Properties

Label 30.10.a.d
Level $30$
Weight $10$
Character orbit 30.a
Self dual yes
Analytic conductor $15.451$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,10,Mod(1,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.4510750849\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 16 q^{2} - 81 q^{3} + 256 q^{4} - 625 q^{5} - 1296 q^{6} + 3164 q^{7} + 4096 q^{8} + 6561 q^{9} - 10000 q^{10} + 46920 q^{11} - 20736 q^{12} + 38738 q^{13} + 50624 q^{14} + 50625 q^{15} + 65536 q^{16}+ \cdots + 307842120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
16.0000 −81.0000 256.000 −625.000 −1296.00 3164.00 4096.00 6561.00 −10000.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 30.10.a.d 1
3.b odd 2 1 90.10.a.d 1
4.b odd 2 1 240.10.a.f 1
5.b even 2 1 150.10.a.d 1
5.c odd 4 2 150.10.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.10.a.d 1 1.a even 1 1 trivial
90.10.a.d 1 3.b odd 2 1
150.10.a.d 1 5.b even 2 1
150.10.c.e 2 5.c odd 4 2
240.10.a.f 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 3164 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(30))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 16 \) Copy content Toggle raw display
$3$ \( T + 81 \) Copy content Toggle raw display
$5$ \( T + 625 \) Copy content Toggle raw display
$7$ \( T - 3164 \) Copy content Toggle raw display
$11$ \( T - 46920 \) Copy content Toggle raw display
$13$ \( T - 38738 \) Copy content Toggle raw display
$17$ \( T - 591414 \) Copy content Toggle raw display
$19$ \( T - 277916 \) Copy content Toggle raw display
$23$ \( T + 833400 \) Copy content Toggle raw display
$29$ \( T - 3636474 \) Copy content Toggle raw display
$31$ \( T - 4239128 \) Copy content Toggle raw display
$37$ \( T - 1099538 \) Copy content Toggle raw display
$41$ \( T + 28009926 \) Copy content Toggle raw display
$43$ \( T + 29916556 \) Copy content Toggle raw display
$47$ \( T + 4489560 \) Copy content Toggle raw display
$53$ \( T - 17336346 \) Copy content Toggle raw display
$59$ \( T - 151056120 \) Copy content Toggle raw display
$61$ \( T + 145547050 \) Copy content Toggle raw display
$67$ \( T - 2134964 \) Copy content Toggle raw display
$71$ \( T - 382064160 \) Copy content Toggle raw display
$73$ \( T - 50361218 \) Copy content Toggle raw display
$79$ \( T + 56214712 \) Copy content Toggle raw display
$83$ \( T - 332127348 \) Copy content Toggle raw display
$89$ \( T - 748095378 \) Copy content Toggle raw display
$97$ \( T + 1109256862 \) Copy content Toggle raw display
show more
show less