[N,k,chi] = [3,25,Mod(2,3)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 25, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3.2");
S:= CuspForms(chi, 25);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 3 Z ) × \left(\mathbb{Z}/3\mathbb{Z}\right)^\times ( Z / 3 Z ) × .
n n n
2 2 2
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 6 + 82005048 T 2 4 + 1829235783453696 T 2 2 + 8525473984011546132480 T_{2}^{6} + 82005048T_{2}^{4} + 1829235783453696T_{2}^{2} + 8525473984011546132480 T 2 6 + 8 2 0 0 5 0 4 8 T 2 4 + 1 8 2 9 2 3 5 7 8 3 4 5 3 6 9 6 T 2 2 + 8 5 2 5 4 7 3 9 8 4 0 1 1 5 4 6 1 3 2 4 8 0
T2^6 + 82005048*T2^4 + 1829235783453696*T2^2 + 8525473984011546132480
acting on S 25 n e w ( 3 , [ χ ] ) S_{25}^{\mathrm{new}}(3, [\chi]) S 2 5 n e w ( 3 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 + ⋯ + 85 ⋯ 80 T^{6} + \cdots + 85\!\cdots\!80 T 6 + ⋯ + 8 5 ⋯ 8 0
T^6 + 82005048*T^4 + 1829235783453696*T^2 + 8525473984011546132480
3 3 3
T 6 + ⋯ + 22 ⋯ 41 T^{6} + \cdots + 22\!\cdots\!41 T 6 + ⋯ + 2 2 ⋯ 4 1
T^6 + 616842*T^5 + 585840501423*T^4 + 334365255737097804*T^3 + 165458661268694510912463*T^2 + 49203292280424192729135325962*T + 22528399544939174411840147874772641
5 5 5
T 6 + ⋯ + 54 ⋯ 00 T^{6} + \cdots + 54\!\cdots\!00 T 6 + ⋯ + 5 4 ⋯ 0 0
T^6 + 281951286607656000*T^4 + 20245497719598102233258149392000000*T^2 + 54376463000486782535890065153820937664768000000000
7 7 7
( T 3 + ⋯ − 19 ⋯ 00 ) 2 (T^{3} + \cdots - 19\!\cdots\!00)^{2} ( T 3 + ⋯ − 1 9 ⋯ 0 0 ) 2
(T^3 - 994032438*T^2 - 313864742351252973300*T - 1965630682954936067477202845000)^2
11 11 1 1
T 6 + ⋯ + 21 ⋯ 00 T^{6} + \cdots + 21\!\cdots\!00 T 6 + ⋯ + 2 1 ⋯ 0 0
T^6 + 28680889464881301135343680*T^4 + 219154304750443321779660964914146595516595998336000*T^2 + 210001274001713950912609695214197623064357995426556024918194254984396800000
13 13 1 3
( T 3 + ⋯ − 73 ⋯ 00 ) 2 (T^{3} + \cdots - 73\!\cdots\!00)^{2} ( T 3 + ⋯ − 7 3 ⋯ 0 0 ) 2
(T^3 + 36771219031962*T^2 - 143657636498003570201050740*T - 7357825592607362422723731960417071505800)^2
17 17 1 7
T 6 + ⋯ + 54 ⋯ 20 T^{6} + \cdots + 54\!\cdots\!20 T 6 + ⋯ + 5 4 ⋯ 2 0
T^6 + 748930754233670725451490075648*T^4 + 125845662279582767646447119361974968264454336491269298323456*T^2 + 5427913268190016575135598830816398136240339045535609403774456271918609461785692072837120
19 19 1 9
( T 3 + ⋯ + 24 ⋯ 72 ) 2 (T^{3} + \cdots + 24\!\cdots\!72)^{2} ( T 3 + ⋯ + 2 4 ⋯ 7 2 ) 2
(T^3 - 3047609746737078*T^2 - 1737715463901742734247565742324*T + 2478120021204442227797168457084522372936511672)^2
23 23 2 3
T 6 + ⋯ + 10 ⋯ 80 T^{6} + \cdots + 10\!\cdots\!80 T 6 + ⋯ + 1 0 ⋯ 8 0
T^6 + 607546062188988619238629984090368*T^4 + 69530550497524742113720240689596258816037372674309650552246910976*T^2 + 1099263035671123045136338360864262911739815248547124435676149324988345681142663228739931529543680
29 29 2 9
T 6 + ⋯ + 72 ⋯ 00 T^{6} + \cdots + 72\!\cdots\!00 T 6 + ⋯ + 7 2 ⋯ 0 0
T^6 + 236757600159641867826094995904518720*T^4 + 7942430433000594068094242417828682764547073899887341441971136726656000*T^2 + 72200912864345062291333001213015304905405944505272077530112430158281725531642350988397740495280947200000
31 31 3 1
( T 3 + ⋯ + 26 ⋯ 72 ) 2 (T^{3} + \cdots + 26\!\cdots\!72)^{2} ( T 3 + ⋯ + 2 6 ⋯ 7 2 ) 2
(T^3 + 568921955487610314*T^2 - 292936976624650665334947514327399668*T + 26154616399916324154225525958882028718931677886438072)^2
37 37 3 7
( T 3 + ⋯ − 85 ⋯ 00 ) 2 (T^{3} + \cdots - 85\!\cdots\!00)^{2} ( T 3 + ⋯ − 8 5 ⋯ 0 0 ) 2
(T^3 + 7016311747859411802*T^2 - 117426939786587364241643887779963891060*T - 858618276185908006070940103057999206068029727944818225800)^2
41 41 4 1
T 6 + ⋯ + 12 ⋯ 00 T^{6} + \cdots + 12\!\cdots\!00 T 6 + ⋯ + 1 2 ⋯ 0 0
T^6 + 617216875774792248228346973266161742080*T^4 + 97738825952475726519119690526413863123641347237022816289862881867843823616000*T^2 + 1294666550107934445128628768990861681642000458493498807726940029549984354220609431653194558852039274210446540800000
43 43 4 3
( T 3 + ⋯ − 31 ⋯ 00 ) 2 (T^{3} + \cdots - 31\!\cdots\!00)^{2} ( T 3 + ⋯ − 3 1 ⋯ 0 0 ) 2
(T^3 + 57301649074271176842*T^2 - 115197509321385790518660767822721050100*T - 31824729059298028041957562259014630779447126183694399805000)^2
47 47 4 7
T 6 + ⋯ + 15 ⋯ 20 T^{6} + \cdots + 15\!\cdots\!20 T 6 + ⋯ + 1 5 ⋯ 2 0
T^6 + 30348616673081542722282401529057294763008*T^4 + 139002988940236631511810352535335645973871486508073804416638713287916551512784896*T^2 + 156748868374533368743090407838097090557584109518030440571305923703049220832883997291099891508922047004268973628976005120
53 53 5 3
T 6 + ⋯ + 53 ⋯ 20 T^{6} + \cdots + 53\!\cdots\!20 T 6 + ⋯ + 5 3 ⋯ 2 0
T^6 + 294982113462139123955223564764108135135808*T^4 + 5907814120316139417704706959370971646873829587007138172677900236705622347458896896*T^2 + 536545385531867698600554225578360722279009346572262070156203062515492328469112399857477826629149103977809625232137912320
59 59 5 9
T 6 + ⋯ + 77 ⋯ 00 T^{6} + \cdots + 77\!\cdots\!00 T 6 + ⋯ + 7 7 ⋯ 0 0
T^6 + 16485895412990514985344826216577329814114880*T^4 + 75319374504977043938134018210157298618781054221555018895394941324612631180174530176000*T^2 + 77874858358349969573991860838334624830240610516346909377551980034458198811682633602225913295071858506366062600682906318028800000
61 61 6 1
( T 3 + ⋯ − 18 ⋯ 88 ) 2 (T^{3} + \cdots - 18\!\cdots\!88)^{2} ( T 3 + ⋯ − 1 8 ⋯ 8 8 ) 2
(T^3 - 5006539207297418087526*T^2 + 5675496296318999833101580796622232403767692*T - 1833494530444435278406068291803604706075480867382045945131217288)^2
67 67 6 7
( T 3 + ⋯ − 20 ⋯ 00 ) 2 (T^{3} + \cdots - 20\!\cdots\!00)^{2} ( T 3 + ⋯ − 2 0 ⋯ 0 0 ) 2
(T^3 + 2722543546215541423242*T^2 - 1068557466410577251822633304293193462930420*T - 2053684309985597451831937302781979665357328220273250896700656200)^2
71 71 7 1
T 6 + ⋯ + 12 ⋯ 00 T^{6} + \cdots + 12\!\cdots\!00 T 6 + ⋯ + 1 2 ⋯ 0 0
T^6 + 669816591157783208849145381322974173393752320*T^4 + 57219140564611657890547881742432875323284497225509777728539692176024275065835877165056000*T^2 + 1219095685388959336903398482689469426299601430772684547254987675351759610667251854779019189916634050203039243023462133868081971200000
73 73 7 3
( T 3 + ⋯ + 14 ⋯ 00 ) 2 (T^{3} + \cdots + 14\!\cdots\!00)^{2} ( T 3 + ⋯ + 1 4 ⋯ 0 0 ) 2
(T^3 - 3614494419601721520198*T^2 - 250037679414633856117441803766709937669295860*T + 1435171812066357562032855845275050402962280150869319068477791166200)^2
79 79 7 9
( T 3 + ⋯ + 25 ⋯ 72 ) 2 (T^{3} + \cdots + 25\!\cdots\!72)^{2} ( T 3 + ⋯ + 2 5 ⋯ 7 2 ) 2
(T^3 + 211742422053041413957962*T^2 + 13312257274807802572774068043843980487082022156*T + 251321736380587768428299606082173272423882210176025026430614479014072)^2
83 83 8 3
T 6 + ⋯ + 29 ⋯ 20 T^{6} + \cdots + 29\!\cdots\!20 T 6 + ⋯ + 2 9 ⋯ 2 0
T^6 + 29099258366027771732340908834372659785018596928*T^4 + 185676561181350019090058968119511399188300206185152097906612179083750170575979538845131826176*T^2 + 291902499250188199114222311036730266372930277951107681490377827056388680504728105158402033818480617368363666298174832734908083159890001920
89 89 8 9
T 6 + ⋯ + 54 ⋯ 00 T^{6} + \cdots + 54\!\cdots\!00 T 6 + ⋯ + 5 4 ⋯ 0 0
T^6 + 166290301485269540854358251728798627067037364480*T^4 + 5832143982259218522409545127249102007888180443283119767623414639927615553317721875126347776000*T^2 + 54289920758403333690236192513754496155096236495278022260636693908213029308099178221656281488980046794045629869545854268433994249325772800000
97 97 9 7
( T 3 + ⋯ − 61 ⋯ 00 ) 2 (T^{3} + \cdots - 61\!\cdots\!00)^{2} ( T 3 + ⋯ − 6 1 ⋯ 0 0 ) 2
(T^3 + 705803735127916225211322*T^2 - 898462313754404808977283398436347328454243560180*T - 616933491586740707540118651599073590393703640501347389383135576214952200)^2
show more
show less