Properties

Label 300.3.c.c
Level $300$
Weight $3$
Character orbit 300.c
Analytic conductor $8.174$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,3,Mod(151,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 300.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.17440793081\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} - \beta q^{3} + (2 \beta - 2) q^{4} + ( - \beta + 3) q^{6} - 6 \beta q^{7} - 8 q^{8} - 3 q^{9} - 6 \beta q^{11} + (2 \beta + 6) q^{12} + 18 q^{13} + ( - 6 \beta + 18) q^{14} + ( - 8 \beta - 8) q^{16} + \cdots + 18 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} + 6 q^{6} - 16 q^{8} - 6 q^{9} + 12 q^{12} + 36 q^{13} + 36 q^{14} - 16 q^{16} + 20 q^{17} - 6 q^{18} - 36 q^{21} + 36 q^{22} + 36 q^{26} + 72 q^{28} - 72 q^{29} + 32 q^{32} - 36 q^{33}+ \cdots - 118 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
151.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 1.73205i 1.73205i −2.00000 3.46410i 0 3.00000 + 1.73205i 10.3923i −8.00000 −3.00000 0
151.2 1.00000 + 1.73205i 1.73205i −2.00000 + 3.46410i 0 3.00000 1.73205i 10.3923i −8.00000 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.c.c 2
3.b odd 2 1 900.3.c.f 2
4.b odd 2 1 inner 300.3.c.c 2
5.b even 2 1 300.3.c.a 2
5.c odd 4 2 60.3.f.a 4
12.b even 2 1 900.3.c.f 2
15.d odd 2 1 900.3.c.j 2
15.e even 4 2 180.3.f.e 4
20.d odd 2 1 300.3.c.a 2
20.e even 4 2 60.3.f.a 4
40.i odd 4 2 960.3.j.b 4
40.k even 4 2 960.3.j.b 4
60.h even 2 1 900.3.c.j 2
60.l odd 4 2 180.3.f.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.f.a 4 5.c odd 4 2
60.3.f.a 4 20.e even 4 2
180.3.f.e 4 15.e even 4 2
180.3.f.e 4 60.l odd 4 2
300.3.c.a 2 5.b even 2 1
300.3.c.a 2 20.d odd 2 1
300.3.c.c 2 1.a even 1 1 trivial
300.3.c.c 2 4.b odd 2 1 inner
900.3.c.f 2 3.b odd 2 1
900.3.c.f 2 12.b even 2 1
900.3.c.j 2 15.d odd 2 1
900.3.c.j 2 60.h even 2 1
960.3.j.b 4 40.i odd 4 2
960.3.j.b 4 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(300, [\chi])\):

\( T_{7}^{2} + 108 \) Copy content Toggle raw display
\( T_{13} - 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 108 \) Copy content Toggle raw display
$11$ \( T^{2} + 108 \) Copy content Toggle raw display
$13$ \( (T - 18)^{2} \) Copy content Toggle raw display
$17$ \( (T - 10)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 192 \) Copy content Toggle raw display
$23$ \( T^{2} + 48 \) Copy content Toggle raw display
$29$ \( (T + 36)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 48 \) Copy content Toggle raw display
$37$ \( (T - 54)^{2} \) Copy content Toggle raw display
$41$ \( (T - 18)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 432 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T + 26)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 972 \) Copy content Toggle raw display
$61$ \( (T + 74)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1728 \) Copy content Toggle raw display
$71$ \( T^{2} + 10800 \) Copy content Toggle raw display
$73$ \( (T - 36)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 8112 \) Copy content Toggle raw display
$83$ \( T^{2} + 8112 \) Copy content Toggle raw display
$89$ \( (T + 18)^{2} \) Copy content Toggle raw display
$97$ \( (T + 72)^{2} \) Copy content Toggle raw display
show more
show less