Properties

Label 30.4.c.a.19.2
Level $30$
Weight $4$
Character 30.19
Analytic conductor $1.770$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,4,Mod(19,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 30.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.77005730017\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 30.19
Dual form 30.4.c.a.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +3.00000i q^{3} -4.00000 q^{4} +(2.00000 + 11.0000i) q^{5} -6.00000 q^{6} -2.00000i q^{7} -8.00000i q^{8} -9.00000 q^{9} +(-22.0000 + 4.00000i) q^{10} +70.0000 q^{11} -12.0000i q^{12} -54.0000i q^{13} +4.00000 q^{14} +(-33.0000 + 6.00000i) q^{15} +16.0000 q^{16} -22.0000i q^{17} -18.0000i q^{18} -24.0000 q^{19} +(-8.00000 - 44.0000i) q^{20} +6.00000 q^{21} +140.000i q^{22} +100.000i q^{23} +24.0000 q^{24} +(-117.000 + 44.0000i) q^{25} +108.000 q^{26} -27.0000i q^{27} +8.00000i q^{28} -216.000 q^{29} +(-12.0000 - 66.0000i) q^{30} +208.000 q^{31} +32.0000i q^{32} +210.000i q^{33} +44.0000 q^{34} +(22.0000 - 4.00000i) q^{35} +36.0000 q^{36} -254.000i q^{37} -48.0000i q^{38} +162.000 q^{39} +(88.0000 - 16.0000i) q^{40} -206.000 q^{41} +12.0000i q^{42} -292.000i q^{43} -280.000 q^{44} +(-18.0000 - 99.0000i) q^{45} -200.000 q^{46} -320.000i q^{47} +48.0000i q^{48} +339.000 q^{49} +(-88.0000 - 234.000i) q^{50} +66.0000 q^{51} +216.000i q^{52} +402.000i q^{53} +54.0000 q^{54} +(140.000 + 770.000i) q^{55} -16.0000 q^{56} -72.0000i q^{57} -432.000i q^{58} +370.000 q^{59} +(132.000 - 24.0000i) q^{60} -550.000 q^{61} +416.000i q^{62} +18.0000i q^{63} -64.0000 q^{64} +(594.000 - 108.000i) q^{65} -420.000 q^{66} +728.000i q^{67} +88.0000i q^{68} -300.000 q^{69} +(8.00000 + 44.0000i) q^{70} -540.000 q^{71} +72.0000i q^{72} -604.000i q^{73} +508.000 q^{74} +(-132.000 - 351.000i) q^{75} +96.0000 q^{76} -140.000i q^{77} +324.000i q^{78} -792.000 q^{79} +(32.0000 + 176.000i) q^{80} +81.0000 q^{81} -412.000i q^{82} -404.000i q^{83} -24.0000 q^{84} +(242.000 - 44.0000i) q^{85} +584.000 q^{86} -648.000i q^{87} -560.000i q^{88} +938.000 q^{89} +(198.000 - 36.0000i) q^{90} -108.000 q^{91} -400.000i q^{92} +624.000i q^{93} +640.000 q^{94} +(-48.0000 - 264.000i) q^{95} -96.0000 q^{96} +56.0000i q^{97} +678.000i q^{98} -630.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 4 q^{5} - 12 q^{6} - 18 q^{9} - 44 q^{10} + 140 q^{11} + 8 q^{14} - 66 q^{15} + 32 q^{16} - 48 q^{19} - 16 q^{20} + 12 q^{21} + 48 q^{24} - 234 q^{25} + 216 q^{26} - 432 q^{29} - 24 q^{30}+ \cdots - 1260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 3.00000i 0.577350i
\(4\) −4.00000 −0.500000
\(5\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(6\) −6.00000 −0.408248
\(7\) 2.00000i 0.107990i −0.998541 0.0539949i \(-0.982805\pi\)
0.998541 0.0539949i \(-0.0171955\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −9.00000 −0.333333
\(10\) −22.0000 + 4.00000i −0.695701 + 0.126491i
\(11\) 70.0000 1.91871 0.959354 0.282204i \(-0.0910657\pi\)
0.959354 + 0.282204i \(0.0910657\pi\)
\(12\) 12.0000i 0.288675i
\(13\) 54.0000i 1.15207i −0.817425 0.576035i \(-0.804599\pi\)
0.817425 0.576035i \(-0.195401\pi\)
\(14\) 4.00000 0.0763604
\(15\) −33.0000 + 6.00000i −0.568038 + 0.103280i
\(16\) 16.0000 0.250000
\(17\) 22.0000i 0.313870i −0.987609 0.156935i \(-0.949839\pi\)
0.987609 0.156935i \(-0.0501613\pi\)
\(18\) 18.0000i 0.235702i
\(19\) −24.0000 −0.289788 −0.144894 0.989447i \(-0.546284\pi\)
−0.144894 + 0.989447i \(0.546284\pi\)
\(20\) −8.00000 44.0000i −0.0894427 0.491935i
\(21\) 6.00000 0.0623480
\(22\) 140.000i 1.35673i
\(23\) 100.000i 0.906584i 0.891362 + 0.453292i \(0.149751\pi\)
−0.891362 + 0.453292i \(0.850249\pi\)
\(24\) 24.0000 0.204124
\(25\) −117.000 + 44.0000i −0.936000 + 0.352000i
\(26\) 108.000 0.814636
\(27\) 27.0000i 0.192450i
\(28\) 8.00000i 0.0539949i
\(29\) −216.000 −1.38311 −0.691555 0.722324i \(-0.743074\pi\)
−0.691555 + 0.722324i \(0.743074\pi\)
\(30\) −12.0000 66.0000i −0.0730297 0.401663i
\(31\) 208.000 1.20509 0.602547 0.798084i \(-0.294153\pi\)
0.602547 + 0.798084i \(0.294153\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 210.000i 1.10777i
\(34\) 44.0000 0.221939
\(35\) 22.0000 4.00000i 0.106248 0.0193178i
\(36\) 36.0000 0.166667
\(37\) 254.000i 1.12858i −0.825578 0.564288i \(-0.809151\pi\)
0.825578 0.564288i \(-0.190849\pi\)
\(38\) 48.0000i 0.204911i
\(39\) 162.000 0.665148
\(40\) 88.0000 16.0000i 0.347851 0.0632456i
\(41\) −206.000 −0.784678 −0.392339 0.919821i \(-0.628334\pi\)
−0.392339 + 0.919821i \(0.628334\pi\)
\(42\) 12.0000i 0.0440867i
\(43\) 292.000i 1.03557i −0.855510 0.517786i \(-0.826756\pi\)
0.855510 0.517786i \(-0.173244\pi\)
\(44\) −280.000 −0.959354
\(45\) −18.0000 99.0000i −0.0596285 0.327957i
\(46\) −200.000 −0.641052
\(47\) 320.000i 0.993123i −0.868001 0.496562i \(-0.834596\pi\)
0.868001 0.496562i \(-0.165404\pi\)
\(48\) 48.0000i 0.144338i
\(49\) 339.000 0.988338
\(50\) −88.0000 234.000i −0.248902 0.661852i
\(51\) 66.0000 0.181213
\(52\) 216.000i 0.576035i
\(53\) 402.000i 1.04187i 0.853597 + 0.520933i \(0.174416\pi\)
−0.853597 + 0.520933i \(0.825584\pi\)
\(54\) 54.0000 0.136083
\(55\) 140.000 + 770.000i 0.343229 + 1.88776i
\(56\) −16.0000 −0.0381802
\(57\) 72.0000i 0.167309i
\(58\) 432.000i 0.978007i
\(59\) 370.000 0.816439 0.408219 0.912884i \(-0.366150\pi\)
0.408219 + 0.912884i \(0.366150\pi\)
\(60\) 132.000 24.0000i 0.284019 0.0516398i
\(61\) −550.000 −1.15443 −0.577215 0.816592i \(-0.695861\pi\)
−0.577215 + 0.816592i \(0.695861\pi\)
\(62\) 416.000i 0.852130i
\(63\) 18.0000i 0.0359966i
\(64\) −64.0000 −0.125000
\(65\) 594.000 108.000i 1.13349 0.206088i
\(66\) −420.000 −0.783309
\(67\) 728.000i 1.32745i 0.747975 + 0.663727i \(0.231026\pi\)
−0.747975 + 0.663727i \(0.768974\pi\)
\(68\) 88.0000i 0.156935i
\(69\) −300.000 −0.523417
\(70\) 8.00000 + 44.0000i 0.0136598 + 0.0751287i
\(71\) −540.000 −0.902623 −0.451311 0.892367i \(-0.649044\pi\)
−0.451311 + 0.892367i \(0.649044\pi\)
\(72\) 72.0000i 0.117851i
\(73\) 604.000i 0.968395i −0.874959 0.484198i \(-0.839112\pi\)
0.874959 0.484198i \(-0.160888\pi\)
\(74\) 508.000 0.798024
\(75\) −132.000 351.000i −0.203227 0.540400i
\(76\) 96.0000 0.144894
\(77\) 140.000i 0.207201i
\(78\) 324.000i 0.470330i
\(79\) −792.000 −1.12794 −0.563968 0.825797i \(-0.690726\pi\)
−0.563968 + 0.825797i \(0.690726\pi\)
\(80\) 32.0000 + 176.000i 0.0447214 + 0.245967i
\(81\) 81.0000 0.111111
\(82\) 412.000i 0.554851i
\(83\) 404.000i 0.534274i −0.963659 0.267137i \(-0.913922\pi\)
0.963659 0.267137i \(-0.0860777\pi\)
\(84\) −24.0000 −0.0311740
\(85\) 242.000 44.0000i 0.308807 0.0561467i
\(86\) 584.000 0.732260
\(87\) 648.000i 0.798539i
\(88\) 560.000i 0.678366i
\(89\) 938.000 1.11717 0.558583 0.829449i \(-0.311345\pi\)
0.558583 + 0.829449i \(0.311345\pi\)
\(90\) 198.000 36.0000i 0.231900 0.0421637i
\(91\) −108.000 −0.124412
\(92\) 400.000i 0.453292i
\(93\) 624.000i 0.695761i
\(94\) 640.000 0.702244
\(95\) −48.0000 264.000i −0.0518389 0.285114i
\(96\) −96.0000 −0.102062
\(97\) 56.0000i 0.0586179i 0.999570 + 0.0293090i \(0.00933067\pi\)
−0.999570 + 0.0293090i \(0.990669\pi\)
\(98\) 678.000i 0.698861i
\(99\) −630.000 −0.639570
\(100\) 468.000 176.000i 0.468000 0.176000i
\(101\) −592.000 −0.583230 −0.291615 0.956536i \(-0.594193\pi\)
−0.291615 + 0.956536i \(0.594193\pi\)
\(102\) 132.000i 0.128137i
\(103\) 62.0000i 0.0593111i −0.999560 0.0296555i \(-0.990559\pi\)
0.999560 0.0296555i \(-0.00944104\pi\)
\(104\) −432.000 −0.407318
\(105\) 12.0000 + 66.0000i 0.0111531 + 0.0613423i
\(106\) −804.000 −0.736711
\(107\) 84.0000i 0.0758933i 0.999280 + 0.0379467i \(0.0120817\pi\)
−0.999280 + 0.0379467i \(0.987918\pi\)
\(108\) 108.000i 0.0962250i
\(109\) −370.000 −0.325134 −0.162567 0.986698i \(-0.551977\pi\)
−0.162567 + 0.986698i \(0.551977\pi\)
\(110\) −1540.00 + 280.000i −1.33485 + 0.242700i
\(111\) 762.000 0.651584
\(112\) 32.0000i 0.0269975i
\(113\) 1746.00i 1.45354i 0.686882 + 0.726769i \(0.258979\pi\)
−0.686882 + 0.726769i \(0.741021\pi\)
\(114\) 144.000 0.118306
\(115\) −1100.00 + 200.000i −0.891961 + 0.162175i
\(116\) 864.000 0.691555
\(117\) 486.000i 0.384023i
\(118\) 740.000i 0.577310i
\(119\) −44.0000 −0.0338947
\(120\) 48.0000 + 264.000i 0.0365148 + 0.200832i
\(121\) 3569.00 2.68144
\(122\) 1100.00i 0.816306i
\(123\) 618.000i 0.453034i
\(124\) −832.000 −0.602547
\(125\) −718.000 1199.00i −0.513759 0.857935i
\(126\) −36.0000 −0.0254535
\(127\) 1630.00i 1.13889i 0.822029 + 0.569445i \(0.192842\pi\)
−0.822029 + 0.569445i \(0.807158\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 876.000 0.597888
\(130\) 216.000 + 1188.00i 0.145727 + 0.801496i
\(131\) −870.000 −0.580246 −0.290123 0.956989i \(-0.593696\pi\)
−0.290123 + 0.956989i \(0.593696\pi\)
\(132\) 840.000i 0.553883i
\(133\) 48.0000i 0.0312942i
\(134\) −1456.00 −0.938651
\(135\) 297.000 54.0000i 0.189346 0.0344265i
\(136\) −176.000 −0.110970
\(137\) 918.000i 0.572482i 0.958158 + 0.286241i \(0.0924058\pi\)
−0.958158 + 0.286241i \(0.907594\pi\)
\(138\) 600.000i 0.370112i
\(139\) 596.000 0.363684 0.181842 0.983328i \(-0.441794\pi\)
0.181842 + 0.983328i \(0.441794\pi\)
\(140\) −88.0000 + 16.0000i −0.0531240 + 0.00965891i
\(141\) 960.000 0.573380
\(142\) 1080.00i 0.638251i
\(143\) 3780.00i 2.21049i
\(144\) −144.000 −0.0833333
\(145\) −432.000 2376.00i −0.247418 1.36080i
\(146\) 1208.00 0.684759
\(147\) 1017.00i 0.570617i
\(148\) 1016.00i 0.564288i
\(149\) −1076.00 −0.591606 −0.295803 0.955249i \(-0.595587\pi\)
−0.295803 + 0.955249i \(0.595587\pi\)
\(150\) 702.000 264.000i 0.382120 0.143703i
\(151\) −32.0000 −0.0172458 −0.00862292 0.999963i \(-0.502745\pi\)
−0.00862292 + 0.999963i \(0.502745\pi\)
\(152\) 192.000i 0.102456i
\(153\) 198.000i 0.104623i
\(154\) 280.000 0.146513
\(155\) 416.000 + 2288.00i 0.215574 + 1.18566i
\(156\) −648.000 −0.332574
\(157\) 2554.00i 1.29829i −0.760665 0.649145i \(-0.775127\pi\)
0.760665 0.649145i \(-0.224873\pi\)
\(158\) 1584.00i 0.797571i
\(159\) −1206.00 −0.601522
\(160\) −352.000 + 64.0000i −0.173925 + 0.0316228i
\(161\) 200.000 0.0979019
\(162\) 162.000i 0.0785674i
\(163\) 752.000i 0.361357i −0.983542 0.180678i \(-0.942171\pi\)
0.983542 0.180678i \(-0.0578293\pi\)
\(164\) 824.000 0.392339
\(165\) −2310.00 + 420.000i −1.08990 + 0.198163i
\(166\) 808.000 0.377789
\(167\) 2700.00i 1.25109i 0.780188 + 0.625546i \(0.215124\pi\)
−0.780188 + 0.625546i \(0.784876\pi\)
\(168\) 48.0000i 0.0220433i
\(169\) −719.000 −0.327264
\(170\) 88.0000 + 484.000i 0.0397017 + 0.218359i
\(171\) 216.000 0.0965961
\(172\) 1168.00i 0.517786i
\(173\) 1334.00i 0.586255i 0.956073 + 0.293128i \(0.0946961\pi\)
−0.956073 + 0.293128i \(0.905304\pi\)
\(174\) 1296.00 0.564652
\(175\) 88.0000 + 234.000i 0.0380124 + 0.101078i
\(176\) 1120.00 0.479677
\(177\) 1110.00i 0.471371i
\(178\) 1876.00i 0.789956i
\(179\) 1714.00 0.715700 0.357850 0.933779i \(-0.383510\pi\)
0.357850 + 0.933779i \(0.383510\pi\)
\(180\) 72.0000 + 396.000i 0.0298142 + 0.163978i
\(181\) −4006.00 −1.64510 −0.822551 0.568691i \(-0.807450\pi\)
−0.822551 + 0.568691i \(0.807450\pi\)
\(182\) 216.000i 0.0879724i
\(183\) 1650.00i 0.666511i
\(184\) 800.000 0.320526
\(185\) 2794.00 508.000i 1.11037 0.201886i
\(186\) −1248.00 −0.491977
\(187\) 1540.00i 0.602224i
\(188\) 1280.00i 0.496562i
\(189\) −54.0000 −0.0207827
\(190\) 528.000 96.0000i 0.201606 0.0366556i
\(191\) −684.000 −0.259123 −0.129562 0.991571i \(-0.541357\pi\)
−0.129562 + 0.991571i \(0.541357\pi\)
\(192\) 192.000i 0.0721688i
\(193\) 4484.00i 1.67236i 0.548455 + 0.836180i \(0.315216\pi\)
−0.548455 + 0.836180i \(0.684784\pi\)
\(194\) −112.000 −0.0414491
\(195\) 324.000 + 1782.00i 0.118985 + 0.654419i
\(196\) −1356.00 −0.494169
\(197\) 1058.00i 0.382636i −0.981528 0.191318i \(-0.938724\pi\)
0.981528 0.191318i \(-0.0612762\pi\)
\(198\) 1260.00i 0.452244i
\(199\) 1128.00 0.401818 0.200909 0.979610i \(-0.435610\pi\)
0.200909 + 0.979610i \(0.435610\pi\)
\(200\) 352.000 + 936.000i 0.124451 + 0.330926i
\(201\) −2184.00 −0.766405
\(202\) 1184.00i 0.412406i
\(203\) 432.000i 0.149362i
\(204\) −264.000 −0.0906064
\(205\) −412.000 2266.00i −0.140367 0.772021i
\(206\) 124.000 0.0419393
\(207\) 900.000i 0.302195i
\(208\) 864.000i 0.288017i
\(209\) −1680.00 −0.556019
\(210\) −132.000 + 24.0000i −0.0433755 + 0.00788646i
\(211\) 780.000 0.254490 0.127245 0.991871i \(-0.459387\pi\)
0.127245 + 0.991871i \(0.459387\pi\)
\(212\) 1608.00i 0.520933i
\(213\) 1620.00i 0.521129i
\(214\) −168.000 −0.0536647
\(215\) 3212.00 584.000i 1.01887 0.185249i
\(216\) −216.000 −0.0680414
\(217\) 416.000i 0.130138i
\(218\) 740.000i 0.229904i
\(219\) 1812.00 0.559103
\(220\) −560.000 3080.00i −0.171615 0.943880i
\(221\) −1188.00 −0.361600
\(222\) 1524.00i 0.460740i
\(223\) 2570.00i 0.771749i 0.922551 + 0.385874i \(0.126100\pi\)
−0.922551 + 0.385874i \(0.873900\pi\)
\(224\) 64.0000 0.0190901
\(225\) 1053.00 396.000i 0.312000 0.117333i
\(226\) −3492.00 −1.02781
\(227\) 2836.00i 0.829216i −0.910000 0.414608i \(-0.863919\pi\)
0.910000 0.414608i \(-0.136081\pi\)
\(228\) 288.000i 0.0836547i
\(229\) 610.000 0.176026 0.0880130 0.996119i \(-0.471948\pi\)
0.0880130 + 0.996119i \(0.471948\pi\)
\(230\) −400.000 2200.00i −0.114675 0.630712i
\(231\) 420.000 0.119628
\(232\) 1728.00i 0.489003i
\(233\) 3514.00i 0.988025i −0.869455 0.494012i \(-0.835530\pi\)
0.869455 0.494012i \(-0.164470\pi\)
\(234\) −972.000 −0.271545
\(235\) 3520.00 640.000i 0.977104 0.177655i
\(236\) −1480.00 −0.408219
\(237\) 2376.00i 0.651214i
\(238\) 88.0000i 0.0239672i
\(239\) 1844.00 0.499073 0.249536 0.968365i \(-0.419722\pi\)
0.249536 + 0.968365i \(0.419722\pi\)
\(240\) −528.000 + 96.0000i −0.142009 + 0.0258199i
\(241\) 982.000 0.262474 0.131237 0.991351i \(-0.458105\pi\)
0.131237 + 0.991351i \(0.458105\pi\)
\(242\) 7138.00i 1.89607i
\(243\) 243.000i 0.0641500i
\(244\) 2200.00 0.577215
\(245\) 678.000 + 3729.00i 0.176799 + 0.972396i
\(246\) 1236.00 0.320343
\(247\) 1296.00i 0.333856i
\(248\) 1664.00i 0.426065i
\(249\) 1212.00 0.308463
\(250\) 2398.00 1436.00i 0.606651 0.363282i
\(251\) −3174.00 −0.798172 −0.399086 0.916914i \(-0.630672\pi\)
−0.399086 + 0.916914i \(0.630672\pi\)
\(252\) 72.0000i 0.0179983i
\(253\) 7000.00i 1.73947i
\(254\) −3260.00 −0.805317
\(255\) 132.000 + 726.000i 0.0324163 + 0.178290i
\(256\) 256.000 0.0625000
\(257\) 1194.00i 0.289804i −0.989446 0.144902i \(-0.953713\pi\)
0.989446 0.144902i \(-0.0462867\pi\)
\(258\) 1752.00i 0.422770i
\(259\) −508.000 −0.121875
\(260\) −2376.00 + 432.000i −0.566743 + 0.103044i
\(261\) 1944.00 0.461037
\(262\) 1740.00i 0.410296i
\(263\) 140.000i 0.0328242i −0.999865 0.0164121i \(-0.994776\pi\)
0.999865 0.0164121i \(-0.00522437\pi\)
\(264\) 1680.00 0.391655
\(265\) −4422.00 + 804.000i −1.02506 + 0.186375i
\(266\) −96.0000 −0.0221283
\(267\) 2814.00i 0.644996i
\(268\) 2912.00i 0.663727i
\(269\) −5256.00 −1.19132 −0.595658 0.803238i \(-0.703109\pi\)
−0.595658 + 0.803238i \(0.703109\pi\)
\(270\) 108.000 + 594.000i 0.0243432 + 0.133888i
\(271\) 544.000 0.121940 0.0609698 0.998140i \(-0.480581\pi\)
0.0609698 + 0.998140i \(0.480581\pi\)
\(272\) 352.000i 0.0784674i
\(273\) 324.000i 0.0718292i
\(274\) −1836.00 −0.404806
\(275\) −8190.00 + 3080.00i −1.79591 + 0.675385i
\(276\) 1200.00 0.261708
\(277\) 946.000i 0.205197i 0.994723 + 0.102599i \(0.0327157\pi\)
−0.994723 + 0.102599i \(0.967284\pi\)
\(278\) 1192.00i 0.257163i
\(279\) −1872.00 −0.401698
\(280\) −32.0000 176.000i −0.00682988 0.0375643i
\(281\) 1278.00 0.271313 0.135657 0.990756i \(-0.456686\pi\)
0.135657 + 0.990756i \(0.456686\pi\)
\(282\) 1920.00i 0.405441i
\(283\) 7424.00i 1.55940i −0.626152 0.779701i \(-0.715371\pi\)
0.626152 0.779701i \(-0.284629\pi\)
\(284\) 2160.00 0.451311
\(285\) 792.000 144.000i 0.164611 0.0299292i
\(286\) 7560.00 1.56305
\(287\) 412.000i 0.0847373i
\(288\) 288.000i 0.0589256i
\(289\) 4429.00 0.901486
\(290\) 4752.00 864.000i 0.962231 0.174951i
\(291\) −168.000 −0.0338431
\(292\) 2416.00i 0.484198i
\(293\) 1362.00i 0.271566i 0.990739 + 0.135783i \(0.0433550\pi\)
−0.990739 + 0.135783i \(0.956645\pi\)
\(294\) −2034.00 −0.403487
\(295\) 740.000 + 4070.00i 0.146049 + 0.803270i
\(296\) −2032.00 −0.399012
\(297\) 1890.00i 0.369256i
\(298\) 2152.00i 0.418329i
\(299\) 5400.00 1.04445
\(300\) 528.000 + 1404.00i 0.101614 + 0.270200i
\(301\) −584.000 −0.111831
\(302\) 64.0000i 0.0121947i
\(303\) 1776.00i 0.336728i
\(304\) −384.000 −0.0724471
\(305\) −1100.00 6050.00i −0.206511 1.13581i
\(306\) −396.000 −0.0739798
\(307\) 7740.00i 1.43891i −0.694539 0.719455i \(-0.744392\pi\)
0.694539 0.719455i \(-0.255608\pi\)
\(308\) 560.000i 0.103601i
\(309\) 186.000 0.0342433
\(310\) −4576.00 + 832.000i −0.838385 + 0.152434i
\(311\) 4980.00 0.908006 0.454003 0.891000i \(-0.349996\pi\)
0.454003 + 0.891000i \(0.349996\pi\)
\(312\) 1296.00i 0.235165i
\(313\) 604.000i 0.109074i −0.998512 0.0545369i \(-0.982632\pi\)
0.998512 0.0545369i \(-0.0173683\pi\)
\(314\) 5108.00 0.918029
\(315\) −198.000 + 36.0000i −0.0354160 + 0.00643927i
\(316\) 3168.00 0.563968
\(317\) 8566.00i 1.51771i −0.651259 0.758856i \(-0.725759\pi\)
0.651259 0.758856i \(-0.274241\pi\)
\(318\) 2412.00i 0.425340i
\(319\) −15120.0 −2.65379
\(320\) −128.000 704.000i −0.0223607 0.122984i
\(321\) −252.000 −0.0438170
\(322\) 400.000i 0.0692271i
\(323\) 528.000i 0.0909557i
\(324\) −324.000 −0.0555556
\(325\) 2376.00 + 6318.00i 0.405529 + 1.07834i
\(326\) 1504.00 0.255518
\(327\) 1110.00i 0.187716i
\(328\) 1648.00i 0.277426i
\(329\) −640.000 −0.107247
\(330\) −840.000 4620.00i −0.140123 0.770675i
\(331\) 3472.00 0.576551 0.288275 0.957548i \(-0.406918\pi\)
0.288275 + 0.957548i \(0.406918\pi\)
\(332\) 1616.00i 0.267137i
\(333\) 2286.00i 0.376192i
\(334\) −5400.00 −0.884655
\(335\) −8008.00 + 1456.00i −1.30604 + 0.237462i
\(336\) 96.0000 0.0155870
\(337\) 5668.00i 0.916189i 0.888904 + 0.458094i \(0.151468\pi\)
−0.888904 + 0.458094i \(0.848532\pi\)
\(338\) 1438.00i 0.231411i
\(339\) −5238.00 −0.839201
\(340\) −968.000 + 176.000i −0.154403 + 0.0280734i
\(341\) 14560.0 2.31222
\(342\) 432.000i 0.0683038i
\(343\) 1364.00i 0.214720i
\(344\) −2336.00 −0.366130
\(345\) −600.000 3300.00i −0.0936316 0.514974i
\(346\) −2668.00 −0.414545
\(347\) 10836.0i 1.67639i 0.545371 + 0.838194i \(0.316389\pi\)
−0.545371 + 0.838194i \(0.683611\pi\)
\(348\) 2592.00i 0.399269i
\(349\) 8990.00 1.37886 0.689432 0.724350i \(-0.257860\pi\)
0.689432 + 0.724350i \(0.257860\pi\)
\(350\) −468.000 + 176.000i −0.0714733 + 0.0268788i
\(351\) −1458.00 −0.221716
\(352\) 2240.00i 0.339183i
\(353\) 5078.00i 0.765651i 0.923821 + 0.382825i \(0.125049\pi\)
−0.923821 + 0.382825i \(0.874951\pi\)
\(354\) −2220.00 −0.333310
\(355\) −1080.00 5940.00i −0.161466 0.888063i
\(356\) −3752.00 −0.558583
\(357\) 132.000i 0.0195691i
\(358\) 3428.00i 0.506077i
\(359\) 3696.00 0.543363 0.271682 0.962387i \(-0.412420\pi\)
0.271682 + 0.962387i \(0.412420\pi\)
\(360\) −792.000 + 144.000i −0.115950 + 0.0210819i
\(361\) −6283.00 −0.916023
\(362\) 8012.00i 1.16326i
\(363\) 10707.0i 1.54813i
\(364\) 432.000 0.0622059
\(365\) 6644.00 1208.00i 0.952775 0.173232i
\(366\) 3300.00 0.471294
\(367\) 286.000i 0.0406787i 0.999793 + 0.0203393i \(0.00647466\pi\)
−0.999793 + 0.0203393i \(0.993525\pi\)
\(368\) 1600.00i 0.226646i
\(369\) 1854.00 0.261559
\(370\) 1016.00 + 5588.00i 0.142755 + 0.785152i
\(371\) 804.000 0.112511
\(372\) 2496.00i 0.347881i
\(373\) 8262.00i 1.14689i −0.819244 0.573445i \(-0.805607\pi\)
0.819244 0.573445i \(-0.194393\pi\)
\(374\) 3080.00 0.425837
\(375\) 3597.00 2154.00i 0.495329 0.296619i
\(376\) −2560.00 −0.351122
\(377\) 11664.0i 1.59344i
\(378\) 108.000i 0.0146956i
\(379\) 2956.00 0.400632 0.200316 0.979731i \(-0.435803\pi\)
0.200316 + 0.979731i \(0.435803\pi\)
\(380\) 192.000 + 1056.00i 0.0259195 + 0.142557i
\(381\) −4890.00 −0.657539
\(382\) 1368.00i 0.183228i
\(383\) 5240.00i 0.699090i 0.936920 + 0.349545i \(0.113664\pi\)
−0.936920 + 0.349545i \(0.886336\pi\)
\(384\) 384.000 0.0510310
\(385\) 1540.00 280.000i 0.203859 0.0370653i
\(386\) −8968.00 −1.18254
\(387\) 2628.00i 0.345191i
\(388\) 224.000i 0.0293090i
\(389\) 884.000 0.115220 0.0576100 0.998339i \(-0.481652\pi\)
0.0576100 + 0.998339i \(0.481652\pi\)
\(390\) −3564.00 + 648.000i −0.462744 + 0.0841353i
\(391\) 2200.00 0.284549
\(392\) 2712.00i 0.349430i
\(393\) 2610.00i 0.335005i
\(394\) 2116.00 0.270565
\(395\) −1584.00 8712.00i −0.201771 1.10974i
\(396\) 2520.00 0.319785
\(397\) 3394.00i 0.429068i 0.976717 + 0.214534i \(0.0688233\pi\)
−0.976717 + 0.214534i \(0.931177\pi\)
\(398\) 2256.00i 0.284128i
\(399\) −144.000 −0.0180677
\(400\) −1872.00 + 704.000i −0.234000 + 0.0880000i
\(401\) −6826.00 −0.850060 −0.425030 0.905179i \(-0.639737\pi\)
−0.425030 + 0.905179i \(0.639737\pi\)
\(402\) 4368.00i 0.541930i
\(403\) 11232.0i 1.38835i
\(404\) 2368.00 0.291615
\(405\) 162.000 + 891.000i 0.0198762 + 0.109319i
\(406\) −864.000 −0.105615
\(407\) 17780.0i 2.16541i
\(408\) 528.000i 0.0640684i
\(409\) −7814.00 −0.944688 −0.472344 0.881414i \(-0.656592\pi\)
−0.472344 + 0.881414i \(0.656592\pi\)
\(410\) 4532.00 824.000i 0.545901 0.0992548i
\(411\) −2754.00 −0.330523
\(412\) 248.000i 0.0296555i
\(413\) 740.000i 0.0881671i
\(414\) 1800.00 0.213684
\(415\) 4444.00 808.000i 0.525656 0.0955739i
\(416\) 1728.00 0.203659
\(417\) 1788.00i 0.209973i
\(418\) 3360.00i 0.393165i
\(419\) −8290.00 −0.966570 −0.483285 0.875463i \(-0.660557\pi\)
−0.483285 + 0.875463i \(0.660557\pi\)
\(420\) −48.0000 264.000i −0.00557657 0.0306711i
\(421\) 2110.00 0.244264 0.122132 0.992514i \(-0.461027\pi\)
0.122132 + 0.992514i \(0.461027\pi\)
\(422\) 1560.00i 0.179952i
\(423\) 2880.00i 0.331041i
\(424\) 3216.00 0.368356
\(425\) 968.000 + 2574.00i 0.110482 + 0.293782i
\(426\) 3240.00 0.368494
\(427\) 1100.00i 0.124667i
\(428\) 336.000i 0.0379467i
\(429\) 11340.0 1.27622
\(430\) 1168.00 + 6424.00i 0.130991 + 0.720448i
\(431\) −12080.0 −1.35005 −0.675027 0.737793i \(-0.735868\pi\)
−0.675027 + 0.737793i \(0.735868\pi\)
\(432\) 432.000i 0.0481125i
\(433\) 16492.0i 1.83038i −0.403022 0.915190i \(-0.632040\pi\)
0.403022 0.915190i \(-0.367960\pi\)
\(434\) 832.000 0.0920214
\(435\) 7128.00 1296.00i 0.785658 0.142847i
\(436\) 1480.00 0.162567
\(437\) 2400.00i 0.262718i
\(438\) 3624.00i 0.395346i
\(439\) 15048.0 1.63600 0.817998 0.575222i \(-0.195084\pi\)
0.817998 + 0.575222i \(0.195084\pi\)
\(440\) 6160.00 1120.00i 0.667424 0.121350i
\(441\) −3051.00 −0.329446
\(442\) 2376.00i 0.255690i
\(443\) 9876.00i 1.05919i 0.848249 + 0.529597i \(0.177657\pi\)
−0.848249 + 0.529597i \(0.822343\pi\)
\(444\) −3048.00 −0.325792
\(445\) 1876.00 + 10318.0i 0.199845 + 1.09915i
\(446\) −5140.00 −0.545709
\(447\) 3228.00i 0.341564i
\(448\) 128.000i 0.0134987i
\(449\) −17166.0 −1.80426 −0.902131 0.431462i \(-0.857998\pi\)
−0.902131 + 0.431462i \(0.857998\pi\)
\(450\) 792.000 + 2106.00i 0.0829672 + 0.220617i
\(451\) −14420.0 −1.50557
\(452\) 6984.00i 0.726769i
\(453\) 96.0000i 0.00995690i
\(454\) 5672.00 0.586344
\(455\) −216.000 1188.00i −0.0222555 0.122405i
\(456\) −576.000 −0.0591528
\(457\) 14848.0i 1.51983i 0.650025 + 0.759913i \(0.274758\pi\)
−0.650025 + 0.759913i \(0.725242\pi\)
\(458\) 1220.00i 0.124469i
\(459\) −594.000 −0.0604042
\(460\) 4400.00 800.000i 0.445981 0.0810874i
\(461\) −1260.00 −0.127297 −0.0636486 0.997972i \(-0.520274\pi\)
−0.0636486 + 0.997972i \(0.520274\pi\)
\(462\) 840.000i 0.0845895i
\(463\) 11238.0i 1.12802i 0.825767 + 0.564011i \(0.190742\pi\)
−0.825767 + 0.564011i \(0.809258\pi\)
\(464\) −3456.00 −0.345778
\(465\) −6864.00 + 1248.00i −0.684538 + 0.124462i
\(466\) 7028.00 0.698639
\(467\) 14772.0i 1.46374i 0.681444 + 0.731870i \(0.261352\pi\)
−0.681444 + 0.731870i \(0.738648\pi\)
\(468\) 1944.00i 0.192012i
\(469\) 1456.00 0.143351
\(470\) 1280.00 + 7040.00i 0.125621 + 0.690917i
\(471\) 7662.00 0.749568
\(472\) 2960.00i 0.288655i
\(473\) 20440.0i 1.98696i
\(474\) 4752.00 0.460478
\(475\) 2808.00 1056.00i 0.271242 0.102005i
\(476\) 176.000 0.0169474
\(477\) 3618.00i 0.347289i
\(478\) 3688.00i 0.352898i
\(479\) 6116.00 0.583397 0.291699 0.956510i \(-0.405780\pi\)
0.291699 + 0.956510i \(0.405780\pi\)
\(480\) −192.000 1056.00i −0.0182574 0.100416i
\(481\) −13716.0 −1.30020
\(482\) 1964.00i 0.185597i
\(483\) 600.000i 0.0565237i
\(484\) −14276.0 −1.34072
\(485\) −616.000 + 112.000i −0.0576724 + 0.0104859i
\(486\) −486.000 −0.0453609
\(487\) 15906.0i 1.48002i 0.672596 + 0.740010i \(0.265179\pi\)
−0.672596 + 0.740010i \(0.734821\pi\)
\(488\) 4400.00i 0.408153i
\(489\) 2256.00 0.208630
\(490\) −7458.00 + 1356.00i −0.687588 + 0.125016i
\(491\) 18714.0 1.72006 0.860032 0.510241i \(-0.170444\pi\)
0.860032 + 0.510241i \(0.170444\pi\)
\(492\) 2472.00i 0.226517i
\(493\) 4752.00i 0.434116i
\(494\) −2592.00 −0.236072
\(495\) −1260.00 6930.00i −0.114410 0.629253i
\(496\) 3328.00 0.301273
\(497\) 1080.00i 0.0974741i
\(498\) 2424.00i 0.218117i
\(499\) 4056.00 0.363871 0.181935 0.983310i \(-0.441764\pi\)
0.181935 + 0.983310i \(0.441764\pi\)
\(500\) 2872.00 + 4796.00i 0.256879 + 0.428967i
\(501\) −8100.00 −0.722318
\(502\) 6348.00i 0.564393i
\(503\) 6288.00i 0.557392i −0.960379 0.278696i \(-0.910098\pi\)
0.960379 0.278696i \(-0.0899021\pi\)
\(504\) 144.000 0.0127267
\(505\) −1184.00 6512.00i −0.104331 0.573822i
\(506\) −14000.0 −1.22999
\(507\) 2157.00i 0.188946i
\(508\) 6520.00i 0.569445i
\(509\) −2856.00 −0.248703 −0.124352 0.992238i \(-0.539685\pi\)
−0.124352 + 0.992238i \(0.539685\pi\)
\(510\) −1452.00 + 264.000i −0.126070 + 0.0229218i
\(511\) −1208.00 −0.104577
\(512\) 512.000i 0.0441942i
\(513\) 648.000i 0.0557698i
\(514\) 2388.00 0.204922
\(515\) 682.000 124.000i 0.0583544 0.0106099i
\(516\) −3504.00 −0.298944
\(517\) 22400.0i 1.90551i
\(518\) 1016.00i 0.0861785i
\(519\) −4002.00 −0.338475
\(520\) −864.000 4752.00i −0.0728633 0.400748i
\(521\) 17078.0 1.43609 0.718043 0.695999i \(-0.245038\pi\)
0.718043 + 0.695999i \(0.245038\pi\)
\(522\) 3888.00i 0.326002i
\(523\) 8560.00i 0.715684i 0.933782 + 0.357842i \(0.116487\pi\)
−0.933782 + 0.357842i \(0.883513\pi\)
\(524\) 3480.00 0.290123
\(525\) −702.000 + 264.000i −0.0583577 + 0.0219465i
\(526\) 280.000 0.0232102
\(527\) 4576.00i 0.378242i
\(528\) 3360.00i 0.276942i
\(529\) 2167.00 0.178105
\(530\) −1608.00 8844.00i −0.131787 0.724828i
\(531\) −3330.00 −0.272146
\(532\) 192.000i 0.0156471i
\(533\) 11124.0i 0.904004i
\(534\) −5628.00 −0.456081
\(535\) −924.000 + 168.000i −0.0746692 + 0.0135762i
\(536\) 5824.00 0.469326
\(537\) 5142.00i 0.413210i
\(538\) 10512.0i 0.842388i
\(539\) 23730.0 1.89633
\(540\) −1188.00 + 216.000i −0.0946729 + 0.0172133i
\(541\) 15970.0 1.26914 0.634569 0.772866i \(-0.281178\pi\)
0.634569 + 0.772866i \(0.281178\pi\)
\(542\) 1088.00i 0.0862244i
\(543\) 12018.0i 0.949801i
\(544\) 704.000 0.0554848
\(545\) −740.000 4070.00i −0.0581617 0.319889i
\(546\) 648.000 0.0507909
\(547\) 15524.0i 1.21345i −0.794911 0.606726i \(-0.792482\pi\)
0.794911 0.606726i \(-0.207518\pi\)
\(548\) 3672.00i 0.286241i
\(549\) 4950.00 0.384810
\(550\) −6160.00 16380.0i −0.477570 1.26990i
\(551\) 5184.00 0.400809
\(552\) 2400.00i 0.185056i
\(553\) 1584.00i 0.121806i
\(554\) −1892.00 −0.145096
\(555\) 1524.00 + 8382.00i 0.116559 + 0.641074i
\(556\) −2384.00 −0.181842
\(557\) 6774.00i 0.515303i 0.966238 + 0.257651i \(0.0829486\pi\)
−0.966238 + 0.257651i \(0.917051\pi\)
\(558\) 3744.00i 0.284043i
\(559\) −15768.0 −1.19305
\(560\) 352.000 64.0000i 0.0265620 0.00482945i
\(561\) 4620.00 0.347694
\(562\) 2556.00i 0.191848i
\(563\) 10484.0i 0.784810i 0.919793 + 0.392405i \(0.128357\pi\)
−0.919793 + 0.392405i \(0.871643\pi\)
\(564\) −3840.00 −0.286690
\(565\) −19206.0 + 3492.00i −1.43009 + 0.260017i
\(566\) 14848.0 1.10266
\(567\) 162.000i 0.0119989i
\(568\) 4320.00i 0.319125i
\(569\) −23302.0 −1.71682 −0.858410 0.512964i \(-0.828547\pi\)
−0.858410 + 0.512964i \(0.828547\pi\)
\(570\) 288.000 + 1584.00i 0.0211631 + 0.116397i
\(571\) 21520.0 1.57720 0.788602 0.614903i \(-0.210805\pi\)
0.788602 + 0.614903i \(0.210805\pi\)
\(572\) 15120.0i 1.10524i
\(573\) 2052.00i 0.149605i
\(574\) −824.000 −0.0599183
\(575\) −4400.00 11700.0i −0.319118 0.848563i
\(576\) 576.000 0.0416667
\(577\) 3856.00i 0.278210i 0.990278 + 0.139105i \(0.0444226\pi\)
−0.990278 + 0.139105i \(0.955577\pi\)
\(578\) 8858.00i 0.637447i
\(579\) −13452.0 −0.965537
\(580\) 1728.00 + 9504.00i 0.123709 + 0.680400i
\(581\) −808.000 −0.0576962
\(582\) 336.000i 0.0239307i
\(583\) 28140.0i 1.99904i
\(584\) −4832.00 −0.342379
\(585\) −5346.00 + 972.000i −0.377829 + 0.0686962i
\(586\) −2724.00 −0.192026
\(587\) 26796.0i 1.88414i −0.335418 0.942069i \(-0.608878\pi\)
0.335418 0.942069i \(-0.391122\pi\)
\(588\) 4068.00i 0.285309i
\(589\) −4992.00 −0.349222
\(590\) −8140.00 + 1480.00i −0.567997 + 0.103272i
\(591\) 3174.00 0.220915
\(592\) 4064.00i 0.282144i
\(593\) 9870.00i 0.683495i −0.939792 0.341747i \(-0.888981\pi\)
0.939792 0.341747i \(-0.111019\pi\)
\(594\) 3780.00 0.261103
\(595\) −88.0000 484.000i −0.00606327 0.0333480i
\(596\) 4304.00 0.295803
\(597\) 3384.00i 0.231990i
\(598\) 10800.0i 0.738537i
\(599\) 13296.0 0.906945 0.453472 0.891270i \(-0.350185\pi\)
0.453472 + 0.891270i \(0.350185\pi\)
\(600\) −2808.00 + 1056.00i −0.191060 + 0.0718517i
\(601\) −9262.00 −0.628627 −0.314314 0.949319i \(-0.601774\pi\)
−0.314314 + 0.949319i \(0.601774\pi\)
\(602\) 1168.00i 0.0790766i
\(603\) 6552.00i 0.442484i
\(604\) 128.000 0.00862292
\(605\) 7138.00 + 39259.0i 0.479671 + 2.63819i
\(606\) 3552.00 0.238103
\(607\) 5498.00i 0.367639i 0.982960 + 0.183820i \(0.0588462\pi\)
−0.982960 + 0.183820i \(0.941154\pi\)
\(608\) 768.000i 0.0512278i
\(609\) −1296.00 −0.0862341
\(610\) 12100.0 2200.00i 0.803139 0.146025i
\(611\) −17280.0 −1.14415
\(612\) 792.000i 0.0523116i
\(613\) 394.000i 0.0259600i −0.999916 0.0129800i \(-0.995868\pi\)
0.999916 0.0129800i \(-0.00413179\pi\)
\(614\) 15480.0 1.01746
\(615\) 6798.00 1236.00i 0.445727 0.0810412i
\(616\) −1120.00 −0.0732566
\(617\) 7370.00i 0.480883i 0.970664 + 0.240442i \(0.0772923\pi\)
−0.970664 + 0.240442i \(0.922708\pi\)
\(618\) 372.000i 0.0242136i
\(619\) −25316.0 −1.64384 −0.821919 0.569604i \(-0.807097\pi\)
−0.821919 + 0.569604i \(0.807097\pi\)
\(620\) −1664.00 9152.00i −0.107787 0.592828i
\(621\) 2700.00 0.174472
\(622\) 9960.00i 0.642057i
\(623\) 1876.00i 0.120643i
\(624\) 2592.00 0.166287
\(625\) 11753.0 10296.0i 0.752192 0.658944i
\(626\) 1208.00 0.0771268
\(627\) 5040.00i 0.321018i
\(628\) 10216.0i 0.649145i
\(629\) −5588.00 −0.354226
\(630\) −72.0000 396.000i −0.00455325 0.0250429i
\(631\) 2552.00 0.161004 0.0805020 0.996754i \(-0.474348\pi\)
0.0805020 + 0.996754i \(0.474348\pi\)
\(632\) 6336.00i 0.398786i
\(633\) 2340.00i 0.146930i
\(634\) 17132.0 1.07318
\(635\) −17930.0 + 3260.00i −1.12052 + 0.203731i
\(636\) 4824.00 0.300761
\(637\) 18306.0i 1.13863i
\(638\) 30240.0i 1.87651i
\(639\) 4860.00 0.300874
\(640\) 1408.00 256.000i 0.0869626 0.0158114i
\(641\) 8050.00 0.496031 0.248016 0.968756i \(-0.420222\pi\)
0.248016 + 0.968756i \(0.420222\pi\)
\(642\) 504.000i 0.0309833i
\(643\) 19368.0i 1.18787i 0.804514 + 0.593934i \(0.202426\pi\)
−0.804514 + 0.593934i \(0.797574\pi\)
\(644\) −800.000 −0.0489510
\(645\) 1752.00 + 9636.00i 0.106953 + 0.588244i
\(646\) −1056.00 −0.0643154
\(647\) 9912.00i 0.602289i 0.953579 + 0.301144i \(0.0973686\pi\)
−0.953579 + 0.301144i \(0.902631\pi\)
\(648\) 648.000i 0.0392837i
\(649\) 25900.0 1.56651
\(650\) −12636.0 + 4752.00i −0.762500 + 0.286752i
\(651\) 1248.00 0.0751351
\(652\) 3008.00i 0.180678i
\(653\) 27986.0i 1.67715i −0.544789 0.838573i \(-0.683390\pi\)
0.544789 0.838573i \(-0.316610\pi\)
\(654\) 2220.00 0.132735
\(655\) −1740.00 9570.00i −0.103798 0.570887i
\(656\) −3296.00 −0.196169
\(657\) 5436.00i 0.322798i
\(658\) 1280.00i 0.0758353i
\(659\) −7562.00 −0.447001 −0.223501 0.974704i \(-0.571748\pi\)
−0.223501 + 0.974704i \(0.571748\pi\)
\(660\) 9240.00 1680.00i 0.544949 0.0990817i
\(661\) 20234.0 1.19064 0.595319 0.803490i \(-0.297026\pi\)
0.595319 + 0.803490i \(0.297026\pi\)
\(662\) 6944.00i 0.407683i
\(663\) 3564.00i 0.208770i
\(664\) −3232.00 −0.188894
\(665\) −528.000 + 96.0000i −0.0307894 + 0.00559808i
\(666\) −4572.00 −0.266008
\(667\) 21600.0i 1.25391i
\(668\) 10800.0i 0.625546i
\(669\) −7710.00 −0.445569
\(670\) −2912.00 16016.0i −0.167911 0.923511i
\(671\) −38500.0 −2.21502
\(672\) 192.000i 0.0110217i
\(673\) 25332.0i 1.45093i −0.688258 0.725466i \(-0.741624\pi\)
0.688258 0.725466i \(-0.258376\pi\)
\(674\) −11336.0 −0.647843
\(675\) 1188.00 + 3159.00i 0.0677424 + 0.180133i
\(676\) 2876.00 0.163632
\(677\) 18358.0i 1.04218i −0.853502 0.521090i \(-0.825526\pi\)
0.853502 0.521090i \(-0.174474\pi\)
\(678\) 10476.0i 0.593405i
\(679\) 112.000 0.00633014
\(680\) −352.000 1936.00i −0.0198509 0.109180i
\(681\) 8508.00 0.478748
\(682\) 29120.0i 1.63499i
\(683\) 124.000i 0.00694689i 0.999994 + 0.00347345i \(0.00110563\pi\)
−0.999994 + 0.00347345i \(0.998894\pi\)
\(684\) −864.000 −0.0482980
\(685\) −10098.0 + 1836.00i −0.563248 + 0.102409i
\(686\) 2728.00 0.151830
\(687\) 1830.00i 0.101629i
\(688\) 4672.00i 0.258893i
\(689\) 21708.0 1.20030
\(690\) 6600.00 1200.00i 0.364142 0.0662076i
\(691\) −17456.0 −0.961009 −0.480505 0.876992i \(-0.659547\pi\)
−0.480505 + 0.876992i \(0.659547\pi\)
\(692\) 5336.00i 0.293128i
\(693\) 1260.00i 0.0690670i
\(694\) −21672.0 −1.18539
\(695\) 1192.00 + 6556.00i 0.0650578 + 0.357818i
\(696\) −5184.00 −0.282326
\(697\) 4532.00i 0.246287i
\(698\) 17980.0i 0.975004i
\(699\) 10542.0 0.570436
\(700\) −352.000 936.000i −0.0190062 0.0505392i
\(701\) −17816.0 −0.959916 −0.479958 0.877291i \(-0.659348\pi\)
−0.479958 + 0.877291i \(0.659348\pi\)
\(702\) 2916.00i 0.156777i
\(703\) 6096.00i 0.327048i
\(704\) −4480.00 −0.239839
\(705\) 1920.00 + 10560.0i 0.102569 + 0.564131i
\(706\) −10156.0 −0.541397
\(707\) 1184.00i 0.0629829i
\(708\) 4440.00i 0.235686i
\(709\) 14298.0 0.757366 0.378683 0.925526i \(-0.376377\pi\)
0.378683 + 0.925526i \(0.376377\pi\)
\(710\) 11880.0 2160.00i 0.627956 0.114174i
\(711\) 7128.00 0.375979
\(712\) 7504.00i 0.394978i
\(713\) 20800.0i 1.09252i
\(714\) 264.000 0.0138375
\(715\) 41580.0 7560.00i 2.17483 0.395424i
\(716\) −6856.00 −0.357850
\(717\) 5532.00i 0.288140i
\(718\) 7392.00i 0.384216i
\(719\) 18440.0 0.956462 0.478231 0.878234i \(-0.341278\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(720\) −288.000 1584.00i −0.0149071 0.0819892i
\(721\) −124.000 −0.00640499
\(722\) 12566.0i 0.647726i
\(723\) 2946.00i 0.151539i
\(724\) 16024.0 0.822551
\(725\) 25272.0 9504.00i 1.29459 0.486855i
\(726\) −21414.0 −1.09469
\(727\) 9666.00i 0.493112i 0.969129 + 0.246556i \(0.0792989\pi\)
−0.969129 + 0.246556i \(0.920701\pi\)
\(728\) 864.000i 0.0439862i
\(729\) −729.000 −0.0370370
\(730\) 2416.00 + 13288.0i 0.122493 + 0.673714i
\(731\) −6424.00 −0.325035
\(732\) 6600.00i 0.333255i
\(733\) 6094.00i 0.307076i 0.988143 + 0.153538i \(0.0490668\pi\)
−0.988143 + 0.153538i \(0.950933\pi\)
\(734\) −572.000 −0.0287642
\(735\) −11187.0 + 2034.00i −0.561413 + 0.102075i
\(736\) −3200.00 −0.160263
\(737\) 50960.0i 2.54700i
\(738\) 3708.00i 0.184950i
\(739\) −9952.00 −0.495386 −0.247693 0.968839i \(-0.579672\pi\)
−0.247693 + 0.968839i \(0.579672\pi\)
\(740\) −11176.0 + 2032.00i −0.555186 + 0.100943i
\(741\) −3888.00 −0.192752
\(742\) 1608.00i 0.0795573i
\(743\) 2208.00i 0.109022i 0.998513 + 0.0545112i \(0.0173601\pi\)
−0.998513 + 0.0545112i \(0.982640\pi\)
\(744\) 4992.00 0.245989
\(745\) −2152.00 11836.0i −0.105830 0.582064i
\(746\) 16524.0 0.810974
\(747\) 3636.00i 0.178091i
\(748\) 6160.00i 0.301112i
\(749\) 168.000 0.00819571
\(750\) 4308.00 + 7194.00i 0.209741 + 0.350250i
\(751\) −9400.00 −0.456739 −0.228369 0.973575i \(-0.573339\pi\)
−0.228369 + 0.973575i \(0.573339\pi\)
\(752\) 5120.00i 0.248281i
\(753\) 9522.00i 0.460825i
\(754\) −23328.0 −1.12673
\(755\) −64.0000 352.000i −0.00308503 0.0169677i
\(756\) 216.000 0.0103913
\(757\) 22574.0i 1.08384i −0.840430 0.541919i \(-0.817698\pi\)
0.840430 0.541919i \(-0.182302\pi\)
\(758\) 5912.00i 0.283290i
\(759\) −21000.0 −1.00428
\(760\) −2112.00 + 384.000i −0.100803 + 0.0183278i
\(761\) 7278.00 0.346685 0.173343 0.984862i \(-0.444543\pi\)
0.173343 + 0.984862i \(0.444543\pi\)
\(762\) 9780.00i 0.464950i
\(763\) 740.000i 0.0351111i
\(764\) 2736.00 0.129562
\(765\) −2178.00 + 396.000i −0.102936 + 0.0187156i
\(766\) −10480.0 −0.494331
\(767\) 19980.0i 0.940595i
\(768\) 768.000i 0.0360844i
\(769\) 16542.0 0.775708 0.387854 0.921721i \(-0.373216\pi\)
0.387854 + 0.921721i \(0.373216\pi\)
\(770\) 560.000 + 3080.00i 0.0262091 + 0.144150i
\(771\) 3582.00 0.167319
\(772\) 17936.0i 0.836180i
\(773\) 28926.0i 1.34592i 0.739679 + 0.672960i \(0.234977\pi\)
−0.739679 + 0.672960i \(0.765023\pi\)
\(774\) −5256.00 −0.244087
\(775\) −24336.0 + 9152.00i −1.12797 + 0.424193i
\(776\) 448.000 0.0207246
\(777\) 1524.00i 0.0703645i
\(778\) 1768.00i 0.0814728i
\(779\) 4944.00 0.227390
\(780\) −1296.00 7128.00i −0.0594926 0.327209i
\(781\) −37800.0 −1.73187
\(782\) 4400.00i 0.201207i
\(783\) 5832.00i 0.266180i
\(784\) 5424.00 0.247085
\(785\) 28094.0 5108.00i 1.27735 0.232245i
\(786\) 5220.00 0.236885
\(787\) 20608.0i 0.933413i 0.884412 + 0.466706i \(0.154560\pi\)
−0.884412 + 0.466706i \(0.845440\pi\)
\(788\) 4232.00i 0.191318i
\(789\) 420.000 0.0189511
\(790\) 17424.0 3168.00i 0.784706 0.142674i
\(791\) 3492.00 0.156967
\(792\) 5040.00i 0.226122i
\(793\) 29700.0i 1.32998i
\(794\) −6788.00 −0.303397
\(795\) −2412.00 13266.0i −0.107604 0.591820i
\(796\) −4512.00 −0.200909
\(797\) 41350.0i 1.83776i −0.394541 0.918878i \(-0.629096\pi\)
0.394541 0.918878i \(-0.370904\pi\)
\(798\) 288.000i 0.0127758i
\(799\) −7040.00 −0.311711
\(800\) −1408.00 3744.00i −0.0622254 0.165463i
\(801\) −8442.00 −0.372389
\(802\) 13652.0i 0.601083i
\(803\) 42280.0i 1.85807i
\(804\) 8736.00 0.383203
\(805\) 400.000 + 2200.00i 0.0175132 + 0.0963227i
\(806\) 22464.0 0.981713
\(807\) 15768.0i 0.687807i
\(808\) 4736.00i 0.206203i
\(809\) −1794.00 −0.0779650 −0.0389825 0.999240i \(-0.512412\pi\)
−0.0389825 + 0.999240i \(0.512412\pi\)
\(810\) −1782.00 + 324.000i −0.0773001 + 0.0140546i
\(811\) 22756.0 0.985291 0.492646 0.870230i \(-0.336030\pi\)
0.492646 + 0.870230i \(0.336030\pi\)
\(812\) 1728.00i 0.0746809i
\(813\) 1632.00i 0.0704019i
\(814\) 35560.0 1.53118
\(815\) 8272.00 1504.00i 0.355528 0.0646415i
\(816\) 1056.00 0.0453032
\(817\) 7008.00i 0.300097i
\(818\) 15628.0i 0.667995i
\(819\) 972.000 0.0414706
\(820\) 1648.00 + 9064.00i 0.0701837 + 0.386011i
\(821\) −23632.0 −1.00458 −0.502291 0.864698i \(-0.667510\pi\)
−0.502291 + 0.864698i \(0.667510\pi\)
\(822\) 5508.00i 0.233715i
\(823\) 33210.0i 1.40660i −0.710896 0.703298i \(-0.751710\pi\)
0.710896 0.703298i \(-0.248290\pi\)
\(824\) −496.000 −0.0209696
\(825\) −9240.00 24570.0i −0.389934 1.03687i
\(826\) 1480.00 0.0623436
\(827\) 30476.0i 1.28144i 0.767773 + 0.640722i \(0.221365\pi\)
−0.767773 + 0.640722i \(0.778635\pi\)
\(828\) 3600.00i 0.151097i
\(829\) −29802.0 −1.24857 −0.624286 0.781196i \(-0.714610\pi\)
−0.624286 + 0.781196i \(0.714610\pi\)
\(830\) 1616.00 + 8888.00i 0.0675809 + 0.371695i
\(831\) −2838.00 −0.118471
\(832\) 3456.00i 0.144009i
\(833\) 7458.00i 0.310209i
\(834\) −3576.00 −0.148473
\(835\) −29700.0 + 5400.00i −1.23091 + 0.223802i
\(836\) 6720.00 0.278010
\(837\) 5616.00i 0.231920i
\(838\) 16580.0i 0.683468i
\(839\) 28024.0 1.15315 0.576577 0.817043i \(-0.304388\pi\)
0.576577 + 0.817043i \(0.304388\pi\)
\(840\) 528.000 96.0000i 0.0216878 0.00394323i
\(841\) 22267.0 0.912994
\(842\) 4220.00i 0.172721i
\(843\) 3834.00i 0.156643i
\(844\) −3120.00 −0.127245
\(845\) −1438.00 7909.00i −0.0585428 0.321986i
\(846\) −5760.00 −0.234081
\(847\) 7138.00i 0.289569i
\(848\) 6432.00i 0.260467i
\(849\) 22272.0 0.900322
\(850\) −5148.00 + 1936.00i −0.207735 + 0.0781226i
\(851\) 25400.0 1.02315
\(852\) 6480.00i 0.260565i
\(853\) 3938.00i 0.158071i −0.996872 0.0790355i \(-0.974816\pi\)
0.996872 0.0790355i \(-0.0251840\pi\)
\(854\) −2200.00 −0.0881528
\(855\) 432.000 + 2376.00i 0.0172796 + 0.0950380i
\(856\) 672.000 0.0268323
\(857\) 8094.00i 0.322621i −0.986904 0.161310i \(-0.948428\pi\)
0.986904 0.161310i \(-0.0515720\pi\)
\(858\) 22680.0i 0.902427i
\(859\) −9044.00 −0.359229 −0.179614 0.983737i \(-0.557485\pi\)
−0.179614 + 0.983737i \(0.557485\pi\)
\(860\) −12848.0 + 2336.00i −0.509434 + 0.0926243i
\(861\) −1236.00 −0.0489231
\(862\) 24160.0i 0.954632i
\(863\) 6252.00i 0.246606i 0.992369 + 0.123303i \(0.0393486\pi\)
−0.992369 + 0.123303i \(0.960651\pi\)
\(864\) 864.000 0.0340207
\(865\) −14674.0 + 2668.00i −0.576799 + 0.104873i
\(866\) 32984.0 1.29427
\(867\) 13287.0i 0.520473i
\(868\) 1664.00i 0.0650689i
\(869\) −55440.0 −2.16418
\(870\) 2592.00 + 14256.0i 0.101008 + 0.555544i
\(871\) 39312.0 1.52932
\(872\) 2960.00i 0.114952i
\(873\) 504.000i 0.0195393i
\(874\) 4800.00 0.185769
\(875\) −2398.00 + 1436.00i −0.0926482 + 0.0554808i
\(876\) −7248.00 −0.279552
\(877\) 40166.0i 1.54653i 0.634081 + 0.773267i \(0.281379\pi\)
−0.634081 + 0.773267i \(0.718621\pi\)
\(878\) 30096.0i 1.15682i
\(879\) −4086.00 −0.156789
\(880\) 2240.00 + 12320.0i 0.0858073 + 0.471940i
\(881\) −12834.0 −0.490793 −0.245396 0.969423i \(-0.578918\pi\)
−0.245396 + 0.969423i \(0.578918\pi\)
\(882\) 6102.00i 0.232954i
\(883\) 27192.0i 1.03633i −0.855279 0.518167i \(-0.826614\pi\)
0.855279 0.518167i \(-0.173386\pi\)
\(884\) 4752.00 0.180800
\(885\) −12210.0 + 2220.00i −0.463768 + 0.0843215i
\(886\) −19752.0 −0.748963
\(887\) 42060.0i 1.59215i 0.605198 + 0.796075i \(0.293094\pi\)
−0.605198 + 0.796075i \(0.706906\pi\)
\(888\) 6096.00i 0.230370i
\(889\) 3260.00 0.122989
\(890\) −20636.0 + 3752.00i −0.777214 + 0.141312i
\(891\) 5670.00 0.213190
\(892\) 10280.0i 0.385874i
\(893\) 7680.00i 0.287796i
\(894\) 6456.00 0.241522
\(895\) 3428.00 + 18854.0i 0.128028 + 0.704156i
\(896\) −256.000 −0.00954504
\(897\) 16200.0i 0.603013i
\(898\) 34332.0i 1.27581i
\(899\) −44928.0 −1.66678
\(900\) −4212.00 + 1584.00i −0.156000 + 0.0586667i
\(901\) 8844.00 0.327010
\(902\) 28840.0i 1.06460i
\(903\) 1752.00i 0.0645658i
\(904\) 13968.0 0.513904
\(905\) −8012.00 44066.0i −0.294285 1.61857i
\(906\) 192.000 0.00704059
\(907\) 41172.0i 1.50727i 0.657293 + 0.753635i \(0.271701\pi\)
−0.657293 + 0.753635i \(0.728299\pi\)
\(908\) 11344.0i 0.414608i
\(909\) 5328.00 0.194410
\(910\) 2376.00 432.000i 0.0865534 0.0157370i
\(911\) −48.0000 −0.00174568 −0.000872838 1.00000i \(-0.500278\pi\)
−0.000872838 1.00000i \(0.500278\pi\)
\(912\) 1152.00i 0.0418273i
\(913\) 28280.0i 1.02512i
\(914\) −29696.0 −1.07468
\(915\) 18150.0 3300.00i 0.655760 0.119229i
\(916\) −2440.00 −0.0880130
\(917\) 1740.00i 0.0626607i
\(918\) 1188.00i 0.0427122i
\(919\) 34584.0 1.24137 0.620686 0.784059i \(-0.286854\pi\)
0.620686 + 0.784059i \(0.286854\pi\)
\(920\) 1600.00 + 8800.00i 0.0573374 + 0.315356i
\(921\) 23220.0 0.830755
\(922\) 2520.00i 0.0900128i
\(923\) 29160.0i 1.03988i
\(924\) −1680.00 −0.0598138
\(925\) 11176.0 + 29718.0i 0.397259 + 1.05635i
\(926\) −22476.0 −0.797632
\(927\) 558.000i 0.0197704i
\(928\) 6912.00i 0.244502i
\(929\) 3474.00 0.122689 0.0613446 0.998117i \(-0.480461\pi\)
0.0613446 + 0.998117i \(0.480461\pi\)
\(930\) −2496.00 13728.0i −0.0880076 0.484042i
\(931\) −8136.00 −0.286409
\(932\) 14056.0i 0.494012i
\(933\) 14940.0i 0.524238i
\(934\) −29544.0 −1.03502
\(935\) 16940.0 3080.00i 0.592510 0.107729i
\(936\) 3888.00 0.135773
\(937\) 44408.0i 1.54829i 0.633009 + 0.774144i \(0.281819\pi\)
−0.633009 + 0.774144i \(0.718181\pi\)
\(938\) 2912.00i 0.101365i
\(939\) 1812.00 0.0629738
\(940\) −14080.0 + 2560.00i −0.488552 + 0.0888277i
\(941\) 20188.0 0.699373 0.349686 0.936867i \(-0.386288\pi\)
0.349686 + 0.936867i \(0.386288\pi\)
\(942\) 15324.0i 0.530024i
\(943\) 20600.0i 0.711377i
\(944\) 5920.00 0.204110
\(945\) −108.000 594.000i −0.00371771 0.0204474i
\(946\) 40880.0 1.40499
\(947\) 31212.0i 1.07102i −0.844530 0.535509i \(-0.820120\pi\)
0.844530 0.535509i \(-0.179880\pi\)
\(948\) 9504.00i 0.325607i
\(949\) −32616.0 −1.11566
\(950\) 2112.00 + 5616.00i 0.0721288 + 0.191797i
\(951\) 25698.0 0.876251
\(952\) 352.000i 0.0119836i
\(953\) 20182.0i 0.686001i −0.939335 0.343001i \(-0.888557\pi\)
0.939335 0.343001i \(-0.111443\pi\)
\(954\) 7236.00 0.245570
\(955\) −1368.00 7524.00i −0.0463533 0.254943i
\(956\) −7376.00 −0.249536
\(957\) 45360.0i 1.53216i
\(958\) 12232.0i 0.412524i
\(959\) 1836.00 0.0618222
\(960\) 2112.00 384.000i 0.0710047 0.0129099i
\(961\) 13473.0 0.452251
\(962\) 27432.0i 0.919380i
\(963\) 756.000i 0.0252978i
\(964\) −3928.00 −0.131237
\(965\) −49324.0 + 8968.00i −1.64538 + 0.299161i
\(966\) −1200.00 −0.0399683
\(967\) 53722.0i 1.78654i −0.449522 0.893269i \(-0.648406\pi\)
0.449522 0.893269i \(-0.351594\pi\)
\(968\) 28552.0i 0.948033i
\(969\) −1584.00 −0.0525133
\(970\) −224.000 1232.00i −0.00741465 0.0407806i
\(971\) 22554.0 0.745409 0.372705 0.927950i \(-0.378430\pi\)
0.372705 + 0.927950i \(0.378430\pi\)
\(972\) 972.000i 0.0320750i
\(973\) 1192.00i 0.0392742i
\(974\) −31812.0 −1.04653
\(975\) −18954.0 + 7128.00i −0.622578 + 0.234132i
\(976\) −8800.00 −0.288608
\(977\) 18126.0i 0.593554i −0.954947 0.296777i \(-0.904088\pi\)
0.954947 0.296777i \(-0.0959118\pi\)
\(978\) 4512.00i 0.147523i
\(979\) 65660.0 2.14352
\(980\) −2712.00 14916.0i −0.0883997 0.486198i
\(981\) 3330.00 0.108378
\(982\) 37428.0i 1.21627i
\(983\) 6232.00i 0.202207i −0.994876 0.101104i \(-0.967763\pi\)
0.994876 0.101104i \(-0.0322374\pi\)
\(984\) −4944.00 −0.160172
\(985\) 11638.0 2116.00i 0.376464 0.0684481i
\(986\) −9504.00 −0.306967
\(987\) 1920.00i 0.0619192i
\(988\) 5184.00i 0.166928i
\(989\) 29200.0 0.938833
\(990\) 13860.0 2520.00i 0.444949 0.0808999i
\(991\) 15184.0 0.486716 0.243358 0.969937i \(-0.421751\pi\)
0.243358 + 0.969937i \(0.421751\pi\)
\(992\) 6656.00i 0.213032i
\(993\) 10416.0i 0.332872i
\(994\) −2160.00 −0.0689246
\(995\) 2256.00 + 12408.0i 0.0718794 + 0.395337i
\(996\) −4848.00 −0.154232
\(997\) 29922.0i 0.950491i −0.879853 0.475245i \(-0.842359\pi\)
0.879853 0.475245i \(-0.157641\pi\)
\(998\) 8112.00i 0.257295i
\(999\) −6858.00 −0.217195
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.4.c.a.19.2 yes 2
3.2 odd 2 90.4.c.a.19.1 2
4.3 odd 2 240.4.f.d.49.1 2
5.2 odd 4 150.4.a.d.1.1 1
5.3 odd 4 150.4.a.f.1.1 1
5.4 even 2 inner 30.4.c.a.19.1 2
8.3 odd 2 960.4.f.d.769.2 2
8.5 even 2 960.4.f.c.769.1 2
12.11 even 2 720.4.f.c.289.1 2
15.2 even 4 450.4.a.p.1.1 1
15.8 even 4 450.4.a.e.1.1 1
15.14 odd 2 90.4.c.a.19.2 2
20.3 even 4 1200.4.a.bc.1.1 1
20.7 even 4 1200.4.a.h.1.1 1
20.19 odd 2 240.4.f.d.49.2 2
40.19 odd 2 960.4.f.d.769.1 2
40.29 even 2 960.4.f.c.769.2 2
60.59 even 2 720.4.f.c.289.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.c.a.19.1 2 5.4 even 2 inner
30.4.c.a.19.2 yes 2 1.1 even 1 trivial
90.4.c.a.19.1 2 3.2 odd 2
90.4.c.a.19.2 2 15.14 odd 2
150.4.a.d.1.1 1 5.2 odd 4
150.4.a.f.1.1 1 5.3 odd 4
240.4.f.d.49.1 2 4.3 odd 2
240.4.f.d.49.2 2 20.19 odd 2
450.4.a.e.1.1 1 15.8 even 4
450.4.a.p.1.1 1 15.2 even 4
720.4.f.c.289.1 2 12.11 even 2
720.4.f.c.289.2 2 60.59 even 2
960.4.f.c.769.1 2 8.5 even 2
960.4.f.c.769.2 2 40.29 even 2
960.4.f.d.769.1 2 40.19 odd 2
960.4.f.d.769.2 2 8.3 odd 2
1200.4.a.h.1.1 1 20.7 even 4
1200.4.a.bc.1.1 1 20.3 even 4