Properties

Label 30.12.a.f
Level $30$
Weight $12$
Character orbit 30.a
Self dual yes
Analytic conductor $23.050$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,12,Mod(1,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0502954168\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 32 q^{2} + 243 q^{3} + 1024 q^{4} - 3125 q^{5} + 7776 q^{6} + 10556 q^{7} + 32768 q^{8} + 59049 q^{9} - 100000 q^{10} + 516912 q^{11} + 248832 q^{12} + 1478402 q^{13} + 337792 q^{14} - 759375 q^{15}+ \cdots + 30523136688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
32.0000 243.000 1024.00 −3125.00 7776.00 10556.0 32768.0 59049.0 −100000.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 30.12.a.f 1
3.b odd 2 1 90.12.a.d 1
4.b odd 2 1 240.12.a.a 1
5.b even 2 1 150.12.a.b 1
5.c odd 4 2 150.12.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.12.a.f 1 1.a even 1 1 trivial
90.12.a.d 1 3.b odd 2 1
150.12.a.b 1 5.b even 2 1
150.12.c.h 2 5.c odd 4 2
240.12.a.a 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 10556 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(30))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 32 \) Copy content Toggle raw display
$3$ \( T - 243 \) Copy content Toggle raw display
$5$ \( T + 3125 \) Copy content Toggle raw display
$7$ \( T - 10556 \) Copy content Toggle raw display
$11$ \( T - 516912 \) Copy content Toggle raw display
$13$ \( T - 1478402 \) Copy content Toggle raw display
$17$ \( T + 1265874 \) Copy content Toggle raw display
$19$ \( T - 7842380 \) Copy content Toggle raw display
$23$ \( T - 1561032 \) Copy content Toggle raw display
$29$ \( T - 33939570 \) Copy content Toggle raw display
$31$ \( T - 14610032 \) Copy content Toggle raw display
$37$ \( T - 290433266 \) Copy content Toggle raw display
$41$ \( T - 820995642 \) Copy content Toggle raw display
$43$ \( T + 328352908 \) Copy content Toggle raw display
$47$ \( T + 19932264 \) Copy content Toggle raw display
$53$ \( T + 1077746478 \) Copy content Toggle raw display
$59$ \( T + 10780120560 \) Copy content Toggle raw display
$61$ \( T + 9856407538 \) Copy content Toggle raw display
$67$ \( T + 13111086124 \) Copy content Toggle raw display
$71$ \( T + 28727516928 \) Copy content Toggle raw display
$73$ \( T - 13379419682 \) Copy content Toggle raw display
$79$ \( T - 51583351520 \) Copy content Toggle raw display
$83$ \( T - 4311034212 \) Copy content Toggle raw display
$89$ \( T + 8526268590 \) Copy content Toggle raw display
$97$ \( T - 72302803586 \) Copy content Toggle raw display
show more
show less