Properties

Label 300.4.a.d
Level $300$
Weight $4$
Character orbit 300.a
Self dual yes
Analytic conductor $17.701$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,4,Mod(1,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 300.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.7005730017\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} + 22 q^{7} + 9 q^{9} - 14 q^{11} - 30 q^{13} + 62 q^{17} - 120 q^{19} - 66 q^{21} + 188 q^{23} - 27 q^{27} + 96 q^{29} + 184 q^{31} + 42 q^{33} + 406 q^{37} + 90 q^{39} + 130 q^{41} + 148 q^{43}+ \cdots - 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 0 0 22.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.4.a.d 1
3.b odd 2 1 900.4.a.o 1
4.b odd 2 1 1200.4.a.w 1
5.b even 2 1 300.4.a.f 1
5.c odd 4 2 60.4.d.a 2
15.d odd 2 1 900.4.a.d 1
15.e even 4 2 180.4.d.b 2
20.d odd 2 1 1200.4.a.q 1
20.e even 4 2 240.4.f.a 2
40.i odd 4 2 960.4.f.j 2
40.k even 4 2 960.4.f.i 2
60.l odd 4 2 720.4.f.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.4.d.a 2 5.c odd 4 2
180.4.d.b 2 15.e even 4 2
240.4.f.a 2 20.e even 4 2
300.4.a.d 1 1.a even 1 1 trivial
300.4.a.f 1 5.b even 2 1
720.4.f.h 2 60.l odd 4 2
900.4.a.d 1 15.d odd 2 1
900.4.a.o 1 3.b odd 2 1
960.4.f.i 2 40.k even 4 2
960.4.f.j 2 40.i odd 4 2
1200.4.a.q 1 20.d odd 2 1
1200.4.a.w 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 22 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(300))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 22 \) Copy content Toggle raw display
$11$ \( T + 14 \) Copy content Toggle raw display
$13$ \( T + 30 \) Copy content Toggle raw display
$17$ \( T - 62 \) Copy content Toggle raw display
$19$ \( T + 120 \) Copy content Toggle raw display
$23$ \( T - 188 \) Copy content Toggle raw display
$29$ \( T - 96 \) Copy content Toggle raw display
$31$ \( T - 184 \) Copy content Toggle raw display
$37$ \( T - 406 \) Copy content Toggle raw display
$41$ \( T - 130 \) Copy content Toggle raw display
$43$ \( T - 148 \) Copy content Toggle raw display
$47$ \( T - 448 \) Copy content Toggle raw display
$53$ \( T + 414 \) Copy content Toggle raw display
$59$ \( T - 266 \) Copy content Toggle raw display
$61$ \( T + 838 \) Copy content Toggle raw display
$67$ \( T - 248 \) Copy content Toggle raw display
$71$ \( T - 1020 \) Copy content Toggle raw display
$73$ \( T - 484 \) Copy content Toggle raw display
$79$ \( T + 48 \) Copy content Toggle raw display
$83$ \( T - 548 \) Copy content Toggle raw display
$89$ \( T + 650 \) Copy content Toggle raw display
$97$ \( T + 1816 \) Copy content Toggle raw display
show more
show less