Properties

Label 300.4.i.d.293.1
Level $300$
Weight $4$
Character 300.293
Analytic conductor $17.701$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,4,Mod(257,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.257");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 300.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7005730017\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.7965941760000.54
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 42x^{6} - 112x^{5} + 613x^{4} - 1044x^{3} + 2484x^{2} - 1980x + 7785 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 293.1
Root \(1.72474 - 1.73330i\) of defining polynomial
Character \(\chi\) \(=\) 300.293
Dual form 300.4.i.d.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.23522 + 3.01047i) q^{3} +(-7.34847 + 7.34847i) q^{7} +(8.87412 - 25.5000i) q^{9} -17.7482i q^{11} +(-39.1918 - 39.1918i) q^{13} +(65.2112 + 65.2112i) q^{17} -47.0000i q^{19} +(9.00000 - 53.2447i) q^{21} +(-43.4741 + 43.4741i) q^{23} +(39.1832 + 134.713i) q^{27} +283.972 q^{29} -26.0000 q^{31} +(53.4306 + 75.1676i) q^{33} +(222.904 - 222.904i) q^{37} +(283.972 + 48.0000i) q^{39} -408.210i q^{41} +(144.520 + 144.520i) q^{43} +(347.793 + 347.793i) q^{47} +235.000i q^{49} +(-472.500 - 79.8671i) q^{51} +(43.4741 - 43.4741i) q^{53} +(141.492 + 199.055i) q^{57} +674.433 q^{59} +614.000 q^{61} +(122.175 + 252.597i) q^{63} +(170.240 - 170.240i) q^{67} +(53.2447 - 315.000i) q^{69} +283.972i q^{71} +(-515.618 - 515.618i) q^{73} +(130.422 + 130.422i) q^{77} -586.000i q^{79} +(-571.500 - 452.580i) q^{81} +(-413.004 + 413.004i) q^{83} +(-1202.68 + 854.889i) q^{87} -1082.64 q^{89} +576.000 q^{91} +(110.116 - 78.2723i) q^{93} +(690.756 - 690.756i) q^{97} +(-452.580 - 157.500i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 72 q^{21} - 208 q^{31} - 3780 q^{51} + 4912 q^{61} - 4572 q^{81} + 4608 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.23522 + 3.01047i −0.815068 + 0.579366i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −7.34847 + 7.34847i −0.396780 + 0.396780i −0.877096 0.480316i \(-0.840522\pi\)
0.480316 + 0.877096i \(0.340522\pi\)
\(8\) 0 0
\(9\) 8.87412 25.5000i 0.328671 0.944444i
\(10\) 0 0
\(11\) 17.7482i 0.486481i −0.969966 0.243241i \(-0.921790\pi\)
0.969966 0.243241i \(-0.0782105\pi\)
\(12\) 0 0
\(13\) −39.1918 39.1918i −0.836143 0.836143i 0.152206 0.988349i \(-0.451362\pi\)
−0.988349 + 0.152206i \(0.951362\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 65.2112 + 65.2112i 0.930355 + 0.930355i 0.997728 0.0673727i \(-0.0214617\pi\)
−0.0673727 + 0.997728i \(0.521462\pi\)
\(18\) 0 0
\(19\) 47.0000i 0.567502i −0.958898 0.283751i \(-0.908421\pi\)
0.958898 0.283751i \(-0.0915789\pi\)
\(20\) 0 0
\(21\) 9.00000 53.2447i 0.0935220 0.553283i
\(22\) 0 0
\(23\) −43.4741 + 43.4741i −0.394130 + 0.394130i −0.876156 0.482027i \(-0.839901\pi\)
0.482027 + 0.876156i \(0.339901\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 39.1832 + 134.713i 0.279289 + 0.960207i
\(28\) 0 0
\(29\) 283.972 1.81835 0.909177 0.416411i \(-0.136712\pi\)
0.909177 + 0.416411i \(0.136712\pi\)
\(30\) 0 0
\(31\) −26.0000 −0.150637 −0.0753184 0.997160i \(-0.523997\pi\)
−0.0753184 + 0.997160i \(0.523997\pi\)
\(32\) 0 0
\(33\) 53.4306 + 75.1676i 0.281851 + 0.396515i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 222.904 222.904i 0.990409 0.990409i −0.00954577 0.999954i \(-0.503039\pi\)
0.999954 + 0.00954577i \(0.00303856\pi\)
\(38\) 0 0
\(39\) 283.972 + 48.0000i 1.16595 + 0.197081i
\(40\) 0 0
\(41\) 408.210i 1.55492i −0.628934 0.777459i \(-0.716508\pi\)
0.628934 0.777459i \(-0.283492\pi\)
\(42\) 0 0
\(43\) 144.520 + 144.520i 0.512537 + 0.512537i 0.915303 0.402766i \(-0.131951\pi\)
−0.402766 + 0.915303i \(0.631951\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 347.793 + 347.793i 1.07938 + 1.07938i 0.996565 + 0.0828144i \(0.0263909\pi\)
0.0828144 + 0.996565i \(0.473609\pi\)
\(48\) 0 0
\(49\) 235.000i 0.685131i
\(50\) 0 0
\(51\) −472.500 79.8671i −1.29732 0.219287i
\(52\) 0 0
\(53\) 43.4741 43.4741i 0.112672 0.112672i −0.648523 0.761195i \(-0.724613\pi\)
0.761195 + 0.648523i \(0.224613\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 141.492 + 199.055i 0.328791 + 0.462553i
\(58\) 0 0
\(59\) 674.433 1.48820 0.744099 0.668069i \(-0.232879\pi\)
0.744099 + 0.668069i \(0.232879\pi\)
\(60\) 0 0
\(61\) 614.000 1.28876 0.644382 0.764703i \(-0.277115\pi\)
0.644382 + 0.764703i \(0.277115\pi\)
\(62\) 0 0
\(63\) 122.175 + 252.597i 0.244327 + 0.505147i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 170.240 170.240i 0.310419 0.310419i −0.534653 0.845072i \(-0.679558\pi\)
0.845072 + 0.534653i \(0.179558\pi\)
\(68\) 0 0
\(69\) 53.2447 315.000i 0.0928973 0.549588i
\(70\) 0 0
\(71\) 283.972i 0.474666i 0.971428 + 0.237333i \(0.0762732\pi\)
−0.971428 + 0.237333i \(0.923727\pi\)
\(72\) 0 0
\(73\) −515.618 515.618i −0.826691 0.826691i 0.160366 0.987058i \(-0.448732\pi\)
−0.987058 + 0.160366i \(0.948732\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 130.422 + 130.422i 0.193026 + 0.193026i
\(78\) 0 0
\(79\) 586.000i 0.834559i −0.908778 0.417279i \(-0.862984\pi\)
0.908778 0.417279i \(-0.137016\pi\)
\(80\) 0 0
\(81\) −571.500 452.580i −0.783951 0.620823i
\(82\) 0 0
\(83\) −413.004 + 413.004i −0.546182 + 0.546182i −0.925334 0.379152i \(-0.876216\pi\)
0.379152 + 0.925334i \(0.376216\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1202.68 + 854.889i −1.48208 + 1.05349i
\(88\) 0 0
\(89\) −1082.64 −1.28944 −0.644718 0.764420i \(-0.723025\pi\)
−0.644718 + 0.764420i \(0.723025\pi\)
\(90\) 0 0
\(91\) 576.000 0.663530
\(92\) 0 0
\(93\) 110.116 78.2723i 0.122779 0.0872737i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 690.756 690.756i 0.723048 0.723048i −0.246177 0.969225i \(-0.579174\pi\)
0.969225 + 0.246177i \(0.0791744\pi\)
\(98\) 0 0
\(99\) −452.580 157.500i −0.459455 0.159892i
\(100\) 0 0
\(101\) 390.461i 0.384677i −0.981329 0.192338i \(-0.938393\pi\)
0.981329 0.192338i \(-0.0616071\pi\)
\(102\) 0 0
\(103\) −950.402 950.402i −0.909183 0.909183i 0.0870229 0.996206i \(-0.472265\pi\)
−0.996206 + 0.0870229i \(0.972265\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1021.64 1021.64i −0.923045 0.923045i 0.0741981 0.997244i \(-0.476360\pi\)
−0.997244 + 0.0741981i \(0.976360\pi\)
\(108\) 0 0
\(109\) 638.000i 0.560636i 0.959907 + 0.280318i \(0.0904399\pi\)
−0.959907 + 0.280318i \(0.909560\pi\)
\(110\) 0 0
\(111\) −273.000 + 1615.09i −0.233442 + 1.38106i
\(112\) 0 0
\(113\) 1021.64 1021.64i 0.850513 0.850513i −0.139683 0.990196i \(-0.544608\pi\)
0.990196 + 0.139683i \(0.0446083\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1347.18 + 651.599i −1.06451 + 0.514875i
\(118\) 0 0
\(119\) −958.405 −0.738293
\(120\) 0 0
\(121\) 1016.00 0.763336
\(122\) 0 0
\(123\) 1228.90 + 1728.86i 0.900866 + 1.26736i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1080.22 1080.22i 0.754760 0.754760i −0.220604 0.975363i \(-0.570803\pi\)
0.975363 + 0.220604i \(0.0708028\pi\)
\(128\) 0 0
\(129\) −1047.15 177.000i −0.714698 0.120806i
\(130\) 0 0
\(131\) 2733.23i 1.82293i 0.411382 + 0.911463i \(0.365046\pi\)
−0.411382 + 0.911463i \(0.634954\pi\)
\(132\) 0 0
\(133\) 345.378 + 345.378i 0.225173 + 0.225173i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1282.49 1282.49i −0.799783 0.799783i 0.183278 0.983061i \(-0.441329\pi\)
−0.983061 + 0.183278i \(0.941329\pi\)
\(138\) 0 0
\(139\) 2359.00i 1.43948i 0.694244 + 0.719740i \(0.255739\pi\)
−0.694244 + 0.719740i \(0.744261\pi\)
\(140\) 0 0
\(141\) −2520.00 425.958i −1.50512 0.254412i
\(142\) 0 0
\(143\) −695.586 + 695.586i −0.406768 + 0.406768i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −707.461 995.276i −0.396941 0.558428i
\(148\) 0 0
\(149\) −2342.77 −1.28810 −0.644050 0.764983i \(-0.722747\pi\)
−0.644050 + 0.764983i \(0.722747\pi\)
\(150\) 0 0
\(151\) 2554.00 1.37643 0.688217 0.725505i \(-0.258394\pi\)
0.688217 + 0.725505i \(0.258394\pi\)
\(152\) 0 0
\(153\) 2241.58 1084.19i 1.18445 0.572888i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 605.024 605.024i 0.307555 0.307555i −0.536405 0.843961i \(-0.680218\pi\)
0.843961 + 0.536405i \(0.180218\pi\)
\(158\) 0 0
\(159\) −53.2447 + 315.000i −0.0265571 + 0.157114i
\(160\) 0 0
\(161\) 638.937i 0.312766i
\(162\) 0 0
\(163\) −633.193 633.193i −0.304267 0.304267i 0.538414 0.842681i \(-0.319024\pi\)
−0.842681 + 0.538414i \(0.819024\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1304.22 1304.22i −0.604335 0.604335i 0.337125 0.941460i \(-0.390545\pi\)
−0.941460 + 0.337125i \(0.890545\pi\)
\(168\) 0 0
\(169\) 875.000i 0.398270i
\(170\) 0 0
\(171\) −1198.50 417.084i −0.535974 0.186522i
\(172\) 0 0
\(173\) 1652.02 1652.02i 0.726015 0.726015i −0.243809 0.969823i \(-0.578397\pi\)
0.969823 + 0.243809i \(0.0783969\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2856.37 + 2030.36i −1.21298 + 0.862211i
\(178\) 0 0
\(179\) 1189.13 0.496536 0.248268 0.968691i \(-0.420139\pi\)
0.248268 + 0.968691i \(0.420139\pi\)
\(180\) 0 0
\(181\) −26.0000 −0.0106772 −0.00533858 0.999986i \(-0.501699\pi\)
−0.00533858 + 0.999986i \(0.501699\pi\)
\(182\) 0 0
\(183\) −2600.42 + 1848.43i −1.05043 + 0.746666i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1157.38 1157.38i 0.452600 0.452600i
\(188\) 0 0
\(189\) −1277.87 702.000i −0.491807 0.270175i
\(190\) 0 0
\(191\) 1526.35i 0.578234i 0.957294 + 0.289117i \(0.0933617\pi\)
−0.957294 + 0.289117i \(0.906638\pi\)
\(192\) 0 0
\(193\) −290.265 290.265i −0.108258 0.108258i 0.650903 0.759161i \(-0.274390\pi\)
−0.759161 + 0.650903i \(0.774390\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2738.87 + 2738.87i 0.990540 + 0.990540i 0.999956 0.00941546i \(-0.00299708\pi\)
−0.00941546 + 0.999956i \(0.502997\pi\)
\(198\) 0 0
\(199\) 5392.00i 1.92075i −0.278715 0.960374i \(-0.589909\pi\)
0.278715 0.960374i \(-0.410091\pi\)
\(200\) 0 0
\(201\) −208.500 + 1233.50i −0.0731664 + 0.432859i
\(202\) 0 0
\(203\) −2086.76 + 2086.76i −0.721486 + 0.721486i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 722.796 + 1494.38i 0.242695 + 0.501773i
\(208\) 0 0
\(209\) −834.167 −0.276079
\(210\) 0 0
\(211\) 3599.00 1.17424 0.587122 0.809499i \(-0.300261\pi\)
0.587122 + 0.809499i \(0.300261\pi\)
\(212\) 0 0
\(213\) −854.889 1202.68i −0.275005 0.386885i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 191.060 191.060i 0.0597696 0.0597696i
\(218\) 0 0
\(219\) 3736.00 + 631.500i 1.15277 + 0.194853i
\(220\) 0 0
\(221\) 5111.49i 1.55582i
\(222\) 0 0
\(223\) −2635.65 2635.65i −0.791463 0.791463i 0.190269 0.981732i \(-0.439064\pi\)
−0.981732 + 0.190269i \(0.939064\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1304.22 + 1304.22i 0.381341 + 0.381341i 0.871585 0.490244i \(-0.163092\pi\)
−0.490244 + 0.871585i \(0.663092\pi\)
\(228\) 0 0
\(229\) 208.000i 0.0600220i 0.999550 + 0.0300110i \(0.00955422\pi\)
−0.999550 + 0.0300110i \(0.990446\pi\)
\(230\) 0 0
\(231\) −945.000 159.734i −0.269162 0.0454967i
\(232\) 0 0
\(233\) 391.267 391.267i 0.110012 0.110012i −0.649958 0.759970i \(-0.725214\pi\)
0.759970 + 0.649958i \(0.225214\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1764.14 + 2481.84i 0.483515 + 0.680222i
\(238\) 0 0
\(239\) 5324.47 1.44105 0.720526 0.693428i \(-0.243900\pi\)
0.720526 + 0.693428i \(0.243900\pi\)
\(240\) 0 0
\(241\) −4681.00 −1.25116 −0.625580 0.780160i \(-0.715138\pi\)
−0.625580 + 0.780160i \(0.715138\pi\)
\(242\) 0 0
\(243\) 3782.91 + 196.290i 0.998656 + 0.0518190i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1842.02 + 1842.02i −0.474513 + 0.474513i
\(248\) 0 0
\(249\) 505.825 2992.50i 0.128736 0.761614i
\(250\) 0 0
\(251\) 1011.65i 0.254401i −0.991877 0.127201i \(-0.959401\pi\)
0.991877 0.127201i \(-0.0405992\pi\)
\(252\) 0 0
\(253\) 771.589 + 771.589i 0.191737 + 0.191737i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1608.54 + 1608.54i 0.390421 + 0.390421i 0.874837 0.484417i \(-0.160968\pi\)
−0.484417 + 0.874837i \(0.660968\pi\)
\(258\) 0 0
\(259\) 3276.00i 0.785949i
\(260\) 0 0
\(261\) 2520.00 7241.28i 0.597640 1.71733i
\(262\) 0 0
\(263\) −2304.13 + 2304.13i −0.540223 + 0.540223i −0.923594 0.383371i \(-0.874763\pi\)
0.383371 + 0.923594i \(0.374763\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4585.23 3259.26i 1.05098 0.747055i
\(268\) 0 0
\(269\) 6744.33 1.52866 0.764329 0.644826i \(-0.223070\pi\)
0.764329 + 0.644826i \(0.223070\pi\)
\(270\) 0 0
\(271\) −658.000 −0.147493 −0.0737466 0.997277i \(-0.523496\pi\)
−0.0737466 + 0.997277i \(0.523496\pi\)
\(272\) 0 0
\(273\) −2439.48 + 1734.03i −0.540822 + 0.384426i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3164.74 3164.74i 0.686465 0.686465i −0.274984 0.961449i \(-0.588672\pi\)
0.961449 + 0.274984i \(0.0886725\pi\)
\(278\) 0 0
\(279\) −230.727 + 663.000i −0.0495099 + 0.142268i
\(280\) 0 0
\(281\) 1490.85i 0.316501i −0.987399 0.158250i \(-0.949415\pi\)
0.987399 0.158250i \(-0.0505854\pi\)
\(282\) 0 0
\(283\) 4033.08 + 4033.08i 0.847145 + 0.847145i 0.989776 0.142631i \(-0.0455562\pi\)
−0.142631 + 0.989776i \(0.545556\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2999.71 + 2999.71i 0.616960 + 0.616960i
\(288\) 0 0
\(289\) 3592.00i 0.731122i
\(290\) 0 0
\(291\) −846.000 + 5005.00i −0.170424 + 1.00824i
\(292\) 0 0
\(293\) 1173.80 1173.80i 0.234042 0.234042i −0.580336 0.814377i \(-0.697079\pi\)
0.814377 + 0.580336i \(0.197079\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2390.92 695.433i 0.467123 0.135869i
\(298\) 0 0
\(299\) 3407.66 0.659098
\(300\) 0 0
\(301\) −2124.00 −0.406729
\(302\) 0 0
\(303\) 1175.47 + 1653.69i 0.222868 + 0.313538i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3528.49 + 3528.49i −0.655966 + 0.655966i −0.954423 0.298457i \(-0.903528\pi\)
0.298457 + 0.954423i \(0.403528\pi\)
\(308\) 0 0
\(309\) 6886.32 + 1164.00i 1.26780 + 0.214297i
\(310\) 0 0
\(311\) 603.440i 0.110026i −0.998486 0.0550128i \(-0.982480\pi\)
0.998486 0.0550128i \(-0.0175200\pi\)
\(312\) 0 0
\(313\) 4051.46 + 4051.46i 0.731635 + 0.731635i 0.970944 0.239308i \(-0.0769207\pi\)
−0.239308 + 0.970944i \(0.576921\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1130.33 + 1130.33i 0.200270 + 0.200270i 0.800116 0.599846i \(-0.204771\pi\)
−0.599846 + 0.800116i \(0.704771\pi\)
\(318\) 0 0
\(319\) 5040.00i 0.884595i
\(320\) 0 0
\(321\) 7402.50 + 1251.25i 1.28713 + 0.217564i
\(322\) 0 0
\(323\) 3064.93 3064.93i 0.527978 0.527978i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1920.68 2702.07i −0.324813 0.456956i
\(328\) 0 0
\(329\) −5111.49 −0.856552
\(330\) 0 0
\(331\) −9613.00 −1.59631 −0.798154 0.602453i \(-0.794190\pi\)
−0.798154 + 0.602453i \(0.794190\pi\)
\(332\) 0 0
\(333\) −3705.97 7662.11i −0.609867 1.26090i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 513.168 513.168i 0.0829497 0.0829497i −0.664415 0.747364i \(-0.731319\pi\)
0.747364 + 0.664415i \(0.231319\pi\)
\(338\) 0 0
\(339\) −1251.25 + 7402.50i −0.200468 + 1.18598i
\(340\) 0 0
\(341\) 461.454i 0.0732820i
\(342\) 0 0
\(343\) −4247.42 4247.42i −0.668626 0.668626i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1021.64 + 1021.64i 0.158054 + 0.158054i 0.781704 0.623650i \(-0.214351\pi\)
−0.623650 + 0.781704i \(0.714351\pi\)
\(348\) 0 0
\(349\) 1106.00i 0.169636i −0.996396 0.0848178i \(-0.972969\pi\)
0.996396 0.0848178i \(-0.0270308\pi\)
\(350\) 0 0
\(351\) 3744.00 6815.32i 0.569345 1.03640i
\(352\) 0 0
\(353\) −1434.65 + 1434.65i −0.216313 + 0.216313i −0.806943 0.590630i \(-0.798879\pi\)
0.590630 + 0.806943i \(0.298879\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4059.05 2885.25i 0.601759 0.427741i
\(358\) 0 0
\(359\) −7489.76 −1.10110 −0.550549 0.834803i \(-0.685582\pi\)
−0.550549 + 0.834803i \(0.685582\pi\)
\(360\) 0 0
\(361\) 4650.00 0.677941
\(362\) 0 0
\(363\) −4302.98 + 3058.64i −0.622170 + 0.442250i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8911.24 + 8911.24i −1.26747 + 1.26747i −0.320086 + 0.947388i \(0.603712\pi\)
−0.947388 + 0.320086i \(0.896288\pi\)
\(368\) 0 0
\(369\) −10409.3 3622.50i −1.46853 0.511056i
\(370\) 0 0
\(371\) 638.937i 0.0894122i
\(372\) 0 0
\(373\) 3696.28 + 3696.28i 0.513100 + 0.513100i 0.915475 0.402375i \(-0.131815\pi\)
−0.402375 + 0.915475i \(0.631815\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11129.4 11129.4i −1.52040 1.52040i
\(378\) 0 0
\(379\) 13427.0i 1.81979i −0.414844 0.909893i \(-0.636164\pi\)
0.414844 0.909893i \(-0.363836\pi\)
\(380\) 0 0
\(381\) −1323.00 + 7826.97i −0.177899 + 1.05246i
\(382\) 0 0
\(383\) −2043.28 + 2043.28i −0.272603 + 0.272603i −0.830147 0.557544i \(-0.811744\pi\)
0.557544 + 0.830147i \(0.311744\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4967.74 2402.77i 0.652518 0.315606i
\(388\) 0 0
\(389\) 2449.26 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(390\) 0 0
\(391\) −5670.00 −0.733361
\(392\) 0 0
\(393\) −8228.31 11575.8i −1.05614 1.48581i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7857.96 + 7857.96i −0.993400 + 0.993400i −0.999978 0.00657821i \(-0.997906\pi\)
0.00657821 + 0.999978i \(0.497906\pi\)
\(398\) 0 0
\(399\) −2502.50 423.000i −0.313989 0.0530739i
\(400\) 0 0
\(401\) 10915.2i 1.35930i 0.733539 + 0.679648i \(0.237867\pi\)
−0.733539 + 0.679648i \(0.762133\pi\)
\(402\) 0 0
\(403\) 1018.99 + 1018.99i 0.125954 + 0.125954i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3956.15 3956.15i −0.481815 0.481815i
\(408\) 0 0
\(409\) 8083.00i 0.977209i 0.872505 + 0.488605i \(0.162494\pi\)
−0.872505 + 0.488605i \(0.837506\pi\)
\(410\) 0 0
\(411\) 9292.50 + 1570.72i 1.11524 + 0.188511i
\(412\) 0 0
\(413\) −4956.05 + 4956.05i −0.590487 + 0.590487i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −7101.70 9990.88i −0.833985 1.17327i
\(418\) 0 0
\(419\) −12406.0 −1.44648 −0.723238 0.690599i \(-0.757347\pi\)
−0.723238 + 0.690599i \(0.757347\pi\)
\(420\) 0 0
\(421\) 1972.00 0.228288 0.114144 0.993464i \(-0.463587\pi\)
0.114144 + 0.993464i \(0.463587\pi\)
\(422\) 0 0
\(423\) 11955.1 5782.37i 1.37417 0.664653i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4511.96 + 4511.96i −0.511356 + 0.511356i
\(428\) 0 0
\(429\) 851.915 5040.00i 0.0958761 0.567211i
\(430\) 0 0
\(431\) 2094.29i 0.234057i 0.993129 + 0.117028i \(0.0373369\pi\)
−0.993129 + 0.117028i \(0.962663\pi\)
\(432\) 0 0
\(433\) 836.501 + 836.501i 0.0928399 + 0.0928399i 0.752001 0.659162i \(-0.229089\pi\)
−0.659162 + 0.752001i \(0.729089\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2043.28 + 2043.28i 0.223669 + 0.223669i
\(438\) 0 0
\(439\) 8108.00i 0.881489i 0.897633 + 0.440745i \(0.145286\pi\)
−0.897633 + 0.440745i \(0.854714\pi\)
\(440\) 0 0
\(441\) 5992.50 + 2085.42i 0.647068 + 0.225183i
\(442\) 0 0
\(443\) 11238.1 11238.1i 1.20527 1.20527i 0.232734 0.972541i \(-0.425233\pi\)
0.972541 0.232734i \(-0.0747671\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9922.13 7052.84i 1.04989 0.746281i
\(448\) 0 0
\(449\) −13115.9 −1.37857 −0.689287 0.724488i \(-0.742076\pi\)
−0.689287 + 0.724488i \(0.742076\pi\)
\(450\) 0 0
\(451\) −7245.00 −0.756438
\(452\) 0 0
\(453\) −10816.7 + 7688.74i −1.12189 + 0.797459i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 694.430 694.430i 0.0710811 0.0710811i −0.670672 0.741754i \(-0.733994\pi\)
0.741754 + 0.670672i \(0.233994\pi\)
\(458\) 0 0
\(459\) −6229.63 + 11340.0i −0.633495 + 1.15317i
\(460\) 0 0
\(461\) 1987.80i 0.200827i 0.994946 + 0.100413i \(0.0320166\pi\)
−0.994946 + 0.100413i \(0.967983\pi\)
\(462\) 0 0
\(463\) −240.050 240.050i −0.0240952 0.0240952i 0.694957 0.719052i \(-0.255424\pi\)
−0.719052 + 0.694957i \(0.755424\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8086.19 8086.19i −0.801251 0.801251i 0.182040 0.983291i \(-0.441730\pi\)
−0.983291 + 0.182040i \(0.941730\pi\)
\(468\) 0 0
\(469\) 2502.00i 0.246336i
\(470\) 0 0
\(471\) −741.000 + 4383.82i −0.0724915 + 0.428865i
\(472\) 0 0
\(473\) 2564.97 2564.97i 0.249340 0.249340i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −722.796 1494.38i −0.0693806 0.143445i
\(478\) 0 0
\(479\) −5288.98 −0.504508 −0.252254 0.967661i \(-0.581172\pi\)
−0.252254 + 0.967661i \(0.581172\pi\)
\(480\) 0 0
\(481\) −17472.0 −1.65625
\(482\) 0 0
\(483\) 1923.50 + 2706.03i 0.181206 + 0.254925i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1207.60 + 1207.60i −0.112364 + 0.112364i −0.761054 0.648689i \(-0.775318\pi\)
0.648689 + 0.761054i \(0.275318\pi\)
\(488\) 0 0
\(489\) 4587.92 + 775.500i 0.424280 + 0.0717164i
\(490\) 0 0
\(491\) 6211.88i 0.570954i −0.958386 0.285477i \(-0.907848\pi\)
0.958386 0.285477i \(-0.0921520\pi\)
\(492\) 0 0
\(493\) 18518.1 + 18518.1i 1.69171 + 1.69171i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2086.76 2086.76i −0.188338 0.188338i
\(498\) 0 0
\(499\) 6292.00i 0.564466i −0.959346 0.282233i \(-0.908925\pi\)
0.959346 0.282233i \(-0.0910751\pi\)
\(500\) 0 0
\(501\) 9450.00 + 1597.34i 0.842704 + 0.142443i
\(502\) 0 0
\(503\) 5999.43 5999.43i 0.531812 0.531812i −0.389299 0.921111i \(-0.627283\pi\)
0.921111 + 0.389299i \(0.127283\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2634.16 3705.81i −0.230744 0.324617i
\(508\) 0 0
\(509\) 20339.5 1.77118 0.885591 0.464466i \(-0.153754\pi\)
0.885591 + 0.464466i \(0.153754\pi\)
\(510\) 0 0
\(511\) 7578.00 0.656029
\(512\) 0 0
\(513\) 6331.53 1841.61i 0.544919 0.158497i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6172.71 6172.71i 0.525098 0.525098i
\(518\) 0 0
\(519\) −2023.30 + 11970.0i −0.171123 + 1.01238i
\(520\) 0 0
\(521\) 17304.5i 1.45514i 0.686036 + 0.727568i \(0.259349\pi\)
−0.686036 + 0.727568i \(0.740651\pi\)
\(522\) 0 0
\(523\) −13884.9 13884.9i −1.16089 1.16089i −0.984281 0.176609i \(-0.943487\pi\)
−0.176609 0.984281i \(-0.556513\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1695.49 1695.49i −0.140146 0.140146i
\(528\) 0 0
\(529\) 8387.00i 0.689324i
\(530\) 0 0
\(531\) 5985.00 17198.0i 0.489128 1.40552i
\(532\) 0 0
\(533\) −15998.5 + 15998.5i −1.30013 + 1.30013i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5036.23 + 3579.85i −0.404710 + 0.287676i
\(538\) 0 0
\(539\) 4170.84 0.333304
\(540\) 0 0
\(541\) −8296.00 −0.659284 −0.329642 0.944106i \(-0.606928\pi\)
−0.329642 + 0.944106i \(0.606928\pi\)
\(542\) 0 0
\(543\) 110.116 78.2723i 0.00870260 0.00618597i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2323.34 2323.34i 0.181607 0.181607i −0.610449 0.792056i \(-0.709011\pi\)
0.792056 + 0.610449i \(0.209011\pi\)
\(548\) 0 0
\(549\) 5448.71 15657.0i 0.423580 1.21717i
\(550\) 0 0
\(551\) 13346.7i 1.03192i
\(552\) 0 0
\(553\) 4306.20 + 4306.20i 0.331136 + 0.331136i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15998.5 + 15998.5i 1.21701 + 1.21701i 0.968672 + 0.248343i \(0.0798859\pi\)
0.248343 + 0.968672i \(0.420114\pi\)
\(558\) 0 0
\(559\) 11328.0i 0.857108i
\(560\) 0 0
\(561\) −1417.50 + 8386.04i −0.106679 + 0.631121i
\(562\) 0 0
\(563\) −2260.65 + 2260.65i −0.169228 + 0.169228i −0.786640 0.617412i \(-0.788181\pi\)
0.617412 + 0.786640i \(0.288181\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 7525.42 873.879i 0.557386 0.0647257i
\(568\) 0 0
\(569\) −3638.39 −0.268065 −0.134033 0.990977i \(-0.542793\pi\)
−0.134033 + 0.990977i \(0.542793\pi\)
\(570\) 0 0
\(571\) 5564.00 0.407787 0.203893 0.978993i \(-0.434640\pi\)
0.203893 + 0.978993i \(0.434640\pi\)
\(572\) 0 0
\(573\) −4595.03 6464.42i −0.335009 0.471300i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −15788.2 + 15788.2i −1.13912 + 1.13912i −0.150509 + 0.988609i \(0.548091\pi\)
−0.988609 + 0.150509i \(0.951909\pi\)
\(578\) 0 0
\(579\) 2103.17 + 355.500i 0.150958 + 0.0255165i
\(580\) 0 0
\(581\) 6069.90i 0.433428i
\(582\) 0 0
\(583\) −771.589 771.589i −0.0548130 0.0548130i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14368.2 + 14368.2i 1.01029 + 1.01029i 0.999947 + 0.0103415i \(0.00329187\pi\)
0.0103415 + 0.999947i \(0.496708\pi\)
\(588\) 0 0
\(589\) 1222.00i 0.0854866i
\(590\) 0 0
\(591\) −19845.0 3354.42i −1.38124 0.233473i
\(592\) 0 0
\(593\) 543.427 543.427i 0.0376321 0.0376321i −0.688040 0.725672i \(-0.741529\pi\)
0.725672 + 0.688040i \(0.241529\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16232.5 + 22836.3i 1.11281 + 1.56554i
\(598\) 0 0
\(599\) 7844.72 0.535103 0.267551 0.963544i \(-0.413785\pi\)
0.267551 + 0.963544i \(0.413785\pi\)
\(600\) 0 0
\(601\) 7579.00 0.514399 0.257200 0.966358i \(-0.417200\pi\)
0.257200 + 0.966358i \(0.417200\pi\)
\(602\) 0 0
\(603\) −2830.38 5851.83i −0.191148 0.395199i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9371.75 9371.75i 0.626668 0.626668i −0.320560 0.947228i \(-0.603871\pi\)
0.947228 + 0.320560i \(0.103871\pi\)
\(608\) 0 0
\(609\) 2555.75 15120.0i 0.170056 1.00606i
\(610\) 0 0
\(611\) 27261.3i 1.80503i
\(612\) 0 0
\(613\) −14728.8 14728.8i −0.970457 0.970457i 0.0291193 0.999576i \(-0.490730\pi\)
−0.999576 + 0.0291193i \(0.990730\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12564.0 12564.0i −0.819787 0.819787i 0.166290 0.986077i \(-0.446821\pi\)
−0.986077 + 0.166290i \(0.946821\pi\)
\(618\) 0 0
\(619\) 11212.0i 0.728026i −0.931394 0.364013i \(-0.881406\pi\)
0.931394 0.364013i \(-0.118594\pi\)
\(620\) 0 0
\(621\) −7560.00 4153.09i −0.488522 0.268370i
\(622\) 0 0
\(623\) 7955.77 7955.77i 0.511623 0.511623i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3532.88 2511.24i 0.225023 0.159951i
\(628\) 0 0
\(629\) 29071.6 1.84286
\(630\) 0 0
\(631\) 21734.0 1.37118 0.685592 0.727986i \(-0.259544\pi\)
0.685592 + 0.727986i \(0.259544\pi\)
\(632\) 0 0
\(633\) −15242.5 + 10834.7i −0.957088 + 0.680316i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9210.08 9210.08i 0.572868 0.572868i
\(638\) 0 0
\(639\) 7241.28 + 2520.00i 0.448295 + 0.156009i
\(640\) 0 0
\(641\) 11145.9i 0.686796i 0.939190 + 0.343398i \(0.111578\pi\)
−0.939190 + 0.343398i \(0.888422\pi\)
\(642\) 0 0
\(643\) −6988.39 6988.39i −0.428609 0.428609i 0.459546 0.888154i \(-0.348012\pi\)
−0.888154 + 0.459546i \(0.848012\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22258.8 + 22258.8i 1.35252 + 1.35252i 0.882830 + 0.469692i \(0.155635\pi\)
0.469692 + 0.882830i \(0.344365\pi\)
\(648\) 0 0
\(649\) 11970.0i 0.723981i
\(650\) 0 0
\(651\) −234.000 + 1384.36i −0.0140878 + 0.0833448i
\(652\) 0 0
\(653\) −3086.66 + 3086.66i −0.184978 + 0.184978i −0.793521 0.608543i \(-0.791754\pi\)
0.608543 + 0.793521i \(0.291754\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −17723.9 + 8572.60i −1.05247 + 0.509055i
\(658\) 0 0
\(659\) 2608.99 0.154221 0.0771107 0.997023i \(-0.475431\pi\)
0.0771107 + 0.997023i \(0.475431\pi\)
\(660\) 0 0
\(661\) −1988.00 −0.116981 −0.0584903 0.998288i \(-0.518629\pi\)
−0.0584903 + 0.998288i \(0.518629\pi\)
\(662\) 0 0
\(663\) 15388.0 + 21648.3i 0.901389 + 1.26810i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12345.4 + 12345.4i −0.716667 + 0.716667i
\(668\) 0 0
\(669\) 19097.1 + 3228.00i 1.10364 + 0.186550i
\(670\) 0 0
\(671\) 10897.4i 0.626960i
\(672\) 0 0
\(673\) 15191.7 + 15191.7i 0.870131 + 0.870131i 0.992486 0.122355i \(-0.0390447\pi\)
−0.122355 + 0.992486i \(0.539045\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3738.78 + 3738.78i 0.212249 + 0.212249i 0.805222 0.592973i \(-0.202046\pi\)
−0.592973 + 0.805222i \(0.702046\pi\)
\(678\) 0 0
\(679\) 10152.0i 0.573782i
\(680\) 0 0
\(681\) −9450.00 1597.34i −0.531754 0.0898829i
\(682\) 0 0
\(683\) −19193.8 + 19193.8i −1.07530 + 1.07530i −0.0783786 + 0.996924i \(0.524974\pi\)
−0.996924 + 0.0783786i \(0.975026\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −626.178 880.925i −0.0347747 0.0489220i
\(688\) 0 0
\(689\) −3407.66 −0.188420
\(690\) 0 0
\(691\) −1883.00 −0.103665 −0.0518326 0.998656i \(-0.516506\pi\)
−0.0518326 + 0.998656i \(0.516506\pi\)
\(692\) 0 0
\(693\) 4483.15 2168.39i 0.245745 0.118860i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 26619.8 26619.8i 1.44663 1.44663i
\(698\) 0 0
\(699\) −479.202 + 2835.00i −0.0259300 + 0.153404i
\(700\) 0 0
\(701\) 13701.6i 0.738237i −0.929382 0.369118i \(-0.879660\pi\)
0.929382 0.369118i \(-0.120340\pi\)
\(702\) 0 0
\(703\) −10476.5 10476.5i −0.562059 0.562059i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2869.29 + 2869.29i 0.152632 + 0.152632i
\(708\) 0 0
\(709\) 23848.0i 1.26323i 0.775282 + 0.631615i \(0.217608\pi\)
−0.775282 + 0.631615i \(0.782392\pi\)
\(710\) 0 0
\(711\) −14943.0 5200.23i −0.788194 0.274295i
\(712\) 0 0
\(713\) 1130.33 1130.33i 0.0593704 0.0593704i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −22550.3 + 16029.2i −1.17456 + 0.834896i
\(718\) 0 0
\(719\) 8554.65 0.443720 0.221860 0.975079i \(-0.428787\pi\)
0.221860 + 0.975079i \(0.428787\pi\)
\(720\) 0 0
\(721\) 13968.0 0.721492
\(722\) 0 0
\(723\) 19825.0 14092.0i 1.01978 0.724879i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 23862.9 23862.9i 1.21737 1.21737i 0.248819 0.968550i \(-0.419958\pi\)
0.968550 0.248819i \(-0.0800423\pi\)
\(728\) 0 0
\(729\) −16612.4 + 10557.0i −0.843995 + 0.536351i
\(730\) 0 0
\(731\) 18848.6i 0.953682i
\(732\) 0 0
\(733\) 12301.3 + 12301.3i 0.619864 + 0.619864i 0.945496 0.325632i \(-0.105577\pi\)
−0.325632 + 0.945496i \(0.605577\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3021.45 3021.45i −0.151013 0.151013i
\(738\) 0 0
\(739\) 17516.0i 0.871903i −0.899970 0.435952i \(-0.856412\pi\)
0.899970 0.435952i \(-0.143588\pi\)
\(740\) 0 0
\(741\) 2256.00 13346.7i 0.111844 0.661677i
\(742\) 0 0
\(743\) 22389.2 22389.2i 1.10549 1.10549i 0.111754 0.993736i \(-0.464353\pi\)
0.993736 0.111754i \(-0.0356470\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6866.56 + 14196.7i 0.336324 + 0.695353i
\(748\) 0 0
\(749\) 15015.0 0.732492
\(750\) 0 0
\(751\) −3428.00 −0.166564 −0.0832820 0.996526i \(-0.526540\pi\)
−0.0832820 + 0.996526i \(0.526540\pi\)
\(752\) 0 0
\(753\) 3045.54 + 4284.56i 0.147391 + 0.207354i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19502.8 19502.8i 0.936384 0.936384i −0.0617101 0.998094i \(-0.519655\pi\)
0.998094 + 0.0617101i \(0.0196554\pi\)
\(758\) 0 0
\(759\) −5590.70 945.000i −0.267364 0.0451928i
\(760\) 0 0
\(761\) 22025.6i 1.04918i 0.851355 + 0.524590i \(0.175781\pi\)
−0.851355 + 0.524590i \(0.824219\pi\)
\(762\) 0 0
\(763\) −4688.32 4688.32i −0.222449 0.222449i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −26432.3 26432.3i −1.24435 1.24435i
\(768\) 0 0
\(769\) 22283.0i 1.04492i 0.852663 + 0.522461i \(0.174986\pi\)
−0.852663 + 0.522461i \(0.825014\pi\)
\(770\) 0 0
\(771\) −11655.0 1970.05i −0.544416 0.0920231i
\(772\) 0 0
\(773\) 12259.7 12259.7i 0.570441 0.570441i −0.361811 0.932252i \(-0.617841\pi\)
0.932252 + 0.361811i \(0.117841\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −9862.31 13874.6i −0.455352 0.640602i
\(778\) 0 0
\(779\) −19185.8 −0.882419
\(780\) 0 0
\(781\) 5040.00 0.230916
\(782\) 0 0
\(783\) 11126.9 + 38254.8i 0.507847 + 1.74600i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −18745.9 + 18745.9i −0.849073 + 0.849073i −0.990018 0.140944i \(-0.954986\pi\)
0.140944 + 0.990018i \(0.454986\pi\)
\(788\) 0 0
\(789\) 2821.97 16695.0i 0.127332 0.753305i
\(790\) 0 0
\(791\) 15015.0i 0.674933i
\(792\) 0 0
\(793\) −24063.8 24063.8i −1.07759 1.07759i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19172.1 + 19172.1i 0.852083 + 0.852083i 0.990390 0.138306i \(-0.0441658\pi\)
−0.138306 + 0.990390i \(0.544166\pi\)
\(798\) 0 0
\(799\) 45360.0i 2.00841i
\(800\) 0 0
\(801\) −9607.50 + 27607.4i −0.423801 + 1.21780i
\(802\) 0 0
\(803\) −9151.30 + 9151.30i −0.402170 + 0.402170i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −28563.7 + 20303.6i −1.24596 + 0.885652i
\(808\) 0 0
\(809\) −40395.0 −1.75552 −0.877758 0.479104i \(-0.840962\pi\)
−0.877758 + 0.479104i \(0.840962\pi\)
\(810\) 0 0
\(811\) 13564.0 0.587295 0.293648 0.955914i \(-0.405131\pi\)
0.293648 + 0.955914i \(0.405131\pi\)
\(812\) 0 0
\(813\) 2786.77 1980.89i 0.120217 0.0854525i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6792.44 6792.44i 0.290866 0.290866i
\(818\) 0 0
\(819\) 5111.49 14688.0i 0.218083 0.626667i
\(820\) 0 0
\(821\) 30065.5i 1.27807i −0.769179 0.639034i \(-0.779334\pi\)
0.769179 0.639034i \(-0.220666\pi\)
\(822\) 0 0
\(823\) −1018.99 1018.99i −0.0431588 0.0431588i 0.685198 0.728357i \(-0.259716\pi\)
−0.728357 + 0.685198i \(0.759716\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28106.0 28106.0i −1.18179 1.18179i −0.979280 0.202513i \(-0.935089\pi\)
−0.202513 0.979280i \(-0.564911\pi\)
\(828\) 0 0
\(829\) 35756.0i 1.49802i −0.662560 0.749009i \(-0.730530\pi\)
0.662560 0.749009i \(-0.269470\pi\)
\(830\) 0 0
\(831\) −3876.00 + 22930.7i −0.161801 + 0.957230i
\(832\) 0 0
\(833\) −15324.6 + 15324.6i −0.637415 + 0.637415i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1018.76 3502.55i −0.0420712 0.144642i
\(838\) 0 0
\(839\) −24350.6 −1.00200 −0.500999 0.865448i \(-0.667034\pi\)
−0.500999 + 0.865448i \(0.667034\pi\)
\(840\) 0 0
\(841\) 56251.0 2.30641
\(842\) 0 0
\(843\) 4488.17 + 6314.08i 0.183370 + 0.257970i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −7466.04 + 7466.04i −0.302876 + 0.302876i
\(848\) 0 0
\(849\) −29222.5 4939.50i −1.18129 0.199674i
\(850\) 0 0
\(851\) 19381.1i 0.780699i
\(852\) 0 0
\(853\) −10069.9 10069.9i −0.404203 0.404203i 0.475508 0.879711i \(-0.342264\pi\)
−0.879711 + 0.475508i \(0.842264\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21280.6 21280.6i −0.848228 0.848228i 0.141684 0.989912i \(-0.454748\pi\)
−0.989912 + 0.141684i \(0.954748\pi\)
\(858\) 0 0
\(859\) 11431.0i 0.454040i −0.973890 0.227020i \(-0.927102\pi\)
0.973890 0.227020i \(-0.0728983\pi\)
\(860\) 0 0
\(861\) −21735.0 3673.89i −0.860310 0.145419i
\(862\) 0 0
\(863\) −4521.31 + 4521.31i −0.178340 + 0.178340i −0.790632 0.612292i \(-0.790248\pi\)
0.612292 + 0.790632i \(0.290248\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −10813.6 15212.9i −0.423587 0.595914i
\(868\) 0 0
\(869\) −10400.5 −0.405997
\(870\) 0 0
\(871\) −13344.0 −0.519109
\(872\) 0 0
\(873\) −11484.4 23744.1i −0.445234 0.920524i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −778.938 + 778.938i −0.0299919 + 0.0299919i −0.721944 0.691952i \(-0.756751\pi\)
0.691952 + 0.721944i \(0.256751\pi\)
\(878\) 0 0
\(879\) −1437.61 + 8505.00i −0.0551642 + 0.326356i
\(880\) 0 0
\(881\) 3904.61i 0.149319i −0.997209 0.0746593i \(-0.976213\pi\)
0.997209 0.0746593i \(-0.0237869\pi\)
\(882\) 0 0
\(883\) −29647.4 29647.4i −1.12991 1.12991i −0.990191 0.139724i \(-0.955379\pi\)
−0.139724 0.990191i \(-0.544621\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1043.38 1043.38i −0.0394963 0.0394963i 0.687083 0.726579i \(-0.258891\pi\)
−0.726579 + 0.687083i \(0.758891\pi\)
\(888\) 0 0
\(889\) 15876.0i 0.598947i
\(890\) 0 0
\(891\) −8032.50 + 10143.1i −0.302019 + 0.381377i
\(892\) 0 0
\(893\) 16346.3 16346.3i 0.612550 0.612550i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −14432.2 + 10258.7i −0.537209 + 0.381858i
\(898\) 0 0
\(899\) −7383.27 −0.273911
\(900\) 0 0
\(901\) 5670.00 0.209650
\(902\) 0 0
\(903\) 8995.60 6394.24i 0.331511 0.235645i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4852.44 4852.44i 0.177643 0.177643i −0.612684 0.790328i \(-0.709910\pi\)
0.790328 + 0.612684i \(0.209910\pi\)
\(908\) 0 0
\(909\) −9956.76 3465.00i −0.363306 0.126432i
\(910\) 0 0
\(911\) 28823.1i 1.04825i 0.851642 + 0.524124i \(0.175607\pi\)
−0.851642 + 0.524124i \(0.824393\pi\)
\(912\) 0 0
\(913\) 7330.10 + 7330.10i 0.265707 + 0.265707i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20085.0 20085.0i −0.723301 0.723301i
\(918\) 0 0
\(919\) 52802.0i 1.89530i −0.319316 0.947648i \(-0.603453\pi\)
0.319316 0.947648i \(-0.396547\pi\)
\(920\) 0 0
\(921\) 4321.50 25566.3i 0.154613 0.914701i
\(922\) 0 0
\(923\) 11129.4 11129.4i 0.396888 0.396888i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −32669.2 + 15801.3i −1.15750 + 0.559851i
\(928\) 0 0
\(929\) −31662.9 −1.11822 −0.559109 0.829094i \(-0.688857\pi\)
−0.559109 + 0.829094i \(0.688857\pi\)
\(930\) 0 0
\(931\) 11045.0 0.388813
\(932\) 0 0
\(933\) 1816.64 + 2555.70i 0.0637450 + 0.0896783i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2267.00 + 2267.00i −0.0790392 + 0.0790392i −0.745521 0.666482i \(-0.767799\pi\)
0.666482 + 0.745521i \(0.267799\pi\)
\(938\) 0 0
\(939\) −29355.6 4962.00i −1.02022 0.172448i
\(940\) 0 0
\(941\) 1490.85i 0.0516476i −0.999667 0.0258238i \(-0.991779\pi\)
0.999667 0.0258238i \(-0.00822088\pi\)
\(942\) 0 0
\(943\) 17746.6 + 17746.6i 0.612839 + 0.612839i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31301.4 + 31301.4i 1.07408 + 1.07408i 0.997027 + 0.0770578i \(0.0245526\pi\)
0.0770578 + 0.997027i \(0.475447\pi\)
\(948\) 0 0
\(949\) 40416.0i 1.38246i
\(950\) 0 0
\(951\) −8190.00 1384.36i −0.279263 0.0472040i
\(952\) 0 0
\(953\) 11629.3 11629.3i 0.395290 0.395290i −0.481278 0.876568i \(-0.659827\pi\)
0.876568 + 0.481278i \(0.159827\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 15172.8 + 21345.5i 0.512504 + 0.721005i
\(958\) 0 0
\(959\) 18848.6 0.634676
\(960\) 0 0
\(961\) −29115.0 −0.977309
\(962\) 0 0
\(963\) −35118.0 + 16985.7i −1.17514 + 0.568387i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 21055.8 21055.8i 0.700216 0.700216i −0.264240 0.964457i \(-0.585121\pi\)
0.964457 + 0.264240i \(0.0851212\pi\)
\(968\) 0 0
\(969\) −3753.75 + 22207.5i −0.124446 + 0.736231i
\(970\) 0 0
\(971\) 48009.0i 1.58670i 0.608768 + 0.793348i \(0.291664\pi\)
−0.608768 + 0.793348i \(0.708336\pi\)
\(972\) 0 0
\(973\) −17335.0 17335.0i −0.571157 0.571157i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25193.3 25193.3i −0.824978 0.824978i 0.161839 0.986817i \(-0.448257\pi\)
−0.986817 + 0.161839i \(0.948257\pi\)
\(978\) 0 0
\(979\) 19215.0i 0.627287i
\(980\) 0 0
\(981\) 16269.0 + 5661.69i 0.529489 + 0.184265i
\(982\) 0 0
\(983\) −36300.9 + 36300.9i −1.17784 + 1.17784i −0.197549 + 0.980293i \(0.563298\pi\)
−0.980293 + 0.197549i \(0.936702\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 21648.3 15388.0i 0.698148 0.496257i
\(988\) 0 0
\(989\) −12565.8 −0.404012
\(990\) 0 0
\(991\) 51374.0 1.64677 0.823385 0.567483i \(-0.192083\pi\)
0.823385 + 0.567483i \(0.192083\pi\)
\(992\) 0 0
\(993\) 40713.1 28939.7i 1.30110 0.924846i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 16622.2 16622.2i 0.528016 0.528016i −0.391965 0.919980i \(-0.628204\pi\)
0.919980 + 0.391965i \(0.128204\pi\)
\(998\) 0 0
\(999\) 38762.2 + 21294.0i 1.22761 + 0.674387i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.4.i.d.293.1 yes 8
3.2 odd 2 inner 300.4.i.d.293.3 yes 8
5.2 odd 4 inner 300.4.i.d.257.3 yes 8
5.3 odd 4 inner 300.4.i.d.257.2 yes 8
5.4 even 2 inner 300.4.i.d.293.4 yes 8
15.2 even 4 inner 300.4.i.d.257.1 8
15.8 even 4 inner 300.4.i.d.257.4 yes 8
15.14 odd 2 inner 300.4.i.d.293.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.4.i.d.257.1 8 15.2 even 4 inner
300.4.i.d.257.2 yes 8 5.3 odd 4 inner
300.4.i.d.257.3 yes 8 5.2 odd 4 inner
300.4.i.d.257.4 yes 8 15.8 even 4 inner
300.4.i.d.293.1 yes 8 1.1 even 1 trivial
300.4.i.d.293.2 yes 8 15.14 odd 2 inner
300.4.i.d.293.3 yes 8 3.2 odd 2 inner
300.4.i.d.293.4 yes 8 5.4 even 2 inner