Properties

Label 3000.2.be
Level 30003000
Weight 22
Character orbit 3000.be
Rep. character χ3000(349,)\chi_{3000}(349,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 720720
Sturm bound 12001200

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3000=23353 3000 = 2^{3} \cdot 3 \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3000.be (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 200 200
Character field: Q(ζ10)\Q(\zeta_{10})
Sturm bound: 12001200

Dimensions

The following table gives the dimensions of various subspaces of M2(3000,[χ])M_{2}(3000, [\chi]).

Total New Old
Modular forms 2480 720 1760
Cusp forms 2320 720 1600
Eisenstein series 160 0 160

Trace form

720q+30q8180q912q1412q1650q2220q2624q31+16q34+30q3816q398q4142q44+20q46720q49140q52+36q56+10q58++140q98+O(q100) 720 q + 30 q^{8} - 180 q^{9} - 12 q^{14} - 12 q^{16} - 50 q^{22} - 20 q^{26} - 24 q^{31} + 16 q^{34} + 30 q^{38} - 16 q^{39} - 8 q^{41} - 42 q^{44} + 20 q^{46} - 720 q^{49} - 140 q^{52} + 36 q^{56} + 10 q^{58}+ \cdots + 140 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3000,[χ])S_{2}^{\mathrm{new}}(3000, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3000,[χ])S_{2}^{\mathrm{old}}(3000, [\chi]) into lower level spaces

S2old(3000,[χ]) S_{2}^{\mathrm{old}}(3000, [\chi]) \simeq S2new(200,[χ])S_{2}^{\mathrm{new}}(200, [\chi])4^{\oplus 4}\oplusS2new(600,[χ])S_{2}^{\mathrm{new}}(600, [\chi])2^{\oplus 2}\oplusS2new(1000,[χ])S_{2}^{\mathrm{new}}(1000, [\chi])2^{\oplus 2}