Properties

Label 300.3.k.c
Level 300300
Weight 33
Character orbit 300.k
Analytic conductor 8.1748.174
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,3,Mod(157,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.157");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 300=22352 300 = 2^{2} \cdot 3 \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 300.k (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.174407930818.17440793081
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q33β3q7+3β2q9+6q11+5β1q1318β3q17+25β2q19+9q216β1q23+3β3q27+42β2q29++18β2q99+O(q100) q + \beta_1 q^{3} - 3 \beta_{3} q^{7} + 3 \beta_{2} q^{9} + 6 q^{11} + 5 \beta_1 q^{13} - 18 \beta_{3} q^{17} + 25 \beta_{2} q^{19} + 9 q^{21} - 6 \beta_1 q^{23} + 3 \beta_{3} q^{27} + 42 \beta_{2} q^{29}+ \cdots + 18 \beta_{2} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+24q11+36q21+196q31240q41+216q5152q61240q7136q81+180q91+O(q100) 4 q + 24 q^{11} + 36 q^{21} + 196 q^{31} - 240 q^{41} + 216 q^{51} - 52 q^{61} - 240 q^{71} - 36 q^{81} + 180 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/300Z)×\left(\mathbb{Z}/300\mathbb{Z}\right)^\times.

nn 101101 151151 277277
χ(n)\chi(n) 11 11 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
157.1
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
0 −1.22474 + 1.22474i 0 0 0 −3.67423 3.67423i 0 3.00000i 0
157.2 0 1.22474 1.22474i 0 0 0 3.67423 + 3.67423i 0 3.00000i 0
193.1 0 −1.22474 1.22474i 0 0 0 −3.67423 + 3.67423i 0 3.00000i 0
193.2 0 1.22474 + 1.22474i 0 0 0 3.67423 3.67423i 0 3.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.k.c 4
3.b odd 2 1 900.3.l.d 4
4.b odd 2 1 1200.3.bg.i 4
5.b even 2 1 inner 300.3.k.c 4
5.c odd 4 2 inner 300.3.k.c 4
15.d odd 2 1 900.3.l.d 4
15.e even 4 2 900.3.l.d 4
20.d odd 2 1 1200.3.bg.i 4
20.e even 4 2 1200.3.bg.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.3.k.c 4 1.a even 1 1 trivial
300.3.k.c 4 5.b even 2 1 inner
300.3.k.c 4 5.c odd 4 2 inner
900.3.l.d 4 3.b odd 2 1
900.3.l.d 4 15.d odd 2 1
900.3.l.d 4 15.e even 4 2
1200.3.bg.i 4 4.b odd 2 1
1200.3.bg.i 4 20.d odd 2 1
1200.3.bg.i 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T74+729 T_{7}^{4} + 729 acting on S3new(300,[χ])S_{3}^{\mathrm{new}}(300, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+9 T^{4} + 9 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+729 T^{4} + 729 Copy content Toggle raw display
1111 (T6)4 (T - 6)^{4} Copy content Toggle raw display
1313 T4+5625 T^{4} + 5625 Copy content Toggle raw display
1717 T4+944784 T^{4} + 944784 Copy content Toggle raw display
1919 (T2+625)2 (T^{2} + 625)^{2} Copy content Toggle raw display
2323 T4+11664 T^{4} + 11664 Copy content Toggle raw display
2929 (T2+1764)2 (T^{2} + 1764)^{2} Copy content Toggle raw display
3131 (T49)4 (T - 49)^{4} Copy content Toggle raw display
3737 T4+2304 T^{4} + 2304 Copy content Toggle raw display
4141 (T+60)4 (T + 60)^{4} Copy content Toggle raw display
4343 T4+9 T^{4} + 9 Copy content Toggle raw display
4747 T4+28005264 T^{4} + 28005264 Copy content Toggle raw display
5353 T4+186624 T^{4} + 186624 Copy content Toggle raw display
5959 (T2+6084)2 (T^{2} + 6084)^{2} Copy content Toggle raw display
6161 (T+13)4 (T + 13)^{4} Copy content Toggle raw display
6767 T4+30769209 T^{4} + 30769209 Copy content Toggle raw display
7171 (T+60)4 (T + 60)^{4} Copy content Toggle raw display
7373 T4+65804544 T^{4} + 65804544 Copy content Toggle raw display
7979 (T2+11236)2 (T^{2} + 11236)^{2} Copy content Toggle raw display
8383 T4+170772624 T^{4} + 170772624 Copy content Toggle raw display
8989 (T2+3600)2 (T^{2} + 3600)^{2} Copy content Toggle raw display
9797 T4+864536409 T^{4} + 864536409 Copy content Toggle raw display
show more
show less