Properties

Label 300.3.c.c
Level 300300
Weight 33
Character orbit 300.c
Analytic conductor 8.1748.174
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,3,Mod(151,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 300=22352 300 = 2^{2} \cdot 3 \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 300.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.174407930818.17440793081
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{-3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+1)q2βq3+(2β2)q4+(β+3)q66βq78q83q96βq11+(2β+6)q12+18q13+(6β+18)q14+(8β8)q16++18βq99+O(q100) q + (\beta + 1) q^{2} - \beta q^{3} + (2 \beta - 2) q^{4} + ( - \beta + 3) q^{6} - 6 \beta q^{7} - 8 q^{8} - 3 q^{9} - 6 \beta q^{11} + (2 \beta + 6) q^{12} + 18 q^{13} + ( - 6 \beta + 18) q^{14} + ( - 8 \beta - 8) q^{16} + \cdots + 18 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q24q4+6q616q86q9+12q12+36q13+36q1416q16+20q176q1836q21+36q22+36q26+72q2872q29+32q3236q33+118q98+O(q100) 2 q + 2 q^{2} - 4 q^{4} + 6 q^{6} - 16 q^{8} - 6 q^{9} + 12 q^{12} + 36 q^{13} + 36 q^{14} - 16 q^{16} + 20 q^{17} - 6 q^{18} - 36 q^{21} + 36 q^{22} + 36 q^{26} + 72 q^{28} - 72 q^{29} + 32 q^{32} - 36 q^{33}+ \cdots - 118 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/300Z)×\left(\mathbb{Z}/300\mathbb{Z}\right)^\times.

nn 101101 151151 277277
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
151.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 1.73205i 1.73205i −2.00000 3.46410i 0 3.00000 + 1.73205i 10.3923i −8.00000 −3.00000 0
151.2 1.00000 + 1.73205i 1.73205i −2.00000 + 3.46410i 0 3.00000 1.73205i 10.3923i −8.00000 −3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.c.c 2
3.b odd 2 1 900.3.c.f 2
4.b odd 2 1 inner 300.3.c.c 2
5.b even 2 1 300.3.c.a 2
5.c odd 4 2 60.3.f.a 4
12.b even 2 1 900.3.c.f 2
15.d odd 2 1 900.3.c.j 2
15.e even 4 2 180.3.f.e 4
20.d odd 2 1 300.3.c.a 2
20.e even 4 2 60.3.f.a 4
40.i odd 4 2 960.3.j.b 4
40.k even 4 2 960.3.j.b 4
60.h even 2 1 900.3.c.j 2
60.l odd 4 2 180.3.f.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.f.a 4 5.c odd 4 2
60.3.f.a 4 20.e even 4 2
180.3.f.e 4 15.e even 4 2
180.3.f.e 4 60.l odd 4 2
300.3.c.a 2 5.b even 2 1
300.3.c.a 2 20.d odd 2 1
300.3.c.c 2 1.a even 1 1 trivial
300.3.c.c 2 4.b odd 2 1 inner
900.3.c.f 2 3.b odd 2 1
900.3.c.f 2 12.b even 2 1
900.3.c.j 2 15.d odd 2 1
900.3.c.j 2 60.h even 2 1
960.3.j.b 4 40.i odd 4 2
960.3.j.b 4 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(300,[χ])S_{3}^{\mathrm{new}}(300, [\chi]):

T72+108 T_{7}^{2} + 108 Copy content Toggle raw display
T1318 T_{13} - 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T2+3 T^{2} + 3 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+108 T^{2} + 108 Copy content Toggle raw display
1111 T2+108 T^{2} + 108 Copy content Toggle raw display
1313 (T18)2 (T - 18)^{2} Copy content Toggle raw display
1717 (T10)2 (T - 10)^{2} Copy content Toggle raw display
1919 T2+192 T^{2} + 192 Copy content Toggle raw display
2323 T2+48 T^{2} + 48 Copy content Toggle raw display
2929 (T+36)2 (T + 36)^{2} Copy content Toggle raw display
3131 T2+48 T^{2} + 48 Copy content Toggle raw display
3737 (T54)2 (T - 54)^{2} Copy content Toggle raw display
4141 (T18)2 (T - 18)^{2} Copy content Toggle raw display
4343 T2+432 T^{2} + 432 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 (T+26)2 (T + 26)^{2} Copy content Toggle raw display
5959 T2+972 T^{2} + 972 Copy content Toggle raw display
6161 (T+74)2 (T + 74)^{2} Copy content Toggle raw display
6767 T2+1728 T^{2} + 1728 Copy content Toggle raw display
7171 T2+10800 T^{2} + 10800 Copy content Toggle raw display
7373 (T36)2 (T - 36)^{2} Copy content Toggle raw display
7979 T2+8112 T^{2} + 8112 Copy content Toggle raw display
8383 T2+8112 T^{2} + 8112 Copy content Toggle raw display
8989 (T+18)2 (T + 18)^{2} Copy content Toggle raw display
9797 (T+72)2 (T + 72)^{2} Copy content Toggle raw display
show more
show less