Properties

Label 3000.2.y
Level $3000$
Weight $2$
Character orbit 3000.y
Rep. character $\chi_{3000}(601,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $176$
Sturm bound $1200$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3000.y (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3000, [\chi])\).

Total New Old
Modular forms 2560 176 2384
Cusp forms 2240 176 2064
Eisenstein series 320 0 320

Trace form

\( 176 q + 4 q^{7} - 44 q^{9} - 4 q^{13} - 4 q^{17} - 12 q^{19} + 4 q^{21} + 36 q^{23} - 36 q^{29} - 6 q^{31} - 12 q^{33} + 14 q^{37} - 36 q^{41} - 64 q^{43} - 24 q^{47} + 132 q^{49} + 48 q^{51} - 18 q^{53}+ \cdots + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3000, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3000, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3000, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(750, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1000, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1500, [\chi])\)\(^{\oplus 2}\)