Properties

Label 300.2.j.c
Level $300$
Weight $2$
Character orbit 300.j
Analytic conductor $2.396$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,2,Mod(7,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{7} - \beta_1) q^{2} - \beta_{5} q^{3} + ( - \beta_{6} + \beta_{2}) q^{4} + (\beta_{6} + 1) q^{6} + ( - 2 \beta_{7} - 2 \beta_{4} + \beta_1) q^{7} + (2 \beta_{5} - 2 \beta_1) q^{8} - \beta_{3} q^{9}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} + 4 q^{6} + 28 q^{14} - 16 q^{16} + 16 q^{19} - 8 q^{21} + 16 q^{24} + 4 q^{26} - 24 q^{34} - 32 q^{39} - 16 q^{41} - 8 q^{46} + 4 q^{54} + 16 q^{56} - 64 q^{59} + 24 q^{61} - 64 q^{64} + 8 q^{66}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{4} + \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{24}^{7} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{5} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{4} + \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{24}^{7} + \zeta_{24}^{5} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} + \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{6} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( -\beta_{6} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( \beta_{7} - \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -\beta_{7} - \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(1\) \(-1\) \(-\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
0.258819 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
−0.258819 + 0.965926i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 0.258819i
−1.22474 0.707107i 0.707107 + 0.707107i 1.00000 + 1.73205i 0 −0.366025 1.36603i −3.15660 + 3.15660i 2.82843i 1.00000i 0
7.2 −1.22474 + 0.707107i −0.707107 0.707107i 1.00000 1.73205i 0 1.36603 + 0.366025i −1.74238 + 1.74238i 2.82843i 1.00000i 0
7.3 1.22474 0.707107i 0.707107 + 0.707107i 1.00000 1.73205i 0 1.36603 + 0.366025i 1.74238 1.74238i 2.82843i 1.00000i 0
7.4 1.22474 + 0.707107i −0.707107 0.707107i 1.00000 + 1.73205i 0 −0.366025 1.36603i 3.15660 3.15660i 2.82843i 1.00000i 0
43.1 −1.22474 0.707107i −0.707107 + 0.707107i 1.00000 + 1.73205i 0 1.36603 0.366025i −1.74238 1.74238i 2.82843i 1.00000i 0
43.2 −1.22474 + 0.707107i 0.707107 0.707107i 1.00000 1.73205i 0 −0.366025 + 1.36603i −3.15660 3.15660i 2.82843i 1.00000i 0
43.3 1.22474 0.707107i −0.707107 + 0.707107i 1.00000 1.73205i 0 −0.366025 + 1.36603i 3.15660 + 3.15660i 2.82843i 1.00000i 0
43.4 1.22474 + 0.707107i 0.707107 0.707107i 1.00000 + 1.73205i 0 1.36603 0.366025i 1.74238 + 1.74238i 2.82843i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
20.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.2.j.c yes 8
3.b odd 2 1 900.2.k.l 8
4.b odd 2 1 300.2.j.a 8
5.b even 2 1 inner 300.2.j.c yes 8
5.c odd 4 2 300.2.j.a 8
12.b even 2 1 900.2.k.g 8
15.d odd 2 1 900.2.k.l 8
15.e even 4 2 900.2.k.g 8
20.d odd 2 1 300.2.j.a 8
20.e even 4 2 inner 300.2.j.c yes 8
60.h even 2 1 900.2.k.g 8
60.l odd 4 2 900.2.k.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.2.j.a 8 4.b odd 2 1
300.2.j.a 8 5.c odd 4 2
300.2.j.a 8 20.d odd 2 1
300.2.j.c yes 8 1.a even 1 1 trivial
300.2.j.c yes 8 5.b even 2 1 inner
300.2.j.c yes 8 20.e even 4 2 inner
900.2.k.g 8 12.b even 2 1
900.2.k.g 8 15.e even 4 2
900.2.k.g 8 60.h even 2 1
900.2.k.l 8 3.b odd 2 1
900.2.k.l 8 15.d odd 2 1
900.2.k.l 8 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(300, [\chi])\):

\( T_{7}^{8} + 434T_{7}^{4} + 14641 \) Copy content Toggle raw display
\( T_{19}^{2} - 4T_{19} - 23 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 434 T^{4} + 14641 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$13$ \( T^{8} + 1106 T^{4} + 28561 \) Copy content Toggle raw display
$17$ \( (T^{4} + 1296)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 4 T - 23)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + 3104T^{4} + 256 \) Copy content Toggle raw display
$29$ \( (T^{4} + 56 T^{2} + 16)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 14 T^{2} + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 14336 T^{4} + 1048576 \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 8)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} + 434 T^{4} + 14641 \) Copy content Toggle raw display
$47$ \( T^{8} + 27936 T^{4} + 20736 \) Copy content Toggle raw display
$53$ \( T^{8} + 896T^{4} + 4096 \) Copy content Toggle raw display
$59$ \( (T^{2} + 16 T + 52)^{4} \) Copy content Toggle raw display
$61$ \( (T - 3)^{8} \) Copy content Toggle raw display
$67$ \( T^{8} + 25074 T^{4} + 22667121 \) Copy content Toggle raw display
$71$ \( (T^{4} + 96 T^{2} + 576)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 256)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 8 T + 4)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + 27936 T^{4} + 20736 \) Copy content Toggle raw display
$89$ \( (T^{2} + 48)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + 10514 T^{4} + 13845841 \) Copy content Toggle raw display
show more
show less