Properties

Label 30.14.a.f.1.1
Level $30$
Weight $14$
Character 30.1
Self dual yes
Analytic conductor $32.169$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,14,Mod(1,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.1692786856\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 30.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+64.0000 q^{2} +729.000 q^{3} +4096.00 q^{4} -15625.0 q^{5} +46656.0 q^{6} -246868. q^{7} +262144. q^{8} +531441. q^{9} -1.00000e6 q^{10} -5.81381e6 q^{11} +2.98598e6 q^{12} -1.39141e7 q^{13} -1.57996e7 q^{14} -1.13906e7 q^{15} +1.67772e7 q^{16} -8.12644e7 q^{17} +3.40122e7 q^{18} -4.40567e7 q^{19} -6.40000e7 q^{20} -1.79967e8 q^{21} -3.72084e8 q^{22} +6.88232e7 q^{23} +1.91103e8 q^{24} +2.44141e8 q^{25} -8.90502e8 q^{26} +3.87420e8 q^{27} -1.01117e9 q^{28} +1.04621e9 q^{29} -7.29000e8 q^{30} -9.19646e9 q^{31} +1.07374e9 q^{32} -4.23827e9 q^{33} -5.20092e9 q^{34} +3.85731e9 q^{35} +2.17678e9 q^{36} +1.72290e10 q^{37} -2.81963e9 q^{38} -1.01434e10 q^{39} -4.09600e9 q^{40} -1.71231e10 q^{41} -1.15179e10 q^{42} -1.23539e10 q^{43} -2.38134e10 q^{44} -8.30377e9 q^{45} +4.40469e9 q^{46} -1.18627e11 q^{47} +1.22306e10 q^{48} -3.59452e10 q^{49} +1.56250e10 q^{50} -5.92417e10 q^{51} -5.69921e10 q^{52} -7.89259e10 q^{53} +2.47949e10 q^{54} +9.08408e10 q^{55} -6.47150e10 q^{56} -3.21173e10 q^{57} +6.69577e10 q^{58} +7.50161e10 q^{59} -4.66560e10 q^{60} -2.07562e11 q^{61} -5.88574e11 q^{62} -1.31196e11 q^{63} +6.87195e10 q^{64} +2.17408e11 q^{65} -2.71249e11 q^{66} +6.17859e11 q^{67} -3.32859e11 q^{68} +5.01721e10 q^{69} +2.46868e11 q^{70} +1.84925e12 q^{71} +1.39314e11 q^{72} +1.44938e12 q^{73} +1.10266e12 q^{74} +1.77979e11 q^{75} -1.80456e11 q^{76} +1.43524e12 q^{77} -6.49176e11 q^{78} +3.27888e12 q^{79} -2.62144e11 q^{80} +2.82430e11 q^{81} -1.09588e12 q^{82} +5.76024e11 q^{83} -7.37144e11 q^{84} +1.26976e12 q^{85} -7.90650e11 q^{86} +7.62690e11 q^{87} -1.52405e12 q^{88} +1.44139e12 q^{89} -5.31441e11 q^{90} +3.43494e12 q^{91} +2.81900e11 q^{92} -6.70422e12 q^{93} -7.59211e12 q^{94} +6.88385e11 q^{95} +7.82758e11 q^{96} -9.16164e12 q^{97} -2.30049e12 q^{98} -3.08970e12 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 64.0000 0.707107
\(3\) 729.000 0.577350
\(4\) 4096.00 0.500000
\(5\) −15625.0 −0.447214
\(6\) 46656.0 0.408248
\(7\) −246868. −0.793099 −0.396550 0.918013i \(-0.629793\pi\)
−0.396550 + 0.918013i \(0.629793\pi\)
\(8\) 262144. 0.353553
\(9\) 531441. 0.333333
\(10\) −1.00000e6 −0.316228
\(11\) −5.81381e6 −0.989483 −0.494741 0.869040i \(-0.664737\pi\)
−0.494741 + 0.869040i \(0.664737\pi\)
\(12\) 2.98598e6 0.288675
\(13\) −1.39141e7 −0.799509 −0.399754 0.916622i \(-0.630905\pi\)
−0.399754 + 0.916622i \(0.630905\pi\)
\(14\) −1.57996e7 −0.560806
\(15\) −1.13906e7 −0.258199
\(16\) 1.67772e7 0.250000
\(17\) −8.12644e7 −0.816549 −0.408274 0.912859i \(-0.633869\pi\)
−0.408274 + 0.912859i \(0.633869\pi\)
\(18\) 3.40122e7 0.235702
\(19\) −4.40567e7 −0.214839 −0.107420 0.994214i \(-0.534259\pi\)
−0.107420 + 0.994214i \(0.534259\pi\)
\(20\) −6.40000e7 −0.223607
\(21\) −1.79967e8 −0.457896
\(22\) −3.72084e8 −0.699670
\(23\) 6.88232e7 0.0969402 0.0484701 0.998825i \(-0.484565\pi\)
0.0484701 + 0.998825i \(0.484565\pi\)
\(24\) 1.91103e8 0.204124
\(25\) 2.44141e8 0.200000
\(26\) −8.90502e8 −0.565338
\(27\) 3.87420e8 0.192450
\(28\) −1.01117e9 −0.396550
\(29\) 1.04621e9 0.326613 0.163306 0.986575i \(-0.447784\pi\)
0.163306 + 0.986575i \(0.447784\pi\)
\(30\) −7.29000e8 −0.182574
\(31\) −9.19646e9 −1.86110 −0.930550 0.366164i \(-0.880671\pi\)
−0.930550 + 0.366164i \(0.880671\pi\)
\(32\) 1.07374e9 0.176777
\(33\) −4.23827e9 −0.571278
\(34\) −5.20092e9 −0.577387
\(35\) 3.85731e9 0.354685
\(36\) 2.17678e9 0.166667
\(37\) 1.72290e10 1.10395 0.551975 0.833860i \(-0.313874\pi\)
0.551975 + 0.833860i \(0.313874\pi\)
\(38\) −2.81963e9 −0.151914
\(39\) −1.01434e10 −0.461597
\(40\) −4.09600e9 −0.158114
\(41\) −1.71231e10 −0.562973 −0.281487 0.959565i \(-0.590827\pi\)
−0.281487 + 0.959565i \(0.590827\pi\)
\(42\) −1.15179e10 −0.323781
\(43\) −1.23539e10 −0.298029 −0.149015 0.988835i \(-0.547610\pi\)
−0.149015 + 0.988835i \(0.547610\pi\)
\(44\) −2.38134e10 −0.494741
\(45\) −8.30377e9 −0.149071
\(46\) 4.40469e9 0.0685471
\(47\) −1.18627e11 −1.60526 −0.802632 0.596474i \(-0.796568\pi\)
−0.802632 + 0.596474i \(0.796568\pi\)
\(48\) 1.22306e10 0.144338
\(49\) −3.59452e10 −0.370994
\(50\) 1.56250e10 0.141421
\(51\) −5.92417e10 −0.471435
\(52\) −5.69921e10 −0.399754
\(53\) −7.89259e10 −0.489132 −0.244566 0.969633i \(-0.578645\pi\)
−0.244566 + 0.969633i \(0.578645\pi\)
\(54\) 2.47949e10 0.136083
\(55\) 9.08408e10 0.442510
\(56\) −6.47150e10 −0.280403
\(57\) −3.21173e10 −0.124037
\(58\) 6.69577e10 0.230950
\(59\) 7.50161e10 0.231535 0.115767 0.993276i \(-0.463067\pi\)
0.115767 + 0.993276i \(0.463067\pi\)
\(60\) −4.66560e10 −0.129099
\(61\) −2.07562e11 −0.515828 −0.257914 0.966168i \(-0.583035\pi\)
−0.257914 + 0.966168i \(0.583035\pi\)
\(62\) −5.88574e11 −1.31600
\(63\) −1.31196e11 −0.264366
\(64\) 6.87195e10 0.125000
\(65\) 2.17408e11 0.357551
\(66\) −2.71249e11 −0.403955
\(67\) 6.17859e11 0.834455 0.417228 0.908802i \(-0.363002\pi\)
0.417228 + 0.908802i \(0.363002\pi\)
\(68\) −3.32859e11 −0.408274
\(69\) 5.01721e10 0.0559685
\(70\) 2.46868e11 0.250800
\(71\) 1.84925e12 1.71323 0.856614 0.515957i \(-0.172564\pi\)
0.856614 + 0.515957i \(0.172564\pi\)
\(72\) 1.39314e11 0.117851
\(73\) 1.44938e12 1.12094 0.560471 0.828174i \(-0.310620\pi\)
0.560471 + 0.828174i \(0.310620\pi\)
\(74\) 1.10266e12 0.780611
\(75\) 1.77979e11 0.115470
\(76\) −1.80456e11 −0.107420
\(77\) 1.43524e12 0.784758
\(78\) −6.49176e11 −0.326398
\(79\) 3.27888e12 1.51757 0.758785 0.651341i \(-0.225793\pi\)
0.758785 + 0.651341i \(0.225793\pi\)
\(80\) −2.62144e11 −0.111803
\(81\) 2.82430e11 0.111111
\(82\) −1.09588e12 −0.398082
\(83\) 5.76024e11 0.193389 0.0966947 0.995314i \(-0.469173\pi\)
0.0966947 + 0.995314i \(0.469173\pi\)
\(84\) −7.37144e11 −0.228948
\(85\) 1.26976e12 0.365172
\(86\) −7.90650e11 −0.210739
\(87\) 7.62690e11 0.188570
\(88\) −1.52405e12 −0.349835
\(89\) 1.44139e12 0.307431 0.153715 0.988115i \(-0.450876\pi\)
0.153715 + 0.988115i \(0.450876\pi\)
\(90\) −5.31441e11 −0.105409
\(91\) 3.43494e12 0.634090
\(92\) 2.81900e11 0.0484701
\(93\) −6.70422e12 −1.07451
\(94\) −7.59211e12 −1.13509
\(95\) 6.88385e11 0.0960789
\(96\) 7.82758e11 0.102062
\(97\) −9.16164e12 −1.11675 −0.558376 0.829588i \(-0.688575\pi\)
−0.558376 + 0.829588i \(0.688575\pi\)
\(98\) −2.30049e12 −0.262332
\(99\) −3.08970e12 −0.329828
\(100\) 1.00000e12 0.100000
\(101\) 1.34740e13 1.26301 0.631506 0.775371i \(-0.282437\pi\)
0.631506 + 0.775371i \(0.282437\pi\)
\(102\) −3.79147e12 −0.333355
\(103\) −5.90313e12 −0.487125 −0.243563 0.969885i \(-0.578316\pi\)
−0.243563 + 0.969885i \(0.578316\pi\)
\(104\) −3.64750e12 −0.282669
\(105\) 2.81198e12 0.204777
\(106\) −5.05125e12 −0.345869
\(107\) 4.49397e12 0.289491 0.144746 0.989469i \(-0.453764\pi\)
0.144746 + 0.989469i \(0.453764\pi\)
\(108\) 1.58687e12 0.0962250
\(109\) −2.18610e13 −1.24853 −0.624264 0.781213i \(-0.714601\pi\)
−0.624264 + 0.781213i \(0.714601\pi\)
\(110\) 5.81381e12 0.312902
\(111\) 1.25600e13 0.637366
\(112\) −4.14176e12 −0.198275
\(113\) 3.02283e12 0.136585 0.0682927 0.997665i \(-0.478245\pi\)
0.0682927 + 0.997665i \(0.478245\pi\)
\(114\) −2.05551e12 −0.0877077
\(115\) −1.07536e12 −0.0433530
\(116\) 4.28529e12 0.163306
\(117\) −7.39452e12 −0.266503
\(118\) 4.80103e12 0.163720
\(119\) 2.00616e13 0.647604
\(120\) −2.98598e12 −0.0912871
\(121\) −7.22349e11 −0.0209239
\(122\) −1.32840e13 −0.364745
\(123\) −1.24827e13 −0.325033
\(124\) −3.76687e13 −0.930550
\(125\) −3.81470e12 −0.0894427
\(126\) −8.39653e12 −0.186935
\(127\) −6.76719e13 −1.43115 −0.715573 0.698538i \(-0.753834\pi\)
−0.715573 + 0.698538i \(0.753834\pi\)
\(128\) 4.39805e12 0.0883883
\(129\) −9.00599e12 −0.172067
\(130\) 1.39141e13 0.252827
\(131\) 6.24818e13 1.08017 0.540083 0.841612i \(-0.318393\pi\)
0.540083 + 0.841612i \(0.318393\pi\)
\(132\) −1.73599e13 −0.285639
\(133\) 1.08762e13 0.170389
\(134\) 3.95430e13 0.590049
\(135\) −6.05345e12 −0.0860663
\(136\) −2.13030e13 −0.288694
\(137\) 1.47888e14 1.91095 0.955476 0.295069i \(-0.0953426\pi\)
0.955476 + 0.295069i \(0.0953426\pi\)
\(138\) 3.21102e12 0.0395757
\(139\) −1.23994e14 −1.45816 −0.729079 0.684430i \(-0.760051\pi\)
−0.729079 + 0.684430i \(0.760051\pi\)
\(140\) 1.57996e13 0.177342
\(141\) −8.64789e13 −0.926800
\(142\) 1.18352e14 1.21144
\(143\) 8.08939e13 0.791100
\(144\) 8.91610e12 0.0833333
\(145\) −1.63471e13 −0.146066
\(146\) 9.27602e13 0.792626
\(147\) −2.62041e13 −0.214193
\(148\) 7.05701e13 0.551975
\(149\) −1.19266e14 −0.892905 −0.446452 0.894807i \(-0.647313\pi\)
−0.446452 + 0.894807i \(0.647313\pi\)
\(150\) 1.13906e13 0.0816497
\(151\) 8.94919e13 0.614375 0.307188 0.951649i \(-0.400612\pi\)
0.307188 + 0.951649i \(0.400612\pi\)
\(152\) −1.15492e13 −0.0759571
\(153\) −4.31872e13 −0.272183
\(154\) 9.18556e13 0.554908
\(155\) 1.43695e14 0.832310
\(156\) −4.15473e13 −0.230798
\(157\) 1.97486e14 1.05242 0.526209 0.850355i \(-0.323613\pi\)
0.526209 + 0.850355i \(0.323613\pi\)
\(158\) 2.09848e14 1.07308
\(159\) −5.75369e13 −0.282401
\(160\) −1.67772e13 −0.0790569
\(161\) −1.69902e13 −0.0768832
\(162\) 1.80755e13 0.0785674
\(163\) −2.94421e14 −1.22956 −0.614780 0.788699i \(-0.710755\pi\)
−0.614780 + 0.788699i \(0.710755\pi\)
\(164\) −7.01363e13 −0.281487
\(165\) 6.62229e13 0.255483
\(166\) 3.68655e13 0.136747
\(167\) 1.61334e14 0.575532 0.287766 0.957701i \(-0.407087\pi\)
0.287766 + 0.957701i \(0.407087\pi\)
\(168\) −4.71772e13 −0.161891
\(169\) −1.09273e14 −0.360786
\(170\) 8.12644e13 0.258215
\(171\) −2.34135e13 −0.0716130
\(172\) −5.06016e13 −0.149015
\(173\) −6.43190e14 −1.82406 −0.912030 0.410123i \(-0.865486\pi\)
−0.912030 + 0.410123i \(0.865486\pi\)
\(174\) 4.88121e13 0.133339
\(175\) −6.02705e13 −0.158620
\(176\) −9.75395e13 −0.247371
\(177\) 5.46867e13 0.133677
\(178\) 9.22491e13 0.217386
\(179\) 3.03082e14 0.688678 0.344339 0.938845i \(-0.388103\pi\)
0.344339 + 0.938845i \(0.388103\pi\)
\(180\) −3.40122e13 −0.0745356
\(181\) −1.51647e14 −0.320569 −0.160285 0.987071i \(-0.551241\pi\)
−0.160285 + 0.987071i \(0.551241\pi\)
\(182\) 2.19836e14 0.448369
\(183\) −1.51313e14 −0.297813
\(184\) 1.80416e13 0.0342735
\(185\) −2.69204e14 −0.493702
\(186\) −4.29070e14 −0.759791
\(187\) 4.72455e14 0.807961
\(188\) −4.85895e14 −0.802632
\(189\) −9.56417e13 −0.152632
\(190\) 4.40567e13 0.0679381
\(191\) −1.11118e15 −1.65603 −0.828014 0.560707i \(-0.810529\pi\)
−0.828014 + 0.560707i \(0.810529\pi\)
\(192\) 5.00965e13 0.0721688
\(193\) −2.78088e14 −0.387311 −0.193656 0.981070i \(-0.562034\pi\)
−0.193656 + 0.981070i \(0.562034\pi\)
\(194\) −5.86345e14 −0.789663
\(195\) 1.58490e14 0.206432
\(196\) −1.47232e14 −0.185497
\(197\) 1.35041e15 1.64602 0.823012 0.568024i \(-0.192292\pi\)
0.823012 + 0.568024i \(0.192292\pi\)
\(198\) −1.97741e14 −0.233223
\(199\) −1.66096e15 −1.89589 −0.947947 0.318428i \(-0.896845\pi\)
−0.947947 + 0.318428i \(0.896845\pi\)
\(200\) 6.40000e13 0.0707107
\(201\) 4.50419e14 0.481773
\(202\) 8.62336e14 0.893085
\(203\) −2.58277e14 −0.259036
\(204\) −2.42654e14 −0.235717
\(205\) 2.67549e14 0.251769
\(206\) −3.77801e14 −0.344450
\(207\) 3.65755e13 0.0323134
\(208\) −2.33440e14 −0.199877
\(209\) 2.56137e14 0.212580
\(210\) 1.79967e14 0.144799
\(211\) −1.24740e15 −0.973128 −0.486564 0.873645i \(-0.661750\pi\)
−0.486564 + 0.873645i \(0.661750\pi\)
\(212\) −3.23280e14 −0.244566
\(213\) 1.34810e15 0.989133
\(214\) 2.87614e14 0.204701
\(215\) 1.93030e14 0.133283
\(216\) 1.01560e14 0.0680414
\(217\) 2.27031e15 1.47604
\(218\) −1.39911e15 −0.882843
\(219\) 1.05660e15 0.647176
\(220\) 3.72084e14 0.221255
\(221\) 1.13072e15 0.652838
\(222\) 8.03838e14 0.450686
\(223\) 1.46101e15 0.795556 0.397778 0.917482i \(-0.369781\pi\)
0.397778 + 0.917482i \(0.369781\pi\)
\(224\) −2.65072e14 −0.140201
\(225\) 1.29746e14 0.0666667
\(226\) 1.93461e14 0.0965805
\(227\) 2.21289e15 1.07347 0.536736 0.843750i \(-0.319657\pi\)
0.536736 + 0.843750i \(0.319657\pi\)
\(228\) −1.31552e14 −0.0620187
\(229\) −1.38494e15 −0.634602 −0.317301 0.948325i \(-0.602777\pi\)
−0.317301 + 0.948325i \(0.602777\pi\)
\(230\) −6.88232e13 −0.0306552
\(231\) 1.04629e15 0.453080
\(232\) 2.74259e14 0.115475
\(233\) 6.33581e14 0.259411 0.129706 0.991553i \(-0.458597\pi\)
0.129706 + 0.991553i \(0.458597\pi\)
\(234\) −4.73249e14 −0.188446
\(235\) 1.85354e15 0.717896
\(236\) 3.07266e14 0.115767
\(237\) 2.39030e15 0.876170
\(238\) 1.28394e15 0.457925
\(239\) −5.18618e15 −1.79995 −0.899976 0.435939i \(-0.856416\pi\)
−0.899976 + 0.435939i \(0.856416\pi\)
\(240\) −1.91103e14 −0.0645497
\(241\) 7.14380e14 0.234865 0.117433 0.993081i \(-0.462534\pi\)
0.117433 + 0.993081i \(0.462534\pi\)
\(242\) −4.62303e13 −0.0147954
\(243\) 2.05891e14 0.0641500
\(244\) −8.50175e14 −0.257914
\(245\) 5.61644e14 0.165913
\(246\) −7.98896e14 −0.229833
\(247\) 6.13009e14 0.171766
\(248\) −2.41080e15 −0.657998
\(249\) 4.19921e14 0.111653
\(250\) −2.44141e14 −0.0632456
\(251\) 7.71773e14 0.194810 0.0974048 0.995245i \(-0.468946\pi\)
0.0974048 + 0.995245i \(0.468946\pi\)
\(252\) −5.37378e14 −0.132183
\(253\) −4.00125e14 −0.0959207
\(254\) −4.33100e15 −1.01197
\(255\) 9.25652e14 0.210832
\(256\) 2.81475e14 0.0625000
\(257\) 4.22506e14 0.0914677 0.0457339 0.998954i \(-0.485437\pi\)
0.0457339 + 0.998954i \(0.485437\pi\)
\(258\) −5.76384e14 −0.121670
\(259\) −4.25330e15 −0.875542
\(260\) 8.90502e14 0.178776
\(261\) 5.56001e14 0.108871
\(262\) 3.99884e15 0.763792
\(263\) −5.49790e15 −1.02443 −0.512217 0.858856i \(-0.671176\pi\)
−0.512217 + 0.858856i \(0.671176\pi\)
\(264\) −1.11104e15 −0.201977
\(265\) 1.23322e15 0.218747
\(266\) 6.96075e14 0.120483
\(267\) 1.05077e15 0.177495
\(268\) 2.53075e15 0.417228
\(269\) −9.14876e15 −1.47222 −0.736109 0.676863i \(-0.763339\pi\)
−0.736109 + 0.676863i \(0.763339\pi\)
\(270\) −3.87420e14 −0.0608581
\(271\) −7.68380e15 −1.17835 −0.589177 0.808004i \(-0.700548\pi\)
−0.589177 + 0.808004i \(0.700548\pi\)
\(272\) −1.36339e15 −0.204137
\(273\) 2.50407e15 0.366092
\(274\) 9.46484e15 1.35125
\(275\) −1.41939e15 −0.197897
\(276\) 2.05505e14 0.0279842
\(277\) −5.04745e15 −0.671357 −0.335679 0.941977i \(-0.608966\pi\)
−0.335679 + 0.941977i \(0.608966\pi\)
\(278\) −7.93562e15 −1.03107
\(279\) −4.88738e15 −0.620367
\(280\) 1.01117e15 0.125400
\(281\) 9.13541e15 1.10697 0.553486 0.832858i \(-0.313297\pi\)
0.553486 + 0.832858i \(0.313297\pi\)
\(282\) −5.53465e15 −0.655347
\(283\) −1.11914e15 −0.129501 −0.0647506 0.997901i \(-0.520625\pi\)
−0.0647506 + 0.997901i \(0.520625\pi\)
\(284\) 7.57451e15 0.856614
\(285\) 5.01833e14 0.0554712
\(286\) 5.17721e15 0.559392
\(287\) 4.22715e15 0.446494
\(288\) 5.70630e14 0.0589256
\(289\) −3.30068e15 −0.333248
\(290\) −1.04621e15 −0.103284
\(291\) −6.67883e15 −0.644757
\(292\) 5.93665e15 0.560471
\(293\) −4.71945e15 −0.435764 −0.217882 0.975975i \(-0.569915\pi\)
−0.217882 + 0.975975i \(0.569915\pi\)
\(294\) −1.67706e15 −0.151457
\(295\) −1.17213e15 −0.103546
\(296\) 4.51649e15 0.390305
\(297\) −2.25239e15 −0.190426
\(298\) −7.63301e15 −0.631379
\(299\) −9.57613e14 −0.0775045
\(300\) 7.29000e14 0.0577350
\(301\) 3.04978e15 0.236367
\(302\) 5.72748e15 0.434429
\(303\) 9.82255e15 0.729201
\(304\) −7.39148e14 −0.0537098
\(305\) 3.24316e15 0.230685
\(306\) −2.76398e15 −0.192462
\(307\) −1.60000e16 −1.09074 −0.545370 0.838196i \(-0.683611\pi\)
−0.545370 + 0.838196i \(0.683611\pi\)
\(308\) 5.87876e15 0.392379
\(309\) −4.30339e15 −0.281242
\(310\) 9.19646e15 0.588532
\(311\) 8.71351e15 0.546073 0.273036 0.962004i \(-0.411972\pi\)
0.273036 + 0.962004i \(0.411972\pi\)
\(312\) −2.65902e15 −0.163199
\(313\) −1.69623e16 −1.01964 −0.509819 0.860281i \(-0.670288\pi\)
−0.509819 + 0.860281i \(0.670288\pi\)
\(314\) 1.26391e16 0.744172
\(315\) 2.04993e15 0.118228
\(316\) 1.34303e16 0.758785
\(317\) 1.06703e16 0.590596 0.295298 0.955405i \(-0.404581\pi\)
0.295298 + 0.955405i \(0.404581\pi\)
\(318\) −3.68236e15 −0.199687
\(319\) −6.08249e15 −0.323178
\(320\) −1.07374e15 −0.0559017
\(321\) 3.27610e15 0.167138
\(322\) −1.08738e15 −0.0543646
\(323\) 3.58024e15 0.175427
\(324\) 1.15683e15 0.0555556
\(325\) −3.39700e15 −0.159902
\(326\) −1.88430e16 −0.869430
\(327\) −1.59367e16 −0.720838
\(328\) −4.48872e15 −0.199041
\(329\) 2.92852e16 1.27313
\(330\) 4.23827e15 0.180654
\(331\) −2.33878e16 −0.977477 −0.488739 0.872430i \(-0.662543\pi\)
−0.488739 + 0.872430i \(0.662543\pi\)
\(332\) 2.35939e15 0.0966947
\(333\) 9.15621e15 0.367984
\(334\) 1.03254e16 0.406963
\(335\) −9.65405e15 −0.373180
\(336\) −3.01934e15 −0.114474
\(337\) 2.43894e16 0.906998 0.453499 0.891257i \(-0.350175\pi\)
0.453499 + 0.891257i \(0.350175\pi\)
\(338\) −6.99348e15 −0.255114
\(339\) 2.20365e15 0.0788576
\(340\) 5.20092e15 0.182586
\(341\) 5.34665e16 1.84153
\(342\) −1.49846e15 −0.0506380
\(343\) 3.27925e16 1.08733
\(344\) −3.23850e15 −0.105369
\(345\) −7.83939e14 −0.0250299
\(346\) −4.11641e16 −1.28981
\(347\) −8.83452e15 −0.271670 −0.135835 0.990731i \(-0.543372\pi\)
−0.135835 + 0.990731i \(0.543372\pi\)
\(348\) 3.12398e15 0.0942850
\(349\) 3.53103e16 1.04601 0.523005 0.852330i \(-0.324811\pi\)
0.523005 + 0.852330i \(0.324811\pi\)
\(350\) −3.85731e15 −0.112161
\(351\) −5.39061e15 −0.153866
\(352\) −6.24253e15 −0.174917
\(353\) 6.10369e16 1.67902 0.839512 0.543342i \(-0.182841\pi\)
0.839512 + 0.543342i \(0.182841\pi\)
\(354\) 3.49995e15 0.0945237
\(355\) −2.88945e16 −0.766179
\(356\) 5.90394e15 0.153715
\(357\) 1.46249e16 0.373895
\(358\) 1.93973e16 0.486969
\(359\) 3.44407e16 0.849099 0.424550 0.905405i \(-0.360432\pi\)
0.424550 + 0.905405i \(0.360432\pi\)
\(360\) −2.17678e15 −0.0527046
\(361\) −4.01120e16 −0.953844
\(362\) −9.70538e15 −0.226677
\(363\) −5.26592e14 −0.0120804
\(364\) 1.40695e16 0.317045
\(365\) −2.26465e16 −0.501300
\(366\) −9.68403e15 −0.210586
\(367\) −6.95086e16 −1.48494 −0.742470 0.669879i \(-0.766346\pi\)
−0.742470 + 0.669879i \(0.766346\pi\)
\(368\) 1.15466e15 0.0242351
\(369\) −9.09992e15 −0.187658
\(370\) −1.72290e16 −0.349100
\(371\) 1.94843e16 0.387930
\(372\) −2.74605e16 −0.537254
\(373\) 4.63874e16 0.891852 0.445926 0.895070i \(-0.352874\pi\)
0.445926 + 0.895070i \(0.352874\pi\)
\(374\) 3.02372e16 0.571315
\(375\) −2.78091e15 −0.0516398
\(376\) −3.10973e16 −0.567547
\(377\) −1.45571e16 −0.261130
\(378\) −6.12107e15 −0.107927
\(379\) −8.60587e16 −1.49156 −0.745779 0.666194i \(-0.767922\pi\)
−0.745779 + 0.666194i \(0.767922\pi\)
\(380\) 2.81963e15 0.0480395
\(381\) −4.93328e16 −0.826273
\(382\) −7.11156e16 −1.17099
\(383\) −9.10638e16 −1.47419 −0.737095 0.675789i \(-0.763803\pi\)
−0.737095 + 0.675789i \(0.763803\pi\)
\(384\) 3.20618e15 0.0510310
\(385\) −2.24257e16 −0.350954
\(386\) −1.77977e16 −0.273871
\(387\) −6.56537e15 −0.0993432
\(388\) −3.75261e16 −0.558376
\(389\) −5.31668e16 −0.777979 −0.388989 0.921242i \(-0.627176\pi\)
−0.388989 + 0.921242i \(0.627176\pi\)
\(390\) 1.01434e16 0.145970
\(391\) −5.59288e15 −0.0791564
\(392\) −9.42282e15 −0.131166
\(393\) 4.55493e16 0.623634
\(394\) 8.64265e16 1.16391
\(395\) −5.12324e16 −0.678678
\(396\) −1.26554e16 −0.164914
\(397\) 8.67494e16 1.11206 0.556030 0.831162i \(-0.312324\pi\)
0.556030 + 0.831162i \(0.312324\pi\)
\(398\) −1.06301e17 −1.34060
\(399\) 7.92873e15 0.0983739
\(400\) 4.09600e15 0.0500000
\(401\) 1.02886e17 1.23571 0.617856 0.786291i \(-0.288002\pi\)
0.617856 + 0.786291i \(0.288002\pi\)
\(402\) 2.88268e16 0.340665
\(403\) 1.27960e17 1.48797
\(404\) 5.51895e16 0.631506
\(405\) −4.41296e15 −0.0496904
\(406\) −1.65297e16 −0.183166
\(407\) −1.00166e17 −1.09234
\(408\) −1.55299e16 −0.166677
\(409\) 8.39573e16 0.886864 0.443432 0.896308i \(-0.353761\pi\)
0.443432 + 0.896308i \(0.353761\pi\)
\(410\) 1.71231e16 0.178028
\(411\) 1.07810e17 1.10329
\(412\) −2.41792e16 −0.243563
\(413\) −1.85191e16 −0.183630
\(414\) 2.34083e15 0.0228490
\(415\) −9.00037e15 −0.0864864
\(416\) −1.49401e16 −0.141334
\(417\) −9.03917e16 −0.841868
\(418\) 1.63928e16 0.150316
\(419\) −7.15458e16 −0.645942 −0.322971 0.946409i \(-0.604682\pi\)
−0.322971 + 0.946409i \(0.604682\pi\)
\(420\) 1.15179e16 0.102389
\(421\) 1.18480e17 1.03708 0.518540 0.855054i \(-0.326476\pi\)
0.518540 + 0.855054i \(0.326476\pi\)
\(422\) −7.98337e16 −0.688106
\(423\) −6.30431e16 −0.535088
\(424\) −2.06899e16 −0.172934
\(425\) −1.98399e16 −0.163310
\(426\) 8.62784e16 0.699423
\(427\) 5.12405e16 0.409103
\(428\) 1.84073e16 0.144746
\(429\) 5.89716e16 0.456742
\(430\) 1.23539e16 0.0942452
\(431\) −8.18970e16 −0.615412 −0.307706 0.951481i \(-0.599561\pi\)
−0.307706 + 0.951481i \(0.599561\pi\)
\(432\) 6.49984e15 0.0481125
\(433\) 2.61320e17 1.90546 0.952732 0.303812i \(-0.0982595\pi\)
0.952732 + 0.303812i \(0.0982595\pi\)
\(434\) 1.45300e17 1.04372
\(435\) −1.19170e16 −0.0843311
\(436\) −8.95428e16 −0.624264
\(437\) −3.03212e15 −0.0208265
\(438\) 6.76222e16 0.457623
\(439\) 6.04446e16 0.403031 0.201515 0.979485i \(-0.435413\pi\)
0.201515 + 0.979485i \(0.435413\pi\)
\(440\) 2.38134e16 0.156451
\(441\) −1.91028e16 −0.123665
\(442\) 7.23661e16 0.461626
\(443\) 1.30237e16 0.0818675 0.0409338 0.999162i \(-0.486967\pi\)
0.0409338 + 0.999162i \(0.486967\pi\)
\(444\) 5.14456e16 0.318683
\(445\) −2.25218e16 −0.137487
\(446\) 9.35045e16 0.562543
\(447\) −8.69447e16 −0.515519
\(448\) −1.69646e16 −0.0991374
\(449\) −3.34728e16 −0.192793 −0.0963964 0.995343i \(-0.530732\pi\)
−0.0963964 + 0.995343i \(0.530732\pi\)
\(450\) 8.30377e15 0.0471405
\(451\) 9.95505e16 0.557052
\(452\) 1.23815e16 0.0682927
\(453\) 6.52396e16 0.354710
\(454\) 1.41625e17 0.759060
\(455\) −5.36710e16 −0.283574
\(456\) −8.41936e15 −0.0438538
\(457\) −1.84021e16 −0.0944956 −0.0472478 0.998883i \(-0.515045\pi\)
−0.0472478 + 0.998883i \(0.515045\pi\)
\(458\) −8.86364e16 −0.448732
\(459\) −3.14835e16 −0.157145
\(460\) −4.40469e15 −0.0216765
\(461\) −1.94324e17 −0.942912 −0.471456 0.881890i \(-0.656271\pi\)
−0.471456 + 0.881890i \(0.656271\pi\)
\(462\) 6.69627e16 0.320376
\(463\) −1.61147e17 −0.760232 −0.380116 0.924939i \(-0.624116\pi\)
−0.380116 + 0.924939i \(0.624116\pi\)
\(464\) 1.75526e16 0.0816532
\(465\) 1.04753e17 0.480534
\(466\) 4.05492e16 0.183431
\(467\) −1.84358e17 −0.822438 −0.411219 0.911537i \(-0.634897\pi\)
−0.411219 + 0.911537i \(0.634897\pi\)
\(468\) −3.02880e16 −0.133251
\(469\) −1.52530e17 −0.661806
\(470\) 1.18627e17 0.507629
\(471\) 1.43967e17 0.607614
\(472\) 1.96650e16 0.0818599
\(473\) 7.18232e16 0.294895
\(474\) 1.52979e17 0.619546
\(475\) −1.07560e16 −0.0429678
\(476\) 8.21722e16 0.323802
\(477\) −4.19444e16 −0.163044
\(478\) −3.31915e17 −1.27276
\(479\) −2.29206e17 −0.867052 −0.433526 0.901141i \(-0.642731\pi\)
−0.433526 + 0.901141i \(0.642731\pi\)
\(480\) −1.22306e16 −0.0456435
\(481\) −2.39726e17 −0.882618
\(482\) 4.57203e16 0.166075
\(483\) −1.23859e16 −0.0443885
\(484\) −2.95874e15 −0.0104619
\(485\) 1.43151e17 0.499427
\(486\) 1.31770e16 0.0453609
\(487\) −5.58396e16 −0.189672 −0.0948362 0.995493i \(-0.530233\pi\)
−0.0948362 + 0.995493i \(0.530233\pi\)
\(488\) −5.44112e16 −0.182373
\(489\) −2.14633e17 −0.709887
\(490\) 3.59452e16 0.117318
\(491\) 2.32354e17 0.748376 0.374188 0.927353i \(-0.377922\pi\)
0.374188 + 0.927353i \(0.377922\pi\)
\(492\) −5.11293e16 −0.162516
\(493\) −8.50199e16 −0.266695
\(494\) 3.92325e16 0.121457
\(495\) 4.82765e16 0.147503
\(496\) −1.54291e17 −0.465275
\(497\) −4.56520e17 −1.35876
\(498\) 2.68750e16 0.0789509
\(499\) 1.26866e17 0.367867 0.183933 0.982939i \(-0.441117\pi\)
0.183933 + 0.982939i \(0.441117\pi\)
\(500\) −1.56250e16 −0.0447214
\(501\) 1.17613e17 0.332284
\(502\) 4.93935e16 0.137751
\(503\) 2.52062e17 0.693930 0.346965 0.937878i \(-0.387212\pi\)
0.346965 + 0.937878i \(0.387212\pi\)
\(504\) −3.43922e16 −0.0934676
\(505\) −2.10531e17 −0.564836
\(506\) −2.56080e16 −0.0678262
\(507\) −7.96601e16 −0.208300
\(508\) −2.77184e17 −0.715573
\(509\) −7.58416e17 −1.93304 −0.966522 0.256583i \(-0.917403\pi\)
−0.966522 + 0.256583i \(0.917403\pi\)
\(510\) 5.92417e16 0.149081
\(511\) −3.57805e17 −0.889018
\(512\) 1.80144e16 0.0441942
\(513\) −1.70685e16 −0.0413458
\(514\) 2.70404e16 0.0646775
\(515\) 9.22365e16 0.217849
\(516\) −3.68886e16 −0.0860337
\(517\) 6.89673e17 1.58838
\(518\) −2.72211e17 −0.619102
\(519\) −4.68885e17 −1.05312
\(520\) 5.69921e16 0.126413
\(521\) 2.57270e17 0.563565 0.281782 0.959478i \(-0.409074\pi\)
0.281782 + 0.959478i \(0.409074\pi\)
\(522\) 3.55841e16 0.0769834
\(523\) 6.17878e17 1.32021 0.660103 0.751175i \(-0.270513\pi\)
0.660103 + 0.751175i \(0.270513\pi\)
\(524\) 2.55926e17 0.540083
\(525\) −4.39372e16 −0.0915792
\(526\) −3.51865e17 −0.724385
\(527\) 7.47345e17 1.51968
\(528\) −7.11063e16 −0.142820
\(529\) −4.99300e17 −0.990603
\(530\) 7.89259e16 0.154677
\(531\) 3.98666e16 0.0771783
\(532\) 4.45488e16 0.0851943
\(533\) 2.38253e17 0.450102
\(534\) 6.72496e16 0.125508
\(535\) −7.02183e16 −0.129464
\(536\) 1.61968e17 0.295025
\(537\) 2.20947e17 0.397608
\(538\) −5.85521e17 −1.04102
\(539\) 2.08978e17 0.367092
\(540\) −2.47949e16 −0.0430331
\(541\) 4.98664e17 0.855117 0.427559 0.903988i \(-0.359374\pi\)
0.427559 + 0.903988i \(0.359374\pi\)
\(542\) −4.91763e17 −0.833222
\(543\) −1.10550e17 −0.185081
\(544\) −8.72570e16 −0.144347
\(545\) 3.41579e17 0.558359
\(546\) 1.60261e17 0.258866
\(547\) 1.17958e18 1.88282 0.941409 0.337267i \(-0.109503\pi\)
0.941409 + 0.337267i \(0.109503\pi\)
\(548\) 6.05750e17 0.955476
\(549\) −1.10307e17 −0.171943
\(550\) −9.08408e16 −0.139934
\(551\) −4.60927e16 −0.0701692
\(552\) 1.31523e16 0.0197878
\(553\) −8.09449e17 −1.20358
\(554\) −3.23037e17 −0.474721
\(555\) −1.96249e17 −0.285039
\(556\) −5.07880e17 −0.729079
\(557\) 1.20922e18 1.71572 0.857862 0.513880i \(-0.171792\pi\)
0.857862 + 0.513880i \(0.171792\pi\)
\(558\) −3.12792e17 −0.438666
\(559\) 1.71893e17 0.238277
\(560\) 6.47150e16 0.0886712
\(561\) 3.44420e17 0.466477
\(562\) 5.84666e17 0.782748
\(563\) 3.34970e17 0.443303 0.221652 0.975126i \(-0.428855\pi\)
0.221652 + 0.975126i \(0.428855\pi\)
\(564\) −3.54218e17 −0.463400
\(565\) −4.72318e16 −0.0610829
\(566\) −7.16251e16 −0.0915711
\(567\) −6.97228e16 −0.0881221
\(568\) 4.84769e17 0.605718
\(569\) −9.93914e17 −1.22778 −0.613888 0.789393i \(-0.710395\pi\)
−0.613888 + 0.789393i \(0.710395\pi\)
\(570\) 3.21173e16 0.0392241
\(571\) −1.31297e18 −1.58533 −0.792666 0.609656i \(-0.791308\pi\)
−0.792666 + 0.609656i \(0.791308\pi\)
\(572\) 3.31341e17 0.395550
\(573\) −8.10051e17 −0.956108
\(574\) 2.70538e17 0.315719
\(575\) 1.68025e16 0.0193880
\(576\) 3.65203e16 0.0416667
\(577\) 1.71430e18 1.93394 0.966972 0.254883i \(-0.0820369\pi\)
0.966972 + 0.254883i \(0.0820369\pi\)
\(578\) −2.11243e17 −0.235642
\(579\) −2.02726e17 −0.223614
\(580\) −6.69577e16 −0.0730329
\(581\) −1.42202e17 −0.153377
\(582\) −4.27445e17 −0.455912
\(583\) 4.58860e17 0.483988
\(584\) 3.79946e17 0.396313
\(585\) 1.15539e17 0.119184
\(586\) −3.02045e17 −0.308132
\(587\) 9.06698e16 0.0914777 0.0457388 0.998953i \(-0.485436\pi\)
0.0457388 + 0.998953i \(0.485436\pi\)
\(588\) −1.07332e17 −0.107097
\(589\) 4.05166e17 0.399837
\(590\) −7.50161e16 −0.0732177
\(591\) 9.84451e17 0.950333
\(592\) 2.89055e17 0.275988
\(593\) 1.28956e18 1.21783 0.608913 0.793237i \(-0.291606\pi\)
0.608913 + 0.793237i \(0.291606\pi\)
\(594\) −1.44153e17 −0.134652
\(595\) −3.13462e17 −0.289617
\(596\) −4.88513e17 −0.446452
\(597\) −1.21084e18 −1.09459
\(598\) −6.12872e16 −0.0548040
\(599\) 1.38078e18 1.22138 0.610691 0.791869i \(-0.290892\pi\)
0.610691 + 0.791869i \(0.290892\pi\)
\(600\) 4.66560e16 0.0408248
\(601\) −1.72898e18 −1.49660 −0.748300 0.663360i \(-0.769130\pi\)
−0.748300 + 0.663360i \(0.769130\pi\)
\(602\) 1.95186e17 0.167137
\(603\) 3.28356e17 0.278152
\(604\) 3.66559e17 0.307188
\(605\) 1.12867e16 0.00935744
\(606\) 6.28643e17 0.515623
\(607\) −4.22893e17 −0.343166 −0.171583 0.985170i \(-0.554888\pi\)
−0.171583 + 0.985170i \(0.554888\pi\)
\(608\) −4.73055e16 −0.0379785
\(609\) −1.88284e17 −0.149555
\(610\) 2.07562e17 0.163119
\(611\) 1.65058e18 1.28342
\(612\) −1.76895e17 −0.136091
\(613\) −1.47848e18 −1.12544 −0.562719 0.826648i \(-0.690245\pi\)
−0.562719 + 0.826648i \(0.690245\pi\)
\(614\) −1.02400e18 −0.771269
\(615\) 1.95043e17 0.145359
\(616\) 3.76240e17 0.277454
\(617\) −8.73995e17 −0.637757 −0.318879 0.947796i \(-0.603306\pi\)
−0.318879 + 0.947796i \(0.603306\pi\)
\(618\) −2.75417e17 −0.198868
\(619\) −1.94778e17 −0.139171 −0.0695857 0.997576i \(-0.522168\pi\)
−0.0695857 + 0.997576i \(0.522168\pi\)
\(620\) 5.88574e17 0.416155
\(621\) 2.66635e16 0.0186562
\(622\) 5.57665e17 0.386132
\(623\) −3.55834e17 −0.243823
\(624\) −1.70178e17 −0.115399
\(625\) 5.96046e16 0.0400000
\(626\) −1.08559e18 −0.720994
\(627\) 1.86724e17 0.122733
\(628\) 8.08902e17 0.526209
\(629\) −1.40011e18 −0.901430
\(630\) 1.31196e17 0.0836000
\(631\) −1.41467e18 −0.892201 −0.446101 0.894983i \(-0.647188\pi\)
−0.446101 + 0.894983i \(0.647188\pi\)
\(632\) 8.59538e17 0.536542
\(633\) −9.09355e17 −0.561836
\(634\) 6.82898e17 0.417615
\(635\) 1.05737e18 0.640028
\(636\) −2.35671e17 −0.141200
\(637\) 5.00145e17 0.296613
\(638\) −3.89279e17 −0.228521
\(639\) 9.82765e17 0.571076
\(640\) −6.87195e16 −0.0395285
\(641\) −8.47052e17 −0.482318 −0.241159 0.970486i \(-0.577527\pi\)
−0.241159 + 0.970486i \(0.577527\pi\)
\(642\) 2.09671e17 0.118184
\(643\) −3.73889e17 −0.208628 −0.104314 0.994544i \(-0.533265\pi\)
−0.104314 + 0.994544i \(0.533265\pi\)
\(644\) −6.95921e16 −0.0384416
\(645\) 1.40719e17 0.0769509
\(646\) 2.29135e17 0.124045
\(647\) −3.11882e18 −1.67153 −0.835763 0.549091i \(-0.814974\pi\)
−0.835763 + 0.549091i \(0.814974\pi\)
\(648\) 7.40372e16 0.0392837
\(649\) −4.36129e17 −0.229100
\(650\) −2.17408e17 −0.113068
\(651\) 1.65506e18 0.852191
\(652\) −1.20595e18 −0.614780
\(653\) −3.00682e18 −1.51765 −0.758825 0.651294i \(-0.774226\pi\)
−0.758825 + 0.651294i \(0.774226\pi\)
\(654\) −1.01995e18 −0.509710
\(655\) −9.76279e17 −0.483065
\(656\) −2.87278e17 −0.140743
\(657\) 7.70259e17 0.373647
\(658\) 1.87425e18 0.900242
\(659\) −2.44266e18 −1.16174 −0.580868 0.813998i \(-0.697287\pi\)
−0.580868 + 0.813998i \(0.697287\pi\)
\(660\) 2.71249e17 0.127742
\(661\) −2.85085e18 −1.32943 −0.664715 0.747097i \(-0.731447\pi\)
−0.664715 + 0.747097i \(0.731447\pi\)
\(662\) −1.49682e18 −0.691181
\(663\) 8.24295e17 0.376916
\(664\) 1.51001e17 0.0683735
\(665\) −1.69940e17 −0.0762001
\(666\) 5.85998e17 0.260204
\(667\) 7.20038e16 0.0316619
\(668\) 6.60825e17 0.287766
\(669\) 1.06507e18 0.459314
\(670\) −6.17859e17 −0.263878
\(671\) 1.20673e18 0.510403
\(672\) −1.93238e17 −0.0809454
\(673\) −6.70156e17 −0.278021 −0.139011 0.990291i \(-0.544392\pi\)
−0.139011 + 0.990291i \(0.544392\pi\)
\(674\) 1.56092e18 0.641345
\(675\) 9.45851e16 0.0384900
\(676\) −4.47583e17 −0.180393
\(677\) −1.89487e18 −0.756404 −0.378202 0.925723i \(-0.623457\pi\)
−0.378202 + 0.925723i \(0.623457\pi\)
\(678\) 1.41033e17 0.0557608
\(679\) 2.26172e18 0.885695
\(680\) 3.32859e17 0.129108
\(681\) 1.61319e18 0.619770
\(682\) 3.42185e18 1.30216
\(683\) 1.10368e18 0.416016 0.208008 0.978127i \(-0.433302\pi\)
0.208008 + 0.978127i \(0.433302\pi\)
\(684\) −9.59018e16 −0.0358065
\(685\) −2.31075e18 −0.854604
\(686\) 2.09872e18 0.768861
\(687\) −1.00962e18 −0.366388
\(688\) −2.07264e17 −0.0745074
\(689\) 1.09818e18 0.391065
\(690\) −5.01721e16 −0.0176988
\(691\) −6.91657e16 −0.0241704 −0.0120852 0.999927i \(-0.503847\pi\)
−0.0120852 + 0.999927i \(0.503847\pi\)
\(692\) −2.63450e18 −0.912030
\(693\) 7.62747e17 0.261586
\(694\) −5.65409e17 −0.192099
\(695\) 1.93741e18 0.652108
\(696\) 1.99935e17 0.0666696
\(697\) 1.39150e18 0.459695
\(698\) 2.25986e18 0.739641
\(699\) 4.61880e17 0.149771
\(700\) −2.46868e17 −0.0793099
\(701\) 2.17439e18 0.692104 0.346052 0.938215i \(-0.387522\pi\)
0.346052 + 0.938215i \(0.387522\pi\)
\(702\) −3.44999e17 −0.108799
\(703\) −7.59054e17 −0.237172
\(704\) −3.99522e17 −0.123685
\(705\) 1.35123e18 0.414478
\(706\) 3.90636e18 1.18725
\(707\) −3.32630e18 −1.00169
\(708\) 2.23997e17 0.0668383
\(709\) 5.52547e18 1.63369 0.816844 0.576859i \(-0.195722\pi\)
0.816844 + 0.576859i \(0.195722\pi\)
\(710\) −1.84925e18 −0.541770
\(711\) 1.74253e18 0.505857
\(712\) 3.77852e17 0.108693
\(713\) −6.32930e17 −0.180416
\(714\) 9.35993e17 0.264383
\(715\) −1.26397e18 −0.353791
\(716\) 1.24143e18 0.344339
\(717\) −3.78072e18 −1.03920
\(718\) 2.20421e18 0.600404
\(719\) 7.09858e18 1.91617 0.958085 0.286485i \(-0.0924868\pi\)
0.958085 + 0.286485i \(0.0924868\pi\)
\(720\) −1.39314e17 −0.0372678
\(721\) 1.45730e18 0.386339
\(722\) −2.56717e18 −0.674470
\(723\) 5.20783e17 0.135599
\(724\) −6.21144e17 −0.160285
\(725\) 2.55423e17 0.0653226
\(726\) −3.37019e16 −0.00854213
\(727\) 2.05702e18 0.516732 0.258366 0.966047i \(-0.416816\pi\)
0.258366 + 0.966047i \(0.416816\pi\)
\(728\) 9.00450e17 0.224185
\(729\) 1.50095e17 0.0370370
\(730\) −1.44938e18 −0.354473
\(731\) 1.00393e18 0.243356
\(732\) −6.19778e17 −0.148907
\(733\) 3.63415e18 0.865420 0.432710 0.901533i \(-0.357557\pi\)
0.432710 + 0.901533i \(0.357557\pi\)
\(734\) −4.44855e18 −1.05001
\(735\) 4.09438e17 0.0957901
\(736\) 7.38984e16 0.0171368
\(737\) −3.59211e18 −0.825679
\(738\) −5.82395e17 −0.132694
\(739\) 2.50725e17 0.0566251 0.0283125 0.999599i \(-0.490987\pi\)
0.0283125 + 0.999599i \(0.490987\pi\)
\(740\) −1.10266e18 −0.246851
\(741\) 4.46883e17 0.0991689
\(742\) 1.24699e18 0.274308
\(743\) 6.04321e16 0.0131777 0.00658886 0.999978i \(-0.497903\pi\)
0.00658886 + 0.999978i \(0.497903\pi\)
\(744\) −1.75747e18 −0.379896
\(745\) 1.86353e18 0.399319
\(746\) 2.96879e18 0.630635
\(747\) 3.06123e17 0.0644631
\(748\) 1.93518e18 0.403981
\(749\) −1.10942e18 −0.229595
\(750\) −1.77979e17 −0.0365148
\(751\) −3.11331e18 −0.633231 −0.316616 0.948554i \(-0.602547\pi\)
−0.316616 + 0.948554i \(0.602547\pi\)
\(752\) −1.99023e18 −0.401316
\(753\) 5.62622e17 0.112473
\(754\) −9.31655e17 −0.184647
\(755\) −1.39831e18 −0.274757
\(756\) −3.91748e17 −0.0763160
\(757\) −2.83534e18 −0.547623 −0.273812 0.961783i \(-0.588284\pi\)
−0.273812 + 0.961783i \(0.588284\pi\)
\(758\) −5.50776e18 −1.05469
\(759\) −2.91691e17 −0.0553798
\(760\) 1.80456e17 0.0339690
\(761\) 7.02743e17 0.131158 0.0655792 0.997847i \(-0.479110\pi\)
0.0655792 + 0.997847i \(0.479110\pi\)
\(762\) −3.15730e18 −0.584263
\(763\) 5.39679e18 0.990207
\(764\) −4.55140e18 −0.828014
\(765\) 6.74800e17 0.121724
\(766\) −5.82808e18 −1.04241
\(767\) −1.04378e18 −0.185114
\(768\) 2.05195e17 0.0360844
\(769\) 2.41682e18 0.421428 0.210714 0.977548i \(-0.432421\pi\)
0.210714 + 0.977548i \(0.432421\pi\)
\(770\) −1.43524e18 −0.248162
\(771\) 3.08007e17 0.0528089
\(772\) −1.13905e18 −0.193656
\(773\) −2.17379e18 −0.366481 −0.183240 0.983068i \(-0.558659\pi\)
−0.183240 + 0.983068i \(0.558659\pi\)
\(774\) −4.20184e17 −0.0702462
\(775\) −2.24523e18 −0.372220
\(776\) −2.40167e18 −0.394832
\(777\) −3.10065e18 −0.505495
\(778\) −3.40267e18 −0.550114
\(779\) 7.54387e17 0.120949
\(780\) 6.49176e17 0.103216
\(781\) −1.07512e19 −1.69521
\(782\) −3.57944e17 −0.0559721
\(783\) 4.05325e17 0.0628567
\(784\) −6.03060e17 −0.0927484
\(785\) −3.08572e18 −0.470656
\(786\) 2.91515e18 0.440976
\(787\) −5.18814e18 −0.778352 −0.389176 0.921163i \(-0.627240\pi\)
−0.389176 + 0.921163i \(0.627240\pi\)
\(788\) 5.53129e18 0.823012
\(789\) −4.00797e18 −0.591458
\(790\) −3.27888e18 −0.479898
\(791\) −7.46241e17 −0.108326
\(792\) −8.09945e17 −0.116612
\(793\) 2.88804e18 0.412409
\(794\) 5.55196e18 0.786346
\(795\) 8.99015e17 0.126293
\(796\) −6.80329e18 −0.947947
\(797\) 1.10148e19 1.52229 0.761144 0.648583i \(-0.224638\pi\)
0.761144 + 0.648583i \(0.224638\pi\)
\(798\) 5.07439e17 0.0695609
\(799\) 9.64013e18 1.31078
\(800\) 2.62144e17 0.0353553
\(801\) 7.66015e17 0.102477
\(802\) 6.58469e18 0.873780
\(803\) −8.42641e18 −1.10915
\(804\) 1.84492e18 0.240887
\(805\) 2.65473e17 0.0343832
\(806\) 8.18947e18 1.05215
\(807\) −6.66944e18 −0.849986
\(808\) 3.53213e18 0.446542
\(809\) 7.14073e18 0.895524 0.447762 0.894153i \(-0.352221\pi\)
0.447762 + 0.894153i \(0.352221\pi\)
\(810\) −2.82430e17 −0.0351364
\(811\) −8.16933e18 −1.00821 −0.504105 0.863643i \(-0.668177\pi\)
−0.504105 + 0.863643i \(0.668177\pi\)
\(812\) −1.05790e18 −0.129518
\(813\) −5.60149e18 −0.680323
\(814\) −6.41064e18 −0.772401
\(815\) 4.60033e18 0.549876
\(816\) −9.93911e17 −0.117859
\(817\) 5.44272e17 0.0640284
\(818\) 5.37327e18 0.627107
\(819\) 1.82547e18 0.211363
\(820\) 1.09588e18 0.125885
\(821\) −7.76919e16 −0.00885412 −0.00442706 0.999990i \(-0.501409\pi\)
−0.00442706 + 0.999990i \(0.501409\pi\)
\(822\) 6.89987e18 0.780143
\(823\) −8.01213e18 −0.898771 −0.449386 0.893338i \(-0.648357\pi\)
−0.449386 + 0.893338i \(0.648357\pi\)
\(824\) −1.54747e18 −0.172225
\(825\) −1.03473e18 −0.114256
\(826\) −1.18522e18 −0.129846
\(827\) 4.37194e18 0.475214 0.237607 0.971361i \(-0.423637\pi\)
0.237607 + 0.971361i \(0.423637\pi\)
\(828\) 1.49813e17 0.0161567
\(829\) 1.70519e19 1.82461 0.912303 0.409517i \(-0.134303\pi\)
0.912303 + 0.409517i \(0.134303\pi\)
\(830\) −5.76024e17 −0.0611551
\(831\) −3.67959e18 −0.387608
\(832\) −9.56169e17 −0.0999386
\(833\) 2.92106e18 0.302934
\(834\) −5.78507e18 −0.595291
\(835\) −2.52085e18 −0.257386
\(836\) 1.04914e18 0.106290
\(837\) −3.56290e18 −0.358169
\(838\) −4.57893e18 −0.456750
\(839\) 1.16401e19 1.15213 0.576067 0.817402i \(-0.304587\pi\)
0.576067 + 0.817402i \(0.304587\pi\)
\(840\) 7.37144e17 0.0723997
\(841\) −9.16607e18 −0.893324
\(842\) 7.58273e18 0.733326
\(843\) 6.65971e18 0.639111
\(844\) −5.10935e18 −0.486564
\(845\) 1.70739e18 0.161348
\(846\) −4.03476e18 −0.378365
\(847\) 1.78325e17 0.0165947
\(848\) −1.32416e18 −0.122283
\(849\) −8.15855e17 −0.0747675
\(850\) −1.26976e18 −0.115477
\(851\) 1.18576e18 0.107017
\(852\) 5.52182e18 0.494567
\(853\) 1.00864e19 0.896539 0.448270 0.893898i \(-0.352040\pi\)
0.448270 + 0.893898i \(0.352040\pi\)
\(854\) 3.27939e18 0.289279
\(855\) 3.65836e17 0.0320263
\(856\) 1.17807e18 0.102351
\(857\) 8.84171e18 0.762361 0.381181 0.924501i \(-0.375518\pi\)
0.381181 + 0.924501i \(0.375518\pi\)
\(858\) 3.77418e18 0.322965
\(859\) −1.44967e19 −1.23116 −0.615579 0.788075i \(-0.711078\pi\)
−0.615579 + 0.788075i \(0.711078\pi\)
\(860\) 7.90650e17 0.0666414
\(861\) 3.08159e18 0.257783
\(862\) −5.24141e18 −0.435162
\(863\) −1.63841e19 −1.35005 −0.675027 0.737793i \(-0.735868\pi\)
−0.675027 + 0.737793i \(0.735868\pi\)
\(864\) 4.15990e17 0.0340207
\(865\) 1.00498e19 0.815745
\(866\) 1.67245e19 1.34737
\(867\) −2.40619e18 −0.192401
\(868\) 9.29920e18 0.738019
\(869\) −1.90628e19 −1.50161
\(870\) −7.62690e17 −0.0596311
\(871\) −8.59695e18 −0.667154
\(872\) −5.73074e18 −0.441421
\(873\) −4.86887e18 −0.372251
\(874\) −1.94056e17 −0.0147266
\(875\) 9.41727e17 0.0709370
\(876\) 4.32782e18 0.323588
\(877\) 1.76436e19 1.30945 0.654727 0.755865i \(-0.272783\pi\)
0.654727 + 0.755865i \(0.272783\pi\)
\(878\) 3.86845e18 0.284986
\(879\) −3.44048e18 −0.251589
\(880\) 1.52405e18 0.110628
\(881\) 1.98036e19 1.42693 0.713463 0.700693i \(-0.247126\pi\)
0.713463 + 0.700693i \(0.247126\pi\)
\(882\) −1.22258e18 −0.0874440
\(883\) −2.48109e19 −1.76156 −0.880782 0.473522i \(-0.842983\pi\)
−0.880782 + 0.473522i \(0.842983\pi\)
\(884\) 4.63143e18 0.326419
\(885\) −8.54480e17 −0.0597820
\(886\) 8.33520e17 0.0578891
\(887\) 3.12970e18 0.215774 0.107887 0.994163i \(-0.465592\pi\)
0.107887 + 0.994163i \(0.465592\pi\)
\(888\) 3.29252e18 0.225343
\(889\) 1.67060e19 1.13504
\(890\) −1.44139e18 −0.0972181
\(891\) −1.64199e18 −0.109943
\(892\) 5.98429e18 0.397778
\(893\) 5.22630e18 0.344874
\(894\) −5.56446e18 −0.364527
\(895\) −4.73566e18 −0.307986
\(896\) −1.08574e18 −0.0701007
\(897\) −6.98100e17 −0.0447473
\(898\) −2.14226e18 −0.136325
\(899\) −9.62147e18 −0.607860
\(900\) 5.31441e17 0.0333333
\(901\) 6.41386e18 0.399400
\(902\) 6.37123e18 0.393895
\(903\) 2.22329e18 0.136467
\(904\) 7.92418e17 0.0482902
\(905\) 2.36948e18 0.143363
\(906\) 4.17533e18 0.250818
\(907\) 1.67393e19 0.998368 0.499184 0.866496i \(-0.333633\pi\)
0.499184 + 0.866496i \(0.333633\pi\)
\(908\) 9.06398e18 0.536736
\(909\) 7.16064e18 0.421004
\(910\) −3.43494e18 −0.200517
\(911\) 1.36209e19 0.789470 0.394735 0.918795i \(-0.370836\pi\)
0.394735 + 0.918795i \(0.370836\pi\)
\(912\) −5.38839e17 −0.0310093
\(913\) −3.34889e18 −0.191356
\(914\) −1.17773e18 −0.0668185
\(915\) 2.36426e18 0.133186
\(916\) −5.67273e18 −0.317301
\(917\) −1.54248e19 −0.856678
\(918\) −2.01494e18 −0.111118
\(919\) −2.39335e19 −1.31055 −0.655277 0.755388i \(-0.727448\pi\)
−0.655277 + 0.755388i \(0.727448\pi\)
\(920\) −2.81900e17 −0.0153276
\(921\) −1.16640e19 −0.629739
\(922\) −1.24368e19 −0.666740
\(923\) −2.57306e19 −1.36974
\(924\) 4.28561e18 0.226540
\(925\) 4.20631e18 0.220790
\(926\) −1.03134e19 −0.537565
\(927\) −3.13717e18 −0.162375
\(928\) 1.12336e18 0.0577376
\(929\) −2.62102e19 −1.33773 −0.668866 0.743383i \(-0.733220\pi\)
−0.668866 + 0.743383i \(0.733220\pi\)
\(930\) 6.70422e18 0.339789
\(931\) 1.58363e18 0.0797039
\(932\) 2.59515e18 0.129706
\(933\) 6.35215e18 0.315275
\(934\) −1.17989e19 −0.581551
\(935\) −7.38212e18 −0.361331
\(936\) −1.93843e18 −0.0942230
\(937\) 2.81835e19 1.36046 0.680232 0.732997i \(-0.261879\pi\)
0.680232 + 0.732997i \(0.261879\pi\)
\(938\) −9.76190e18 −0.467968
\(939\) −1.23655e19 −0.588689
\(940\) 7.59211e18 0.358948
\(941\) −2.54613e19 −1.19549 −0.597747 0.801685i \(-0.703937\pi\)
−0.597747 + 0.801685i \(0.703937\pi\)
\(942\) 9.21390e18 0.429648
\(943\) −1.17847e18 −0.0545747
\(944\) 1.25856e18 0.0578837
\(945\) 1.49440e18 0.0682591
\(946\) 4.59669e18 0.208522
\(947\) 2.53093e19 1.14026 0.570131 0.821554i \(-0.306892\pi\)
0.570131 + 0.821554i \(0.306892\pi\)
\(948\) 9.79067e18 0.438085
\(949\) −2.01668e19 −0.896203
\(950\) −6.88385e17 −0.0303828
\(951\) 7.77864e18 0.340981
\(952\) 5.25902e18 0.228963
\(953\) −1.35627e19 −0.586464 −0.293232 0.956041i \(-0.594731\pi\)
−0.293232 + 0.956041i \(0.594731\pi\)
\(954\) −2.68444e18 −0.115290
\(955\) 1.73622e19 0.740598
\(956\) −2.12426e19 −0.899976
\(957\) −4.43413e18 −0.186587
\(958\) −1.46692e19 −0.613098
\(959\) −3.65089e19 −1.51557
\(960\) −7.82758e17 −0.0322749
\(961\) 6.01574e19 2.46370
\(962\) −1.53425e19 −0.624105
\(963\) 2.38828e18 0.0964971
\(964\) 2.92610e18 0.117433
\(965\) 4.34513e18 0.173211
\(966\) −7.92697e17 −0.0313874
\(967\) −3.16626e19 −1.24530 −0.622650 0.782500i \(-0.713944\pi\)
−0.622650 + 0.782500i \(0.713944\pi\)
\(968\) −1.89359e17 −0.00739770
\(969\) 2.60999e18 0.101283
\(970\) 9.16164e18 0.353148
\(971\) −2.69476e19 −1.03180 −0.515900 0.856649i \(-0.672543\pi\)
−0.515900 + 0.856649i \(0.672543\pi\)
\(972\) 8.43330e17 0.0320750
\(973\) 3.06102e19 1.15646
\(974\) −3.57374e18 −0.134119
\(975\) −2.47641e18 −0.0923193
\(976\) −3.48232e18 −0.128957
\(977\) 7.53679e18 0.277250 0.138625 0.990345i \(-0.455732\pi\)
0.138625 + 0.990345i \(0.455732\pi\)
\(978\) −1.37365e19 −0.501966
\(979\) −8.37998e18 −0.304197
\(980\) 2.30049e18 0.0829567
\(981\) −1.16178e19 −0.416176
\(982\) 1.48706e19 0.529182
\(983\) 3.65300e19 1.29137 0.645687 0.763602i \(-0.276571\pi\)
0.645687 + 0.763602i \(0.276571\pi\)
\(984\) −3.27228e18 −0.114916
\(985\) −2.11002e19 −0.736124
\(986\) −5.44127e18 −0.188582
\(987\) 2.13489e19 0.735044
\(988\) 2.51088e18 0.0858828
\(989\) −8.50235e17 −0.0288910
\(990\) 3.08970e18 0.104301
\(991\) 2.98763e19 1.00195 0.500977 0.865460i \(-0.332974\pi\)
0.500977 + 0.865460i \(0.332974\pi\)
\(992\) −9.87463e18 −0.328999
\(993\) −1.70497e19 −0.564347
\(994\) −2.92173e19 −0.960789
\(995\) 2.59525e19 0.847870
\(996\) 1.72000e18 0.0558267
\(997\) −6.62600e18 −0.213665 −0.106832 0.994277i \(-0.534071\pi\)
−0.106832 + 0.994277i \(0.534071\pi\)
\(998\) 8.11941e18 0.260121
\(999\) 6.67488e18 0.212455
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.14.a.f.1.1 1
3.2 odd 2 90.14.a.c.1.1 1
5.2 odd 4 150.14.c.e.49.2 2
5.3 odd 4 150.14.c.e.49.1 2
5.4 even 2 150.14.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.14.a.f.1.1 1 1.1 even 1 trivial
90.14.a.c.1.1 1 3.2 odd 2
150.14.a.a.1.1 1 5.4 even 2
150.14.c.e.49.1 2 5.3 odd 4
150.14.c.e.49.2 2 5.2 odd 4