267i 0.677345 1.17320i
\(714\) 0 0
\(715\) −2.20348 3.81654i −0.0824054 0.142730i
\(716\) 25.0943 + 43.4646i 0.937818 + 1.62435i
\(717\) 0 0
\(718\) −17.7642 + 30.7685i −0.662954 + 1.14827i
\(719\) 19.7250 0.735620 0.367810 0.929901i \(-0.380108\pi\)
0.367810 + 0.929901i \(0.380108\pi\)
\(720\) 0 0
\(721\) −3.40280 −0.126727
\(722\) 9.99495 17.3118i 0.371973 0.644277i
\(723\) 0 0
\(724\) −41.3426 71.6075i −1.53649 2.66127i
\(725\) −8.62949 14.9467i −0.320491 0.555107i
\(726\) 0 0
\(727\) 2.70607 4.68705i 0.100363 0.173833i −0.811471 0.584392i \(-0.801333\pi\)
0.911834 + 0.410559i \(0.134666\pi\)
\(728\) 23.0484 0.854230
\(729\) 0 0
\(730\) 24.3574 0.901509
\(731\) 3.05504 5.29148i 0.112995 0.195713i
\(732\) 0 0
\(733\) 0.819020 + 1.41858i 0.0302512 + 0.0523966i 0.880755 0.473573i \(-0.157036\pi\)
−0.850503 + 0.525969i \(0.823703\pi\)
\(734\) −43.8468 75.9449i −1.61842 2.80318i
\(735\) 0 0
\(736\) 75.6263 130.989i 2.78762 4.82830i
\(737\) −3.37646 −0.124374
\(738\) 0 0
\(739\) −12.8306 −0.471980 −0.235990 0.971755i \(-0.575833\pi\)
−0.235990 + 0.971755i \(0.575833\pi\)
\(740\) −5.28535 + 9.15449i −0.194293 + 0.336526i
\(741\) 0 0
\(742\) 1.34542 + 2.33033i 0.0493919 + 0.0855493i
\(743\) 18.1559 + 31.4469i 0.666074 + 1.15367i 0.978993 + 0.203894i \(0.0653598\pi\)
−0.312919 + 0.949780i \(0.601307\pi\)
\(744\) 0 0
\(745\) 3.07455 5.32528i 0.112643 0.195103i
\(746\) 95.3376 3.49056
\(747\) 0 0
\(748\) −14.6883 −0.537056
\(749\) −3.76754 + 6.52557i −0.137663 + 0.238439i
\(750\) 0 0
\(751\) −10.3163 17.8683i −0.376447 0.652025i 0.614096 0.789232i \(-0.289521\pi\)
−0.990542 + 0.137207i \(0.956188\pi\)
\(752\) −2.28538 3.95840i −0.0833394 0.144348i
\(753\) 0 0
\(754\) −26.8923 + 46.5788i −0.979359 + 1.69630i
\(755\) 11.8403 0.430911
\(756\) 0 0
\(757\) 13.5638 0.492986 0.246493 0.969145i \(-0.420722\pi\)
0.246493 + 0.969145i \(0.420722\pi\)
\(758\) 15.6634 27.1298i 0.568919 0.985397i
\(759\) 0 0
\(760\) −15.1009 26.1555i −0.547768 0.948761i
\(761\) 7.99799 + 13.8529i 0.289927 + 0.502168i 0.973792 0.227440i \(-0.0730357\pi\)
−0.683865 + 0.729608i \(0.739702\pi\)
\(762\) 0 0
\(763\) 3.03171 5.25107i 0.109755 0.190102i
\(764\) 114.260 4.13378
\(765\) 0 0
\(766\) −82.5596 −2.98300
\(767\) −9.35146 + 16.1972i −0.337662 + 0.584847i
\(768\) 0 0
\(769\) −13.2839 23.0083i −0.479028 0.829701i 0.520683 0.853750i \(-0.325677\pi\)
−0.999711 + 0.0240494i \(0.992344\pi\)
\(770\) −0.663789 1.14972i −0.0239213 0.0414329i
\(771\) 0 0
\(772\) 28.5031 49.3689i 1.02585 1.77682i
\(773\) −24.2035 −0.870539 −0.435269 0.900300i \(-0.643347\pi\)
−0.435269 + 0.900300i \(0.643347\pi\)
\(774\) 0 0
\(775\) −21.3818 −0.768056
\(776\) −77.0636 + 133.478i −2.76642 + 4.79158i
\(777\) 0 0
\(778\) −35.6440 61.7373i −1.27790 2.21339i
\(779\) 0.295872 + 0.512465i 0.0106007 + 0.0183610i
\(780\) 0 0
\(781\) −1.45183 + 2.51465i −0.0519507 + 0.0899812i
\(782\) −51.2740 −1.83355
\(783\) 0 0
\(784\) −99.9705 −3.57037
\(785\) −6.56471 + 11.3704i −0.234305 + 0.405828i
\(786\) 0 0
\(787\) 13.6162 + 23.5839i 0.485364 + 0.840675i 0.999859 0.0168185i \(-0.00535373\pi\)
−0.514494 + 0.857494i \(0.672020\pi\)
\(788\) −57.2453 99.1517i −2.03928 3.53213i
\(789\) 0 0
\(790\) 2.61306 4.52596i 0.0929686 0.161026i
\(791\) −0.626097 −0.0222614
\(792\) 0 0
\(793\) −21.2640 −0.755107
\(794\) 13.5770 23.5161i 0.481831 0.834555i
\(795\) 0 0
\(796\) 51.9661 + 90.0079i 1.84189 + 3.19025i
\(797\) 19.2846 + 33.4019i 0.683095 + 1.18316i 0.974031 + 0.226413i \(0.0726999\pi\)
−0.290936 + 0.956742i \(0.593967\pi\)
\(798\) 0 0
\(799\) −0.414242 + 0.717489i −0.0146548 + 0.0253829i
\(800\) −89.4051 −3.16095
\(801\) 0 0
\(802\) 64.4313 2.27515
\(803\) 4.76222 8.24841i 0.168055 0.291080i
\(804\) 0 0
\(805\) −1.69558 2.93684i −0.0597615 0.103510i
\(806\) 33.3163 + 57.7055i 1.17352 + 2.03259i
\(807\) 0 0
\(808\) −47.0971 + 81.5745i −1.65687 + 2.86978i
\(809\) 12.0951 0.425240 0.212620 0.977135i \(-0.431800\pi\)
0.212620 + 0.977135i \(0.431800\pi\)
\(810\) 0 0
\(811\) 35.0487 1.23073 0.615364 0.788243i \(-0.289009\pi\)
0.615364 + 0.788243i \(0.289009\pi\)
\(812\) −5.92804 + 10.2677i −0.208033 + 0.360325i
\(813\) 0 0
\(814\) 2.82436 + 4.89193i 0.0989936 + 0.171462i
\(815\) 10.1266 + 17.5398i 0.354719 + 0.614392i
\(816\) 0 0
\(817\) 3.87795 6.71680i 0.135672 0.234991i
\(818\) −7.11731 −0.248851
\(819\) 0 0
\(820\) −0.884765 −0.0308973
\(821\) 10.0398 17.3894i 0.350391 0.606895i −0.635927 0.771749i \(-0.719382\pi\)
0.986318 + 0.164854i \(0.0527153\pi\)
\(822\) 0 0
\(823\) 12.8058 + 22.1803i 0.446382 + 0.773156i 0.998147 0.0608436i \(-0.0193791\pi\)
−0.551766 + 0.833999i \(0.686046\pi\)
\(824\) −30.9257 53.5649i −1.07735 1.86602i
\(825\) 0 0
\(826\) −2.81709 + 4.87934i −0.0980191 + 0.169774i
\(827\) 0.864167 0.0300500 0.0150250 0.999887i \(-0.495217\pi\)
0.0150250 + 0.999887i \(0.495217\pi\)
\(828\) 0 0
\(829\) 38.1823 1.32613 0.663064 0.748563i \(-0.269256\pi\)
0.663064 + 0.748563i \(0.269256\pi\)
\(830\) 17.9775 31.1379i 0.624007 1.08081i
\(831\) 0 0
\(832\) 69.4176 + 120.235i 2.40662 + 4.16839i
\(833\) 9.06019 + 15.6927i 0.313917 + 0.543720i
\(834\) 0 0
\(835\) 2.35137 4.07269i 0.0813725 0.140941i
\(836\) −18.6447 −0.644840
\(837\) 0 0
\(838\) 48.0697 1.66054
\(839\) 5.85122 10.1346i 0.202007 0.349886i −0.747168 0.664635i \(-0.768587\pi\)
0.949175 + 0.314749i \(0.101920\pi\)
\(840\) 0 0
\(841\) 5.73778 + 9.93812i 0.197854 + 0.342694i
\(842\) −8.67822 15.0311i −0.299071 0.518007i
\(843\) 0 0
\(844\) −44.4345 + 76.9628i −1.52950 + 2.64917i
\(845\) 8.56062 0.294494
\(846\) 0 0
\(847\) −0.519120 −0.0178372
\(848\) −14.0984 + 24.4191i −0.484140 + 0.838555i
\(849\) 0 0
\(850\) 15.1540 + 26.2474i 0.519777 + 0.900280i
\(851\) 7.21454 + 12.4959i 0.247311 + 0.428355i
\(852\) 0 0
\(853\) 8.73776 15.1343i 0.299175 0.518187i −0.676772 0.736193i \(-0.736622\pi\)
0.975948 + 0.218006i \(0.0699551\pi\)
\(854\) −6.40570 −0.219198
\(855\) 0 0
\(856\) −136.962 −4.68128
\(857\) −17.8130 + 30.8530i −0.608480 + 1.05392i 0.383011 + 0.923744i \(0.374887\pi\)
−0.991491 + 0.130174i \(0.958446\pi\)
\(858\) 0 0
\(859\) 5.95893 + 10.3212i 0.203316 + 0.352154i 0.949595 0.313480i \(-0.101495\pi\)
−0.746279 + 0.665633i \(0.768161\pi\)
\(860\) 5.79824 + 10.0428i 0.197718 + 0.342458i
\(861\) 0 0
\(862\) 39.8409 69.0065i 1.35699 2.35037i
\(863\) 1.22689 0.0417637 0.0208818 0.999782i \(-0.493353\pi\)
0.0208818 + 0.999782i \(0.493353\pi\)
\(864\) 0 0
\(865\) −0.429080 −0.0145891
\(866\) −18.7326 + 32.4459i −0.636561 + 1.10256i
\(867\) 0 0
\(868\) 7.34413 + 12.7204i 0.249276 + 0.431758i
\(869\) −1.02178 1.76978i −0.0346616 0.0600356i
\(870\) 0 0
\(871\) 7.94370 13.7589i 0.269162 0.466202i
\(872\) 110.212 3.73226
\(873\) 0 0
\(874\) −65.0852 −2.20154
\(875\) −2.21776 + 3.84127i −0.0749739 + 0.129859i
\(876\) 0 0
\(877\) −12.9867 22.4936i −0.438529 0.759555i 0.559047 0.829136i \(-0.311167\pi\)
−0.997576 + 0.0695812i \(0.977834\pi\)
\(878\) 2.73714 + 4.74086i 0.0923738 + 0.159996i
\(879\) 0 0
\(880\) 6.95571 12.0476i 0.234477 0.406126i
\(881\) −53.5351 −1.80364 −0.901822 0.432107i \(-0.857770\pi\)
−0.901822 + 0.432107i \(0.857770\pi\)
\(882\) 0 0
\(883\) 17.3818 0.584945 0.292472 0.956274i \(-0.405522\pi\)
0.292472 + 0.956274i \(0.405522\pi\)
\(884\) 34.5566 59.8538i 1.16226 2.01310i
\(885\) 0 0
\(886\) 47.2304 + 81.8054i 1.58673 + 2.74831i
\(887\) 20.0080 + 34.6549i 0.671803 + 1.16360i 0.977392 + 0.211434i \(0.0678132\pi\)
−0.305589 + 0.952163i \(0.598853\pi\)
\(888\) 0 0
\(889\) −2.71326 + 4.69950i −0.0909997 + 0.157616i
\(890\) −19.2761 −0.646138
\(891\) 0 0
\(892\) −49.3470 −1.65226
\(893\) −0.525823 + 0.910752i −0.0175960 + 0.0304772i
\(894\) 0 0
\(895\) 4.30796 + 7.46161i 0.143999 + 0.249414i
\(896\) 9.65441 + 16.7219i 0.322531 + 0.558641i
\(897\) 0 0
\(898\) −3.32952 + 5.76690i −0.111108 + 0.192444i
\(899\) −21.7107 −0.724091
\(900\) 0 0
\(901\) 5.11086 0.170268
\(902\) −0.236398 + 0.409453i −0.00787119 + 0.0136333i
\(903\) 0 0
\(904\) −5.69016 9.85565i −0.189252 0.327794i
\(905\) −7.09732 12.2929i −0.235923 0.408631i
\(906\) 0 0
\(907\) 14.9046 25.8156i 0.494900 0.857192i −0.505083 0.863071i \(-0.668538\pi\)
0.999983 + 0.00587889i \(0.00187132\pi\)
\(908\) 28.2152 0.936355
\(909\) 0 0
\(910\) 6.24671 0.207076
\(911\) 3.75956 6.51175i 0.124560 0.215744i −0.797001 0.603978i \(-0.793581\pi\)
0.921561 + 0.388234i \(0.126915\pi\)
\(912\) 0 0
\(913\) −7.02970 12.1758i −0.232649 0.402960i
\(914\) 57.2036 + 99.0795i 1.89213 + 3.27726i
\(915\) 0 0
\(916\) −43.7103 + 75.7085i −1.44423 + 2.50148i
\(917\) −6.98789 −0.230761
\(918\) 0 0
\(919\) −48.1441 −1.58813 −0.794064 0.607835i \(-0.792038\pi\)
−0.794064 + 0.607835i \(0.792038\pi\)
\(920\) 30.8200 53.3818i 1.01610 1.75995i
\(921\) 0 0
\(922\) 52.4096 + 90.7761i 1.72602 + 2.98955i
\(923\) −6.83137 11.8323i −0.224857 0.389464i
\(924\) 0 0
\(925\) 4.26450 7.38633i 0.140216 0.242861i
\(926\) −0.664472 −0.0218359
\(927\) 0 0
\(928\) −90.7802 −2.98001
\(929\) −19.5885 + 33.9283i −0.642678 + 1.11315i 0.342155 + 0.939644i \(0.388843\pi\)
−0.984833 + 0.173507i \(0.944490\pi\)
\(930\) 0 0
\(931\) 11.5007 + 19.9197i 0.376919 + 0.652842i
\(932\) −46.1490 79.9324i −1.51166 2.61827i
\(933\) 0 0
\(934\) −21.4233 + 37.1062i −0.700992 + 1.21415i
\(935\) −2.52155 −0.0824634
\(936\) 0 0
\(937\) 36.6480 1.19724 0.598620 0.801033i \(-0.295716\pi\)
0.598620 + 0.801033i \(0.295716\pi\)
\(938\) 2.39301 4.14481i 0.0781345 0.135333i
\(939\) 0 0
\(940\) −0.786202 1.36174i −0.0256431 0.0444151i
\(941\) 1.94861 + 3.37509i 0.0635229 + 0.110025i 0.896038 0.443978i \(-0.146433\pi\)
−0.832515 + 0.554003i \(0.813100\pi\)
\(942\) 0 0
\(943\) −0.603855 + 1.04591i −0.0196642 + 0.0340594i
\(944\) −59.0394 −1.92157
\(945\) 0 0
\(946\) 6.19686 0.201477
\(947\) 22.2020 38.4551i 0.721469 1.24962i −0.238942 0.971034i \(-0.576800\pi\)
0.960411 0.278587i \(-0.0898662\pi\)
\(948\) 0 0
\(949\) 22.4079 + 38.8116i 0.727390 + 1.25988i
\(950\) 19.2359 + 33.3175i 0.624094 + 1.08096i
\(951\) 0 0
\(952\) 6.59384 11.4209i 0.213708 0.370152i
\(953\) −20.1218 −0.651810 −0.325905 0.945403i \(-0.605669\pi\)
−0.325905 + 0.945403i \(0.605669\pi\)
\(954\) 0 0
\(955\) 19.6151 0.634730
\(956\) 1.97068 3.41332i 0.0637365 0.110395i
\(957\) 0 0
\(958\) −22.2270 38.4983i −0.718122 1.24382i
\(959\) −5.41537 9.37969i −0.174871 0.302886i
\(960\) 0 0
\(961\) 2.05156 3.55340i 0.0661793 0.114626i
\(962\) −26.5791 −0.856945
\(963\) 0 0
\(964\) 74.4535 2.39799
\(965\) 4.89316 8.47520i 0.157516 0.272826i
\(966\) 0 0
\(967\) −11.5692 20.0385i −0.372041 0.644394i 0.617838 0.786305i \(-0.288009\pi\)
−0.989879 + 0.141911i \(0.954675\pi\)
\(968\) −4.71793 8.17169i −0.151640 0.262648i
\(969\) 0 0
\(970\) −20.8862 + 36.1760i −0.670616 + 1.16154i
\(971\) −28.3629 −0.910209 −0.455104 0.890438i \(-0.650398\pi\)
−0.455104 + 0.890438i \(0.650398\pi\)
\(972\) 0 0
\(973\) −0.450519 −0.0144430
\(974\) 43.7457 75.7698i 1.40170 2.42782i
\(975\) 0 0
\(976\) −33.5620 58.1310i −1.07429 1.86073i
\(977\) 7.84482 + 13.5876i 0.250978 + 0.434707i 0.963795 0.266643i \(-0.0859145\pi\)
−0.712817 + 0.701350i \(0.752581\pi\)
\(978\) 0 0
\(979\) −3.76875 + 6.52767i −0.120450 + 0.208625i
\(980\) −34.3912 −1.09859
\(981\) 0 0
\(982\) 57.1927 1.82509
\(983\) 18.0658 31.2909i 0.576210 0.998026i −0.419699 0.907664i \(-0.637864\pi\)
0.995909 0.0903621i \(-0.0288024\pi\)
\(984\) 0 0
\(985\) −9.82735 17.0215i −0.313125 0.542349i
\(986\) 15.3871 + 26.6512i 0.490024 + 0.848746i
\(987\) 0 0
\(988\) 43.8648 75.9761i 1.39553 2.41712i
\(989\) 15.8293 0.503342
\(990\) 0 0
\(991\) −8.69420 −0.276180 −0.138090 0.990420i \(-0.544096\pi\)
−0.138090 + 0.990420i \(0.544096\pi\)
\(992\) −56.2329 + 97.3982i −1.78540 + 3.09240i
\(993\) 0 0
\(994\) −2.05792 3.56443i −0.0652734 0.113057i
\(995\) 8.92107 + 15.4517i 0.282817 + 0.489853i
\(996\) 0 0
\(997\) −17.7648 + 30.7695i −0.562616 + 0.974480i 0.434651 + 0.900599i \(0.356872\pi\)
−0.997267 + 0.0738808i \(0.976462\pi\)
\(998\) 19.7445 0.625000
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.e.e.100.1 8
3.2 odd 2 99.2.e.e.34.4 8
9.2 odd 6 891.2.a.q.1.1 4
9.4 even 3 inner 297.2.e.e.199.1 8
9.5 odd 6 99.2.e.e.67.4 yes 8
9.7 even 3 891.2.a.p.1.4 4
33.32 even 2 1089.2.e.i.727.1 8
99.32 even 6 1089.2.e.i.364.1 8
99.43 odd 6 9801.2.a.bl.1.1 4
99.65 even 6 9801.2.a.bi.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.e.34.4 8 3.2 odd 2
99.2.e.e.67.4 yes 8 9.5 odd 6
297.2.e.e.100.1 8 1.1 even 1 trivial
297.2.e.e.199.1 8 9.4 even 3 inner
891.2.a.p.1.4 4 9.7 even 3
891.2.a.q.1.1 4 9.2 odd 6
1089.2.e.i.364.1 8 99.32 even 6
1089.2.e.i.727.1 8 33.32 even 2
9801.2.a.bi.1.4 4 99.65 even 6
9801.2.a.bl.1.1 4 99.43 odd 6