Properties

Label 3024.2.a.bf.1.2
Level $3024$
Weight $2$
Character 3024.1
Self dual yes
Analytic conductor $24.147$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1467615712\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1512)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 3024.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37228 q^{5} -1.00000 q^{7} -1.37228 q^{13} -1.00000 q^{17} -6.74456 q^{19} -5.37228 q^{23} +0.627719 q^{25} -0.627719 q^{29} -2.62772 q^{31} -2.37228 q^{35} +4.37228 q^{37} -5.11684 q^{41} -7.74456 q^{43} +0.372281 q^{47} +1.00000 q^{49} -12.1168 q^{53} -0.255437 q^{59} +1.25544 q^{61} -3.25544 q^{65} -4.62772 q^{67} -7.37228 q^{71} +10.0000 q^{73} +9.11684 q^{79} +15.8614 q^{83} -2.37228 q^{85} -2.62772 q^{89} +1.37228 q^{91} -16.0000 q^{95} +9.48913 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} - 2 q^{7} + 3 q^{13} - 2 q^{17} - 2 q^{19} - 5 q^{23} + 7 q^{25} - 7 q^{29} - 11 q^{31} + q^{35} + 3 q^{37} + 7 q^{41} - 4 q^{43} - 5 q^{47} + 2 q^{49} - 7 q^{53} - 12 q^{59} + 14 q^{61} - 18 q^{65}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.37228 1.06092 0.530458 0.847711i \(-0.322020\pi\)
0.530458 + 0.847711i \(0.322020\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −1.37228 −0.380602 −0.190301 0.981726i \(-0.560946\pi\)
−0.190301 + 0.981726i \(0.560946\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) −6.74456 −1.54731 −0.773654 0.633608i \(-0.781573\pi\)
−0.773654 + 0.633608i \(0.781573\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.37228 −1.12020 −0.560099 0.828426i \(-0.689237\pi\)
−0.560099 + 0.828426i \(0.689237\pi\)
\(24\) 0 0
\(25\) 0.627719 0.125544
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.627719 −0.116564 −0.0582822 0.998300i \(-0.518562\pi\)
−0.0582822 + 0.998300i \(0.518562\pi\)
\(30\) 0 0
\(31\) −2.62772 −0.471952 −0.235976 0.971759i \(-0.575829\pi\)
−0.235976 + 0.971759i \(0.575829\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.37228 −0.400989
\(36\) 0 0
\(37\) 4.37228 0.718799 0.359399 0.933184i \(-0.382982\pi\)
0.359399 + 0.933184i \(0.382982\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.11684 −0.799117 −0.399558 0.916708i \(-0.630837\pi\)
−0.399558 + 0.916708i \(0.630837\pi\)
\(42\) 0 0
\(43\) −7.74456 −1.18103 −0.590517 0.807025i \(-0.701076\pi\)
−0.590517 + 0.807025i \(0.701076\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.372281 0.0543028 0.0271514 0.999631i \(-0.491356\pi\)
0.0271514 + 0.999631i \(0.491356\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.1168 −1.66438 −0.832188 0.554493i \(-0.812912\pi\)
−0.832188 + 0.554493i \(0.812912\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.255437 −0.0332551 −0.0166276 0.999862i \(-0.505293\pi\)
−0.0166276 + 0.999862i \(0.505293\pi\)
\(60\) 0 0
\(61\) 1.25544 0.160742 0.0803711 0.996765i \(-0.474389\pi\)
0.0803711 + 0.996765i \(0.474389\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.25544 −0.403787
\(66\) 0 0
\(67\) −4.62772 −0.565366 −0.282683 0.959213i \(-0.591224\pi\)
−0.282683 + 0.959213i \(0.591224\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.37228 −0.874929 −0.437464 0.899236i \(-0.644123\pi\)
−0.437464 + 0.899236i \(0.644123\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.11684 1.02573 0.512863 0.858471i \(-0.328585\pi\)
0.512863 + 0.858471i \(0.328585\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.8614 1.74102 0.870508 0.492155i \(-0.163791\pi\)
0.870508 + 0.492155i \(0.163791\pi\)
\(84\) 0 0
\(85\) −2.37228 −0.257310
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.62772 −0.278538 −0.139269 0.990255i \(-0.544475\pi\)
−0.139269 + 0.990255i \(0.544475\pi\)
\(90\) 0 0
\(91\) 1.37228 0.143854
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.0000 −1.64157
\(96\) 0 0
\(97\) 9.48913 0.963475 0.481737 0.876316i \(-0.340006\pi\)
0.481737 + 0.876316i \(0.340006\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −13.3723 −1.31761 −0.658805 0.752314i \(-0.728938\pi\)
−0.658805 + 0.752314i \(0.728938\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.74456 −0.845369 −0.422684 0.906277i \(-0.638912\pi\)
−0.422684 + 0.906277i \(0.638912\pi\)
\(108\) 0 0
\(109\) 19.8614 1.90238 0.951189 0.308609i \(-0.0998636\pi\)
0.951189 + 0.308609i \(0.0998636\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.74456 0.822619 0.411310 0.911496i \(-0.365071\pi\)
0.411310 + 0.911496i \(0.365071\pi\)
\(114\) 0 0
\(115\) −12.7446 −1.18844
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.3723 −0.927725
\(126\) 0 0
\(127\) 11.1168 0.986460 0.493230 0.869899i \(-0.335816\pi\)
0.493230 + 0.869899i \(0.335816\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.1168 −1.23339 −0.616697 0.787200i \(-0.711530\pi\)
−0.616697 + 0.787200i \(0.711530\pi\)
\(132\) 0 0
\(133\) 6.74456 0.584828
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) −2.74456 −0.232791 −0.116395 0.993203i \(-0.537134\pi\)
−0.116395 + 0.993203i \(0.537134\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.48913 −0.123665
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.37228 0.276268 0.138134 0.990414i \(-0.455890\pi\)
0.138134 + 0.990414i \(0.455890\pi\)
\(150\) 0 0
\(151\) 5.86141 0.476995 0.238497 0.971143i \(-0.423345\pi\)
0.238497 + 0.971143i \(0.423345\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.23369 −0.500702
\(156\) 0 0
\(157\) 10.1168 0.807412 0.403706 0.914889i \(-0.367722\pi\)
0.403706 + 0.914889i \(0.367722\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.37228 0.423395
\(162\) 0 0
\(163\) 17.0000 1.33154 0.665771 0.746156i \(-0.268103\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −22.3723 −1.73122 −0.865610 0.500720i \(-0.833069\pi\)
−0.865610 + 0.500720i \(0.833069\pi\)
\(168\) 0 0
\(169\) −11.1168 −0.855142
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.2554 −0.855735 −0.427868 0.903841i \(-0.640735\pi\)
−0.427868 + 0.903841i \(0.640735\pi\)
\(174\) 0 0
\(175\) −0.627719 −0.0474511
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.74456 0.354625 0.177313 0.984155i \(-0.443260\pi\)
0.177313 + 0.984155i \(0.443260\pi\)
\(180\) 0 0
\(181\) −19.6060 −1.45730 −0.728650 0.684886i \(-0.759852\pi\)
−0.728650 + 0.684886i \(0.759852\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.3723 0.762585
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.744563 0.0538747 0.0269373 0.999637i \(-0.491425\pi\)
0.0269373 + 0.999637i \(0.491425\pi\)
\(192\) 0 0
\(193\) 11.2337 0.808619 0.404309 0.914622i \(-0.367512\pi\)
0.404309 + 0.914622i \(0.367512\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.74456 −0.195542 −0.0977710 0.995209i \(-0.531171\pi\)
−0.0977710 + 0.995209i \(0.531171\pi\)
\(198\) 0 0
\(199\) 16.8614 1.19527 0.597637 0.801767i \(-0.296107\pi\)
0.597637 + 0.801767i \(0.296107\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.627719 0.0440572
\(204\) 0 0
\(205\) −12.1386 −0.847796
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6.11684 −0.421101 −0.210550 0.977583i \(-0.567526\pi\)
−0.210550 + 0.977583i \(0.567526\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −18.3723 −1.25298
\(216\) 0 0
\(217\) 2.62772 0.178381
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.37228 0.0923096
\(222\) 0 0
\(223\) 3.25544 0.218000 0.109000 0.994042i \(-0.465235\pi\)
0.109000 + 0.994042i \(0.465235\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.6277 0.838131 0.419066 0.907956i \(-0.362358\pi\)
0.419066 + 0.907956i \(0.362358\pi\)
\(228\) 0 0
\(229\) −6.74456 −0.445693 −0.222847 0.974854i \(-0.571535\pi\)
−0.222847 + 0.974854i \(0.571535\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.744563 0.0487779 0.0243890 0.999703i \(-0.492236\pi\)
0.0243890 + 0.999703i \(0.492236\pi\)
\(234\) 0 0
\(235\) 0.883156 0.0576107
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.2337 0.661962 0.330981 0.943637i \(-0.392620\pi\)
0.330981 + 0.943637i \(0.392620\pi\)
\(240\) 0 0
\(241\) 15.4891 0.997742 0.498871 0.866676i \(-0.333748\pi\)
0.498871 + 0.866676i \(0.333748\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.37228 0.151559
\(246\) 0 0
\(247\) 9.25544 0.588909
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.3723 1.66460 0.832302 0.554323i \(-0.187023\pi\)
0.832302 + 0.554323i \(0.187023\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.9783 −1.05907 −0.529537 0.848287i \(-0.677634\pi\)
−0.529537 + 0.848287i \(0.677634\pi\)
\(258\) 0 0
\(259\) −4.37228 −0.271680
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.6277 −0.655333 −0.327667 0.944793i \(-0.606262\pi\)
−0.327667 + 0.944793i \(0.606262\pi\)
\(264\) 0 0
\(265\) −28.7446 −1.76576
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.11684 −0.433922 −0.216961 0.976180i \(-0.569614\pi\)
−0.216961 + 0.976180i \(0.569614\pi\)
\(270\) 0 0
\(271\) −17.6060 −1.06949 −0.534743 0.845015i \(-0.679592\pi\)
−0.534743 + 0.845015i \(0.679592\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −29.3505 −1.76350 −0.881751 0.471715i \(-0.843635\pi\)
−0.881751 + 0.471715i \(0.843635\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −28.9783 −1.72870 −0.864349 0.502893i \(-0.832269\pi\)
−0.864349 + 0.502893i \(0.832269\pi\)
\(282\) 0 0
\(283\) −2.51087 −0.149256 −0.0746280 0.997211i \(-0.523777\pi\)
−0.0746280 + 0.997211i \(0.523777\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.11684 0.302038
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.3723 1.65753 0.828763 0.559599i \(-0.189045\pi\)
0.828763 + 0.559599i \(0.189045\pi\)
\(294\) 0 0
\(295\) −0.605969 −0.0352809
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.37228 0.426350
\(300\) 0 0
\(301\) 7.74456 0.446389
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.97825 0.170534
\(306\) 0 0
\(307\) 31.4891 1.79718 0.898590 0.438790i \(-0.144593\pi\)
0.898590 + 0.438790i \(0.144593\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.3723 −0.588158 −0.294079 0.955781i \(-0.595013\pi\)
−0.294079 + 0.955781i \(0.595013\pi\)
\(312\) 0 0
\(313\) −0.233688 −0.0132088 −0.00660441 0.999978i \(-0.502102\pi\)
−0.00660441 + 0.999978i \(0.502102\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.4891 −0.645294 −0.322647 0.946519i \(-0.604573\pi\)
−0.322647 + 0.946519i \(0.604573\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.74456 0.375278
\(324\) 0 0
\(325\) −0.861407 −0.0477822
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.372281 −0.0205245
\(330\) 0 0
\(331\) 24.4891 1.34604 0.673022 0.739622i \(-0.264996\pi\)
0.673022 + 0.739622i \(0.264996\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.9783 −0.599806
\(336\) 0 0
\(337\) −30.4891 −1.66085 −0.830424 0.557132i \(-0.811902\pi\)
−0.830424 + 0.557132i \(0.811902\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.510875 −0.0274252 −0.0137126 0.999906i \(-0.504365\pi\)
−0.0137126 + 0.999906i \(0.504365\pi\)
\(348\) 0 0
\(349\) −23.3723 −1.25109 −0.625545 0.780188i \(-0.715123\pi\)
−0.625545 + 0.780188i \(0.715123\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.2554 0.652291 0.326146 0.945320i \(-0.394250\pi\)
0.326146 + 0.945320i \(0.394250\pi\)
\(354\) 0 0
\(355\) −17.4891 −0.928226
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.13859 −0.271205 −0.135602 0.990763i \(-0.543297\pi\)
−0.135602 + 0.990763i \(0.543297\pi\)
\(360\) 0 0
\(361\) 26.4891 1.39416
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.7228 1.24171
\(366\) 0 0
\(367\) −29.6060 −1.54542 −0.772710 0.634760i \(-0.781099\pi\)
−0.772710 + 0.634760i \(0.781099\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.1168 0.629075
\(372\) 0 0
\(373\) −20.3723 −1.05484 −0.527418 0.849606i \(-0.676840\pi\)
−0.527418 + 0.849606i \(0.676840\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.861407 0.0443647
\(378\) 0 0
\(379\) 13.6277 0.700009 0.350004 0.936748i \(-0.386180\pi\)
0.350004 + 0.936748i \(0.386180\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.3723 −0.529999 −0.264999 0.964249i \(-0.585372\pi\)
−0.264999 + 0.964249i \(0.585372\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.7446 −0.950387 −0.475194 0.879881i \(-0.657622\pi\)
−0.475194 + 0.879881i \(0.657622\pi\)
\(390\) 0 0
\(391\) 5.37228 0.271688
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 21.6277 1.08821
\(396\) 0 0
\(397\) 20.9783 1.05287 0.526434 0.850216i \(-0.323529\pi\)
0.526434 + 0.850216i \(0.323529\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −32.2337 −1.60967 −0.804837 0.593496i \(-0.797747\pi\)
−0.804837 + 0.593496i \(0.797747\pi\)
\(402\) 0 0
\(403\) 3.60597 0.179626
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −14.7446 −0.729072 −0.364536 0.931189i \(-0.618772\pi\)
−0.364536 + 0.931189i \(0.618772\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.255437 0.0125693
\(414\) 0 0
\(415\) 37.6277 1.84707
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.9783 −0.585176 −0.292588 0.956239i \(-0.594516\pi\)
−0.292588 + 0.956239i \(0.594516\pi\)
\(420\) 0 0
\(421\) 8.97825 0.437573 0.218787 0.975773i \(-0.429790\pi\)
0.218787 + 0.975773i \(0.429790\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.627719 −0.0304488
\(426\) 0 0
\(427\) −1.25544 −0.0607549
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.9783 −1.68484 −0.842422 0.538819i \(-0.818871\pi\)
−0.842422 + 0.538819i \(0.818871\pi\)
\(432\) 0 0
\(433\) 23.7228 1.14005 0.570023 0.821629i \(-0.306934\pi\)
0.570023 + 0.821629i \(0.306934\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 36.2337 1.73329
\(438\) 0 0
\(439\) 7.37228 0.351860 0.175930 0.984403i \(-0.443707\pi\)
0.175930 + 0.984403i \(0.443707\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.2554 0.819831 0.409915 0.912124i \(-0.365558\pi\)
0.409915 + 0.912124i \(0.365558\pi\)
\(444\) 0 0
\(445\) −6.23369 −0.295505
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.7446 1.35654 0.678270 0.734813i \(-0.262730\pi\)
0.678270 + 0.734813i \(0.262730\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.25544 0.152617
\(456\) 0 0
\(457\) −29.6060 −1.38491 −0.692454 0.721462i \(-0.743471\pi\)
−0.692454 + 0.721462i \(0.743471\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.3505 1.83274 0.916368 0.400336i \(-0.131107\pi\)
0.916368 + 0.400336i \(0.131107\pi\)
\(462\) 0 0
\(463\) 1.86141 0.0865069 0.0432535 0.999064i \(-0.486228\pi\)
0.0432535 + 0.999064i \(0.486228\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.4891 0.809300 0.404650 0.914472i \(-0.367393\pi\)
0.404650 + 0.914472i \(0.367393\pi\)
\(468\) 0 0
\(469\) 4.62772 0.213688
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.23369 −0.194255
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.6060 −0.941511 −0.470755 0.882264i \(-0.656019\pi\)
−0.470755 + 0.882264i \(0.656019\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.5109 1.02217
\(486\) 0 0
\(487\) −12.2337 −0.554361 −0.277181 0.960818i \(-0.589400\pi\)
−0.277181 + 0.960818i \(0.589400\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 43.7228 1.97318 0.986591 0.163209i \(-0.0521846\pi\)
0.986591 + 0.163209i \(0.0521846\pi\)
\(492\) 0 0
\(493\) 0.627719 0.0282710
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.37228 0.330692
\(498\) 0 0
\(499\) 27.1168 1.21392 0.606958 0.794734i \(-0.292389\pi\)
0.606958 + 0.794734i \(0.292389\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.1168 1.56578 0.782891 0.622158i \(-0.213744\pi\)
0.782891 + 0.622158i \(0.213744\pi\)
\(504\) 0 0
\(505\) −14.2337 −0.633391
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.3723 −1.25758 −0.628790 0.777575i \(-0.716449\pi\)
−0.628790 + 0.777575i \(0.716449\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −31.7228 −1.39787
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.48913 0.371915 0.185958 0.982558i \(-0.440461\pi\)
0.185958 + 0.982558i \(0.440461\pi\)
\(522\) 0 0
\(523\) −5.76631 −0.252143 −0.126072 0.992021i \(-0.540237\pi\)
−0.126072 + 0.992021i \(0.540237\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.62772 0.114465
\(528\) 0 0
\(529\) 5.86141 0.254844
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7.02175 0.304146
\(534\) 0 0
\(535\) −20.7446 −0.896866
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 16.6060 0.713946 0.356973 0.934115i \(-0.383809\pi\)
0.356973 + 0.934115i \(0.383809\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 47.1168 2.01826
\(546\) 0 0
\(547\) 34.8397 1.48964 0.744818 0.667268i \(-0.232536\pi\)
0.744818 + 0.667268i \(0.232536\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.23369 0.180361
\(552\) 0 0
\(553\) −9.11684 −0.387688
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −32.6277 −1.38248 −0.691240 0.722625i \(-0.742935\pi\)
−0.691240 + 0.722625i \(0.742935\pi\)
\(558\) 0 0
\(559\) 10.6277 0.449505
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 32.6277 1.37509 0.687547 0.726140i \(-0.258687\pi\)
0.687547 + 0.726140i \(0.258687\pi\)
\(564\) 0 0
\(565\) 20.7446 0.872730
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.25544 −0.136475 −0.0682375 0.997669i \(-0.521738\pi\)
−0.0682375 + 0.997669i \(0.521738\pi\)
\(570\) 0 0
\(571\) −17.0000 −0.711428 −0.355714 0.934595i \(-0.615762\pi\)
−0.355714 + 0.934595i \(0.615762\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.37228 −0.140634
\(576\) 0 0
\(577\) 44.2337 1.84147 0.920736 0.390186i \(-0.127589\pi\)
0.920736 + 0.390186i \(0.127589\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.8614 −0.658042
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.1168 0.582665 0.291332 0.956622i \(-0.405901\pi\)
0.291332 + 0.956622i \(0.405901\pi\)
\(588\) 0 0
\(589\) 17.7228 0.730256
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.6277 1.29879 0.649397 0.760449i \(-0.275021\pi\)
0.649397 + 0.760449i \(0.275021\pi\)
\(594\) 0 0
\(595\) 2.37228 0.0972541
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.3723 −1.11840 −0.559201 0.829032i \(-0.688892\pi\)
−0.559201 + 0.829032i \(0.688892\pi\)
\(600\) 0 0
\(601\) 30.2337 1.23326 0.616629 0.787254i \(-0.288498\pi\)
0.616629 + 0.787254i \(0.288498\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −26.0951 −1.06092
\(606\) 0 0
\(607\) −9.13859 −0.370924 −0.185462 0.982651i \(-0.559378\pi\)
−0.185462 + 0.982651i \(0.559378\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.510875 −0.0206678
\(612\) 0 0
\(613\) 22.0000 0.888572 0.444286 0.895885i \(-0.353457\pi\)
0.444286 + 0.895885i \(0.353457\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) 8.23369 0.330940 0.165470 0.986215i \(-0.447086\pi\)
0.165470 + 0.986215i \(0.447086\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.62772 0.105277
\(624\) 0 0
\(625\) −27.7446 −1.10978
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.37228 −0.174334
\(630\) 0 0
\(631\) −11.8614 −0.472195 −0.236098 0.971729i \(-0.575868\pi\)
−0.236098 + 0.971729i \(0.575868\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26.3723 1.04655
\(636\) 0 0
\(637\) −1.37228 −0.0543718
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.51087 0.0991736 0.0495868 0.998770i \(-0.484210\pi\)
0.0495868 + 0.998770i \(0.484210\pi\)
\(642\) 0 0
\(643\) −1.76631 −0.0696565 −0.0348283 0.999393i \(-0.511088\pi\)
−0.0348283 + 0.999393i \(0.511088\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.7446 0.579669 0.289834 0.957077i \(-0.406400\pi\)
0.289834 + 0.957077i \(0.406400\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.6060 −0.688975 −0.344487 0.938791i \(-0.611947\pi\)
−0.344487 + 0.938791i \(0.611947\pi\)
\(654\) 0 0
\(655\) −33.4891 −1.30853
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 37.4891 1.46037 0.730184 0.683250i \(-0.239434\pi\)
0.730184 + 0.683250i \(0.239434\pi\)
\(660\) 0 0
\(661\) 20.5109 0.797781 0.398890 0.916999i \(-0.369395\pi\)
0.398890 + 0.916999i \(0.369395\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) 3.37228 0.130575
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 41.3723 1.59478 0.797392 0.603462i \(-0.206212\pi\)
0.797392 + 0.603462i \(0.206212\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.2337 1.00824 0.504121 0.863633i \(-0.331816\pi\)
0.504121 + 0.863633i \(0.331816\pi\)
\(678\) 0 0
\(679\) −9.48913 −0.364159
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.2337 1.00380 0.501902 0.864924i \(-0.332634\pi\)
0.501902 + 0.864924i \(0.332634\pi\)
\(684\) 0 0
\(685\) −33.2119 −1.26896
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.6277 0.633466
\(690\) 0 0
\(691\) 0.744563 0.0283245 0.0141622 0.999900i \(-0.495492\pi\)
0.0141622 + 0.999900i \(0.495492\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.51087 −0.246972
\(696\) 0 0
\(697\) 5.11684 0.193814
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.5109 0.774685 0.387343 0.921936i \(-0.373393\pi\)
0.387343 + 0.921936i \(0.373393\pi\)
\(702\) 0 0
\(703\) −29.4891 −1.11220
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −33.6277 −1.26292 −0.631458 0.775410i \(-0.717543\pi\)
−0.631458 + 0.775410i \(0.717543\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.1168 0.528680
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.8832 −0.629635 −0.314818 0.949152i \(-0.601943\pi\)
−0.314818 + 0.949152i \(0.601943\pi\)
\(720\) 0 0
\(721\) 13.3723 0.498010
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.394031 −0.0146339
\(726\) 0 0
\(727\) 14.1168 0.523565 0.261782 0.965127i \(-0.415690\pi\)
0.261782 + 0.965127i \(0.415690\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.74456 0.286443
\(732\) 0 0
\(733\) 43.6060 1.61062 0.805312 0.592852i \(-0.201998\pi\)
0.805312 + 0.592852i \(0.201998\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.8832 1.24305 0.621526 0.783393i \(-0.286513\pi\)
0.621526 + 0.783393i \(0.286513\pi\)
\(744\) 0 0
\(745\) 8.00000 0.293097
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.74456 0.319519
\(750\) 0 0
\(751\) −28.2337 −1.03026 −0.515131 0.857111i \(-0.672257\pi\)
−0.515131 + 0.857111i \(0.672257\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.9049 0.506051
\(756\) 0 0
\(757\) −15.1168 −0.549431 −0.274716 0.961526i \(-0.588584\pi\)
−0.274716 + 0.961526i \(0.588584\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.51087 −0.344769 −0.172384 0.985030i \(-0.555147\pi\)
−0.172384 + 0.985030i \(0.555147\pi\)
\(762\) 0 0
\(763\) −19.8614 −0.719031
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.350532 0.0126570
\(768\) 0 0
\(769\) 2.97825 0.107398 0.0536992 0.998557i \(-0.482899\pi\)
0.0536992 + 0.998557i \(0.482899\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.6060 1.17276 0.586378 0.810038i \(-0.300553\pi\)
0.586378 + 0.810038i \(0.300553\pi\)
\(774\) 0 0
\(775\) −1.64947 −0.0592506
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 34.5109 1.23648
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 24.0000 0.856597
\(786\) 0 0
\(787\) −32.9783 −1.17555 −0.587774 0.809025i \(-0.699996\pi\)
−0.587774 + 0.809025i \(0.699996\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.74456 −0.310921
\(792\) 0 0
\(793\) −1.72281 −0.0611789
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.02175 0.248723 0.124362 0.992237i \(-0.460312\pi\)
0.124362 + 0.992237i \(0.460312\pi\)
\(798\) 0 0
\(799\) −0.372281 −0.0131704
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 12.7446 0.449187
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −49.2119 −1.73020 −0.865100 0.501600i \(-0.832745\pi\)
−0.865100 + 0.501600i \(0.832745\pi\)
\(810\) 0 0
\(811\) −0.510875 −0.0179392 −0.00896962 0.999960i \(-0.502855\pi\)
−0.00896962 + 0.999960i \(0.502855\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 40.3288 1.41266
\(816\) 0 0
\(817\) 52.2337 1.82743
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 50.5842 1.76540 0.882701 0.469936i \(-0.155723\pi\)
0.882701 + 0.469936i \(0.155723\pi\)
\(822\) 0 0
\(823\) −26.6060 −0.927426 −0.463713 0.885986i \(-0.653483\pi\)
−0.463713 + 0.885986i \(0.653483\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −34.4674 −1.19855 −0.599274 0.800544i \(-0.704544\pi\)
−0.599274 + 0.800544i \(0.704544\pi\)
\(828\) 0 0
\(829\) −12.2337 −0.424894 −0.212447 0.977173i \(-0.568143\pi\)
−0.212447 + 0.977173i \(0.568143\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −53.0733 −1.83668
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.35053 0.115673 0.0578366 0.998326i \(-0.481580\pi\)
0.0578366 + 0.998326i \(0.481580\pi\)
\(840\) 0 0
\(841\) −28.6060 −0.986413
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.3723 −0.907234
\(846\) 0 0
\(847\) 11.0000 0.377964
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −23.4891 −0.805197
\(852\) 0 0
\(853\) −31.8397 −1.09017 −0.545085 0.838381i \(-0.683502\pi\)
−0.545085 + 0.838381i \(0.683502\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 55.9783 1.91218 0.956090 0.293072i \(-0.0946776\pi\)
0.956090 + 0.293072i \(0.0946776\pi\)
\(858\) 0 0
\(859\) 12.9783 0.442812 0.221406 0.975182i \(-0.428935\pi\)
0.221406 + 0.975182i \(0.428935\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −55.0951 −1.87546 −0.937729 0.347367i \(-0.887076\pi\)
−0.937729 + 0.347367i \(0.887076\pi\)
\(864\) 0 0
\(865\) −26.7011 −0.907863
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 6.35053 0.215180
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.3723 0.350647
\(876\) 0 0
\(877\) 32.6060 1.10103 0.550513 0.834827i \(-0.314432\pi\)
0.550513 + 0.834827i \(0.314432\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34.8614 −1.17451 −0.587255 0.809402i \(-0.699792\pi\)
−0.587255 + 0.809402i \(0.699792\pi\)
\(882\) 0 0
\(883\) −33.7446 −1.13559 −0.567797 0.823168i \(-0.692204\pi\)
−0.567797 + 0.823168i \(0.692204\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −26.8397 −0.901187 −0.450594 0.892729i \(-0.648788\pi\)
−0.450594 + 0.892729i \(0.648788\pi\)
\(888\) 0 0
\(889\) −11.1168 −0.372847
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.51087 −0.0840232
\(894\) 0 0
\(895\) 11.2554 0.376228
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.64947 0.0550128
\(900\) 0 0
\(901\) 12.1168 0.403671
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −46.5109 −1.54607
\(906\) 0 0
\(907\) −41.3505 −1.37302 −0.686511 0.727119i \(-0.740859\pi\)
−0.686511 + 0.727119i \(0.740859\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −53.9565 −1.78766 −0.893829 0.448407i \(-0.851991\pi\)
−0.893829 + 0.448407i \(0.851991\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.1168 0.466179
\(918\) 0 0
\(919\) 24.3723 0.803967 0.401984 0.915647i \(-0.368321\pi\)
0.401984 + 0.915647i \(0.368321\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.1168 0.333000
\(924\) 0 0
\(925\) 2.74456 0.0902407
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.8614 0.586014 0.293007 0.956110i \(-0.405344\pi\)
0.293007 + 0.956110i \(0.405344\pi\)
\(930\) 0 0
\(931\) −6.74456 −0.221044
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 28.4674 0.929989 0.464994 0.885314i \(-0.346056\pi\)
0.464994 + 0.885314i \(0.346056\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −22.8832 −0.745970 −0.372985 0.927837i \(-0.621666\pi\)
−0.372985 + 0.927837i \(0.621666\pi\)
\(942\) 0 0
\(943\) 27.4891 0.895169
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.72281 0.185966 0.0929832 0.995668i \(-0.470360\pi\)
0.0929832 + 0.995668i \(0.470360\pi\)
\(948\) 0 0
\(949\) −13.7228 −0.445461
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.7446 0.542410 0.271205 0.962522i \(-0.412578\pi\)
0.271205 + 0.962522i \(0.412578\pi\)
\(954\) 0 0
\(955\) 1.76631 0.0571565
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.0000 0.452084
\(960\) 0 0
\(961\) −24.0951 −0.777261
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 26.6495 0.857877
\(966\) 0 0
\(967\) −29.4891 −0.948306 −0.474153 0.880442i \(-0.657246\pi\)
−0.474153 + 0.880442i \(0.657246\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −43.7446 −1.40383 −0.701915 0.712261i \(-0.747671\pi\)
−0.701915 + 0.712261i \(0.747671\pi\)
\(972\) 0 0
\(973\) 2.74456 0.0879866
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.7446 0.471720 0.235860 0.971787i \(-0.424209\pi\)
0.235860 + 0.971787i \(0.424209\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.6277 0.434657 0.217328 0.976099i \(-0.430266\pi\)
0.217328 + 0.976099i \(0.430266\pi\)
\(984\) 0 0
\(985\) −6.51087 −0.207454
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 41.6060 1.32299
\(990\) 0 0
\(991\) 24.0951 0.765406 0.382703 0.923871i \(-0.374993\pi\)
0.382703 + 0.923871i \(0.374993\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 40.0000 1.26809
\(996\) 0 0
\(997\) −12.6277 −0.399924 −0.199962 0.979804i \(-0.564082\pi\)
−0.199962 + 0.979804i \(0.564082\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.a.bf.1.2 2
3.2 odd 2 3024.2.a.bl.1.1 2
4.3 odd 2 1512.2.a.n.1.2 2
12.11 even 2 1512.2.a.q.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.a.n.1.2 2 4.3 odd 2
1512.2.a.q.1.1 yes 2 12.11 even 2
3024.2.a.bf.1.2 2 1.1 even 1 trivial
3024.2.a.bl.1.1 2 3.2 odd 2