Properties

Label 3024.2.a.bm.1.1
Level $3024$
Weight $2$
Character 3024.1
Self dual yes
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1512)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3024.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.267949 q^{5} -1.00000 q^{7} -5.19615 q^{11} +3.46410 q^{13} +4.00000 q^{17} +5.92820 q^{19} -0.267949 q^{23} -4.92820 q^{25} -4.92820 q^{29} +1.53590 q^{31} -0.267949 q^{35} -0.464102 q^{37} +9.19615 q^{41} -5.46410 q^{43} +1.46410 q^{47} +1.00000 q^{49} +8.00000 q^{53} -1.39230 q^{55} -9.46410 q^{59} +10.9282 q^{61} +0.928203 q^{65} +8.53590 q^{67} -14.6603 q^{71} +8.39230 q^{73} +5.19615 q^{77} +12.3923 q^{79} +12.9282 q^{83} +1.07180 q^{85} +14.2679 q^{89} -3.46410 q^{91} +1.58846 q^{95} -1.07180 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 2 q^{7} + 8 q^{17} - 2 q^{19} - 4 q^{23} + 4 q^{25} + 4 q^{29} + 10 q^{31} - 4 q^{35} + 6 q^{37} + 8 q^{41} - 4 q^{43} - 4 q^{47} + 2 q^{49} + 16 q^{53} + 18 q^{55} - 12 q^{59} + 8 q^{61}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.267949 0.119831 0.0599153 0.998203i \(-0.480917\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.19615 −1.56670 −0.783349 0.621582i \(-0.786490\pi\)
−0.783349 + 0.621582i \(0.786490\pi\)
\(12\) 0 0
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 5.92820 1.36002 0.680012 0.733201i \(-0.261975\pi\)
0.680012 + 0.733201i \(0.261975\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.267949 −0.0558713 −0.0279356 0.999610i \(-0.508893\pi\)
−0.0279356 + 0.999610i \(0.508893\pi\)
\(24\) 0 0
\(25\) −4.92820 −0.985641
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.92820 −0.915144 −0.457572 0.889172i \(-0.651281\pi\)
−0.457572 + 0.889172i \(0.651281\pi\)
\(30\) 0 0
\(31\) 1.53590 0.275855 0.137928 0.990442i \(-0.455956\pi\)
0.137928 + 0.990442i \(0.455956\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.267949 −0.0452917
\(36\) 0 0
\(37\) −0.464102 −0.0762978 −0.0381489 0.999272i \(-0.512146\pi\)
−0.0381489 + 0.999272i \(0.512146\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.19615 1.43620 0.718099 0.695941i \(-0.245013\pi\)
0.718099 + 0.695941i \(0.245013\pi\)
\(42\) 0 0
\(43\) −5.46410 −0.833268 −0.416634 0.909074i \(-0.636790\pi\)
−0.416634 + 0.909074i \(0.636790\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.46410 0.213561 0.106781 0.994283i \(-0.465946\pi\)
0.106781 + 0.994283i \(0.465946\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.00000 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(54\) 0 0
\(55\) −1.39230 −0.187738
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.46410 −1.23212 −0.616061 0.787699i \(-0.711272\pi\)
−0.616061 + 0.787699i \(0.711272\pi\)
\(60\) 0 0
\(61\) 10.9282 1.39921 0.699607 0.714528i \(-0.253359\pi\)
0.699607 + 0.714528i \(0.253359\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.928203 0.115129
\(66\) 0 0
\(67\) 8.53590 1.04283 0.521413 0.853304i \(-0.325405\pi\)
0.521413 + 0.853304i \(0.325405\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.6603 −1.73985 −0.869926 0.493182i \(-0.835834\pi\)
−0.869926 + 0.493182i \(0.835834\pi\)
\(72\) 0 0
\(73\) 8.39230 0.982245 0.491122 0.871091i \(-0.336587\pi\)
0.491122 + 0.871091i \(0.336587\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.19615 0.592157
\(78\) 0 0
\(79\) 12.3923 1.39424 0.697122 0.716953i \(-0.254464\pi\)
0.697122 + 0.716953i \(0.254464\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.9282 1.41905 0.709527 0.704678i \(-0.248908\pi\)
0.709527 + 0.704678i \(0.248908\pi\)
\(84\) 0 0
\(85\) 1.07180 0.116253
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.2679 1.51240 0.756200 0.654341i \(-0.227054\pi\)
0.756200 + 0.654341i \(0.227054\pi\)
\(90\) 0 0
\(91\) −3.46410 −0.363137
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.58846 0.162972
\(96\) 0 0
\(97\) −1.07180 −0.108824 −0.0544122 0.998519i \(-0.517329\pi\)
−0.0544122 + 0.998519i \(0.517329\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 12.4641 1.22812 0.614062 0.789258i \(-0.289534\pi\)
0.614062 + 0.789258i \(0.289534\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.46410 0.334887 0.167444 0.985882i \(-0.446449\pi\)
0.167444 + 0.985882i \(0.446449\pi\)
\(108\) 0 0
\(109\) 10.4641 1.00228 0.501140 0.865366i \(-0.332914\pi\)
0.501140 + 0.865366i \(0.332914\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.46410 −0.325875 −0.162938 0.986636i \(-0.552097\pi\)
−0.162938 + 0.986636i \(0.552097\pi\)
\(114\) 0 0
\(115\) −0.0717968 −0.00669508
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 16.0000 1.45455
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.66025 −0.237940
\(126\) 0 0
\(127\) 14.3923 1.27711 0.638555 0.769576i \(-0.279532\pi\)
0.638555 + 0.769576i \(0.279532\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.3923 −1.08272 −0.541360 0.840791i \(-0.682091\pi\)
−0.541360 + 0.840791i \(0.682091\pi\)
\(132\) 0 0
\(133\) −5.92820 −0.514040
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 6.92820 0.587643 0.293821 0.955860i \(-0.405073\pi\)
0.293821 + 0.955860i \(0.405073\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −18.0000 −1.50524
\(144\) 0 0
\(145\) −1.32051 −0.109662
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −16.5359 −1.35467 −0.677337 0.735673i \(-0.736866\pi\)
−0.677337 + 0.735673i \(0.736866\pi\)
\(150\) 0 0
\(151\) 7.07180 0.575495 0.287747 0.957706i \(-0.407094\pi\)
0.287747 + 0.957706i \(0.407094\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.411543 0.0330559
\(156\) 0 0
\(157\) 1.60770 0.128308 0.0641540 0.997940i \(-0.479565\pi\)
0.0641540 + 0.997940i \(0.479565\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.267949 0.0211174
\(162\) 0 0
\(163\) −14.3923 −1.12729 −0.563646 0.826016i \(-0.690602\pi\)
−0.563646 + 0.826016i \(0.690602\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.46410 −0.268060 −0.134030 0.990977i \(-0.542792\pi\)
−0.134030 + 0.990977i \(0.542792\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.1244 1.07385 0.536927 0.843628i \(-0.319585\pi\)
0.536927 + 0.843628i \(0.319585\pi\)
\(174\) 0 0
\(175\) 4.92820 0.372537
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.4641 −0.856867 −0.428434 0.903573i \(-0.640934\pi\)
−0.428434 + 0.903573i \(0.640934\pi\)
\(180\) 0 0
\(181\) −16.9282 −1.25826 −0.629132 0.777299i \(-0.716589\pi\)
−0.629132 + 0.777299i \(0.716589\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.124356 −0.00914281
\(186\) 0 0
\(187\) −20.7846 −1.51992
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.1244 1.89029 0.945146 0.326648i \(-0.105919\pi\)
0.945146 + 0.326648i \(0.105919\pi\)
\(192\) 0 0
\(193\) 26.7846 1.92800 0.963999 0.265905i \(-0.0856708\pi\)
0.963999 + 0.265905i \(0.0856708\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.46410 0.246807 0.123404 0.992357i \(-0.460619\pi\)
0.123404 + 0.992357i \(0.460619\pi\)
\(198\) 0 0
\(199\) 10.4641 0.741780 0.370890 0.928677i \(-0.379053\pi\)
0.370890 + 0.928677i \(0.379053\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.92820 0.345892
\(204\) 0 0
\(205\) 2.46410 0.172100
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −30.8038 −2.13075
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.46410 −0.0998509
\(216\) 0 0
\(217\) −1.53590 −0.104264
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.8564 0.932083
\(222\) 0 0
\(223\) −6.46410 −0.432868 −0.216434 0.976297i \(-0.569443\pi\)
−0.216434 + 0.976297i \(0.569443\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.3205 1.41509 0.707546 0.706667i \(-0.249802\pi\)
0.707546 + 0.706667i \(0.249802\pi\)
\(228\) 0 0
\(229\) 14.9282 0.986483 0.493242 0.869892i \(-0.335812\pi\)
0.493242 + 0.869892i \(0.335812\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.46410 −0.488990 −0.244495 0.969651i \(-0.578622\pi\)
−0.244495 + 0.969651i \(0.578622\pi\)
\(234\) 0 0
\(235\) 0.392305 0.0255911
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 26.3923 1.70718 0.853588 0.520948i \(-0.174422\pi\)
0.853588 + 0.520948i \(0.174422\pi\)
\(240\) 0 0
\(241\) −17.4641 −1.12496 −0.562481 0.826810i \(-0.690153\pi\)
−0.562481 + 0.826810i \(0.690153\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.267949 0.0171186
\(246\) 0 0
\(247\) 20.5359 1.30667
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.07180 0.0676512 0.0338256 0.999428i \(-0.489231\pi\)
0.0338256 + 0.999428i \(0.489231\pi\)
\(252\) 0 0
\(253\) 1.39230 0.0875335
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.124356 −0.00775709 −0.00387855 0.999992i \(-0.501235\pi\)
−0.00387855 + 0.999992i \(0.501235\pi\)
\(258\) 0 0
\(259\) 0.464102 0.0288379
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.6603 0.903990 0.451995 0.892020i \(-0.350712\pi\)
0.451995 + 0.892020i \(0.350712\pi\)
\(264\) 0 0
\(265\) 2.14359 0.131680
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.58846 0.584619 0.292309 0.956324i \(-0.405576\pi\)
0.292309 + 0.956324i \(0.405576\pi\)
\(270\) 0 0
\(271\) 9.07180 0.551072 0.275536 0.961291i \(-0.411145\pi\)
0.275536 + 0.961291i \(0.411145\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 25.6077 1.54420
\(276\) 0 0
\(277\) 17.3923 1.04500 0.522501 0.852639i \(-0.324999\pi\)
0.522501 + 0.852639i \(0.324999\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.3205 −0.675325 −0.337662 0.941267i \(-0.609636\pi\)
−0.337662 + 0.941267i \(0.609636\pi\)
\(282\) 0 0
\(283\) −1.07180 −0.0637117 −0.0318559 0.999492i \(-0.510142\pi\)
−0.0318559 + 0.999492i \(0.510142\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.19615 −0.542832
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.07180 0.296298 0.148149 0.988965i \(-0.452669\pi\)
0.148149 + 0.988965i \(0.452669\pi\)
\(294\) 0 0
\(295\) −2.53590 −0.147646
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.928203 −0.0536794
\(300\) 0 0
\(301\) 5.46410 0.314946
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.92820 0.167668
\(306\) 0 0
\(307\) −6.07180 −0.346536 −0.173268 0.984875i \(-0.555433\pi\)
−0.173268 + 0.984875i \(0.555433\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.8564 −1.12595 −0.562977 0.826473i \(-0.690344\pi\)
−0.562977 + 0.826473i \(0.690344\pi\)
\(312\) 0 0
\(313\) −26.3923 −1.49178 −0.745891 0.666068i \(-0.767976\pi\)
−0.745891 + 0.666068i \(0.767976\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.4641 −1.87953 −0.939766 0.341820i \(-0.888957\pi\)
−0.939766 + 0.341820i \(0.888957\pi\)
\(318\) 0 0
\(319\) 25.6077 1.43376
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 23.7128 1.31942
\(324\) 0 0
\(325\) −17.0718 −0.946973
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.46410 −0.0807185
\(330\) 0 0
\(331\) −1.07180 −0.0589113 −0.0294556 0.999566i \(-0.509377\pi\)
−0.0294556 + 0.999566i \(0.509377\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.28719 0.124962
\(336\) 0 0
\(337\) −7.92820 −0.431877 −0.215938 0.976407i \(-0.569281\pi\)
−0.215938 + 0.976407i \(0.569281\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.98076 −0.432182
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −34.5167 −1.85295 −0.926476 0.376355i \(-0.877177\pi\)
−0.926476 + 0.376355i \(0.877177\pi\)
\(348\) 0 0
\(349\) −4.92820 −0.263801 −0.131900 0.991263i \(-0.542108\pi\)
−0.131900 + 0.991263i \(0.542108\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 29.4449 1.56719 0.783596 0.621271i \(-0.213383\pi\)
0.783596 + 0.621271i \(0.213383\pi\)
\(354\) 0 0
\(355\) −3.92820 −0.208487
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.5359 1.08384 0.541922 0.840429i \(-0.317697\pi\)
0.541922 + 0.840429i \(0.317697\pi\)
\(360\) 0 0
\(361\) 16.1436 0.849663
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.24871 0.117703
\(366\) 0 0
\(367\) −22.3205 −1.16512 −0.582561 0.812787i \(-0.697949\pi\)
−0.582561 + 0.812787i \(0.697949\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) −9.53590 −0.493750 −0.246875 0.969047i \(-0.579404\pi\)
−0.246875 + 0.969047i \(0.579404\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.0718 −0.879242
\(378\) 0 0
\(379\) −23.3205 −1.19789 −0.598947 0.800789i \(-0.704414\pi\)
−0.598947 + 0.800789i \(0.704414\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.53590 0.436164 0.218082 0.975930i \(-0.430020\pi\)
0.218082 + 0.975930i \(0.430020\pi\)
\(384\) 0 0
\(385\) 1.39230 0.0709584
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −23.7128 −1.20229 −0.601144 0.799141i \(-0.705288\pi\)
−0.601144 + 0.799141i \(0.705288\pi\)
\(390\) 0 0
\(391\) −1.07180 −0.0542031
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.32051 0.167073
\(396\) 0 0
\(397\) 23.8564 1.19732 0.598659 0.801004i \(-0.295700\pi\)
0.598659 + 0.801004i \(0.295700\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −38.7846 −1.93681 −0.968405 0.249381i \(-0.919773\pi\)
−0.968405 + 0.249381i \(0.919773\pi\)
\(402\) 0 0
\(403\) 5.32051 0.265033
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.41154 0.119536
\(408\) 0 0
\(409\) 2.53590 0.125392 0.0626961 0.998033i \(-0.480030\pi\)
0.0626961 + 0.998033i \(0.480030\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.46410 0.465698
\(414\) 0 0
\(415\) 3.46410 0.170046
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.2487 0.793801 0.396901 0.917862i \(-0.370086\pi\)
0.396901 + 0.917862i \(0.370086\pi\)
\(420\) 0 0
\(421\) −13.5359 −0.659699 −0.329850 0.944033i \(-0.606998\pi\)
−0.329850 + 0.944033i \(0.606998\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −19.7128 −0.956212
\(426\) 0 0
\(427\) −10.9282 −0.528853
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.0526 0.628720 0.314360 0.949304i \(-0.398210\pi\)
0.314360 + 0.949304i \(0.398210\pi\)
\(432\) 0 0
\(433\) 9.32051 0.447915 0.223958 0.974599i \(-0.428102\pi\)
0.223958 + 0.974599i \(0.428102\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.58846 −0.0759862
\(438\) 0 0
\(439\) 27.7128 1.32266 0.661330 0.750095i \(-0.269992\pi\)
0.661330 + 0.750095i \(0.269992\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.73205 −0.462384 −0.231192 0.972908i \(-0.574263\pi\)
−0.231192 + 0.972908i \(0.574263\pi\)
\(444\) 0 0
\(445\) 3.82309 0.181232
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.67949 −0.126453 −0.0632265 0.997999i \(-0.520139\pi\)
−0.0632265 + 0.997999i \(0.520139\pi\)
\(450\) 0 0
\(451\) −47.7846 −2.25009
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.928203 −0.0435148
\(456\) 0 0
\(457\) 14.8564 0.694953 0.347477 0.937689i \(-0.387039\pi\)
0.347477 + 0.937689i \(0.387039\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −33.5885 −1.56437 −0.782185 0.623046i \(-0.785895\pi\)
−0.782185 + 0.623046i \(0.785895\pi\)
\(462\) 0 0
\(463\) 3.07180 0.142759 0.0713793 0.997449i \(-0.477260\pi\)
0.0713793 + 0.997449i \(0.477260\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −35.3205 −1.63444 −0.817219 0.576327i \(-0.804485\pi\)
−0.817219 + 0.576327i \(0.804485\pi\)
\(468\) 0 0
\(469\) −8.53590 −0.394151
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 28.3923 1.30548
\(474\) 0 0
\(475\) −29.2154 −1.34049
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.85641 −0.267586 −0.133793 0.991009i \(-0.542716\pi\)
−0.133793 + 0.991009i \(0.542716\pi\)
\(480\) 0 0
\(481\) −1.60770 −0.0733046
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.287187 −0.0130405
\(486\) 0 0
\(487\) 33.1769 1.50339 0.751695 0.659511i \(-0.229237\pi\)
0.751695 + 0.659511i \(0.229237\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 31.0526 1.40138 0.700691 0.713465i \(-0.252875\pi\)
0.700691 + 0.713465i \(0.252875\pi\)
\(492\) 0 0
\(493\) −19.7128 −0.887820
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14.6603 0.657602
\(498\) 0 0
\(499\) 3.60770 0.161503 0.0807513 0.996734i \(-0.474268\pi\)
0.0807513 + 0.996734i \(0.474268\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.0000 0.624229 0.312115 0.950044i \(-0.398963\pi\)
0.312115 + 0.950044i \(0.398963\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.07180 −0.224803 −0.112402 0.993663i \(-0.535854\pi\)
−0.112402 + 0.993663i \(0.535854\pi\)
\(510\) 0 0
\(511\) −8.39230 −0.371254
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.33975 0.147167
\(516\) 0 0
\(517\) −7.60770 −0.334586
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.2679 0.449847 0.224924 0.974376i \(-0.427787\pi\)
0.224924 + 0.974376i \(0.427787\pi\)
\(522\) 0 0
\(523\) 21.7846 0.952574 0.476287 0.879290i \(-0.341982\pi\)
0.476287 + 0.879290i \(0.341982\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.14359 0.267619
\(528\) 0 0
\(529\) −22.9282 −0.996878
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 31.8564 1.37985
\(534\) 0 0
\(535\) 0.928203 0.0401297
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.19615 −0.223814
\(540\) 0 0
\(541\) −41.2487 −1.77342 −0.886710 0.462325i \(-0.847015\pi\)
−0.886710 + 0.462325i \(0.847015\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.80385 0.120104
\(546\) 0 0
\(547\) −21.0718 −0.900965 −0.450482 0.892785i \(-0.648748\pi\)
−0.450482 + 0.892785i \(0.648748\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −29.2154 −1.24462
\(552\) 0 0
\(553\) −12.3923 −0.526974
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.46410 0.316264 0.158132 0.987418i \(-0.449453\pi\)
0.158132 + 0.987418i \(0.449453\pi\)
\(558\) 0 0
\(559\) −18.9282 −0.800578
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.0718 −1.14094 −0.570470 0.821318i \(-0.693239\pi\)
−0.570470 + 0.821318i \(0.693239\pi\)
\(564\) 0 0
\(565\) −0.928203 −0.0390498
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.3205 0.726113 0.363057 0.931767i \(-0.381733\pi\)
0.363057 + 0.931767i \(0.381733\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.32051 0.0550690
\(576\) 0 0
\(577\) −38.7846 −1.61462 −0.807312 0.590125i \(-0.799079\pi\)
−0.807312 + 0.590125i \(0.799079\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.9282 −0.536352
\(582\) 0 0
\(583\) −41.5692 −1.72162
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.1769 1.61700 0.808502 0.588493i \(-0.200279\pi\)
0.808502 + 0.588493i \(0.200279\pi\)
\(588\) 0 0
\(589\) 9.10512 0.375170
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 32.9090 1.35141 0.675705 0.737172i \(-0.263839\pi\)
0.675705 + 0.737172i \(0.263839\pi\)
\(594\) 0 0
\(595\) −1.07180 −0.0439394
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.1244 0.577106 0.288553 0.957464i \(-0.406826\pi\)
0.288553 + 0.957464i \(0.406826\pi\)
\(600\) 0 0
\(601\) −30.3923 −1.23973 −0.619864 0.784709i \(-0.712812\pi\)
−0.619864 + 0.784709i \(0.712812\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.28719 0.174299
\(606\) 0 0
\(607\) 1.07180 0.0435029 0.0217514 0.999763i \(-0.493076\pi\)
0.0217514 + 0.999763i \(0.493076\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.07180 0.205183
\(612\) 0 0
\(613\) −42.1769 −1.70351 −0.851755 0.523941i \(-0.824461\pi\)
−0.851755 + 0.523941i \(0.824461\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.39230 0.176828 0.0884138 0.996084i \(-0.471820\pi\)
0.0884138 + 0.996084i \(0.471820\pi\)
\(618\) 0 0
\(619\) −41.7846 −1.67947 −0.839733 0.543000i \(-0.817288\pi\)
−0.839733 + 0.543000i \(0.817288\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.2679 −0.571633
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.85641 −0.0740198
\(630\) 0 0
\(631\) −2.24871 −0.0895198 −0.0447599 0.998998i \(-0.514252\pi\)
−0.0447599 + 0.998998i \(0.514252\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.85641 0.153037
\(636\) 0 0
\(637\) 3.46410 0.137253
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.1051 1.66305 0.831526 0.555486i \(-0.187468\pi\)
0.831526 + 0.555486i \(0.187468\pi\)
\(642\) 0 0
\(643\) −45.7846 −1.80557 −0.902784 0.430093i \(-0.858481\pi\)
−0.902784 + 0.430093i \(0.858481\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.3205 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(648\) 0 0
\(649\) 49.1769 1.93036
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −37.4641 −1.46608 −0.733042 0.680184i \(-0.761900\pi\)
−0.733042 + 0.680184i \(0.761900\pi\)
\(654\) 0 0
\(655\) −3.32051 −0.129743
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −23.3397 −0.909187 −0.454594 0.890699i \(-0.650216\pi\)
−0.454594 + 0.890699i \(0.650216\pi\)
\(660\) 0 0
\(661\) 41.0333 1.59601 0.798006 0.602650i \(-0.205888\pi\)
0.798006 + 0.602650i \(0.205888\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.58846 −0.0615977
\(666\) 0 0
\(667\) 1.32051 0.0511303
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −56.7846 −2.19215
\(672\) 0 0
\(673\) −31.0718 −1.19773 −0.598865 0.800850i \(-0.704381\pi\)
−0.598865 + 0.800850i \(0.704381\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.3731 1.62853 0.814265 0.580494i \(-0.197140\pi\)
0.814265 + 0.580494i \(0.197140\pi\)
\(678\) 0 0
\(679\) 1.07180 0.0411318
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.8038 −0.719509 −0.359755 0.933047i \(-0.617140\pi\)
−0.359755 + 0.933047i \(0.617140\pi\)
\(684\) 0 0
\(685\) −2.67949 −0.102378
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 27.7128 1.05577
\(690\) 0 0
\(691\) 5.85641 0.222788 0.111394 0.993776i \(-0.464468\pi\)
0.111394 + 0.993776i \(0.464468\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.85641 0.0704175
\(696\) 0 0
\(697\) 36.7846 1.39332
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.8564 −1.50536 −0.752678 0.658389i \(-0.771238\pi\)
−0.752678 + 0.658389i \(0.771238\pi\)
\(702\) 0 0
\(703\) −2.75129 −0.103767
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.4641 −0.768545 −0.384273 0.923220i \(-0.625548\pi\)
−0.384273 + 0.923220i \(0.625548\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.411543 −0.0154124
\(714\) 0 0
\(715\) −4.82309 −0.180373
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.39230 −0.163805 −0.0819027 0.996640i \(-0.526100\pi\)
−0.0819027 + 0.996640i \(0.526100\pi\)
\(720\) 0 0
\(721\) −12.4641 −0.464187
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.2872 0.902003
\(726\) 0 0
\(727\) 24.7846 0.919210 0.459605 0.888123i \(-0.347991\pi\)
0.459605 + 0.888123i \(0.347991\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −21.8564 −0.808388
\(732\) 0 0
\(733\) −26.2487 −0.969518 −0.484759 0.874648i \(-0.661093\pi\)
−0.484759 + 0.874648i \(0.661093\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −44.3538 −1.63379
\(738\) 0 0
\(739\) −39.5692 −1.45558 −0.727789 0.685802i \(-0.759452\pi\)
−0.727789 + 0.685802i \(0.759452\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −38.3731 −1.40777 −0.703886 0.710313i \(-0.748553\pi\)
−0.703886 + 0.710313i \(0.748553\pi\)
\(744\) 0 0
\(745\) −4.43078 −0.162331
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.46410 −0.126576
\(750\) 0 0
\(751\) 41.1769 1.50257 0.751283 0.659980i \(-0.229435\pi\)
0.751283 + 0.659980i \(0.229435\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.89488 0.0689618
\(756\) 0 0
\(757\) −34.7846 −1.26427 −0.632134 0.774859i \(-0.717821\pi\)
−0.632134 + 0.774859i \(0.717821\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.8564 0.502294 0.251147 0.967949i \(-0.419192\pi\)
0.251147 + 0.967949i \(0.419192\pi\)
\(762\) 0 0
\(763\) −10.4641 −0.378826
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −32.7846 −1.18378
\(768\) 0 0
\(769\) −46.1051 −1.66259 −0.831297 0.555829i \(-0.812401\pi\)
−0.831297 + 0.555829i \(0.812401\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.87564 0.355202 0.177601 0.984103i \(-0.443166\pi\)
0.177601 + 0.984103i \(0.443166\pi\)
\(774\) 0 0
\(775\) −7.56922 −0.271894
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 54.5167 1.95326
\(780\) 0 0
\(781\) 76.1769 2.72582
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.430781 0.0153752
\(786\) 0 0
\(787\) 23.7128 0.845270 0.422635 0.906300i \(-0.361105\pi\)
0.422635 + 0.906300i \(0.361105\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.46410 0.123169
\(792\) 0 0
\(793\) 37.8564 1.34432
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 50.6603 1.79448 0.897239 0.441545i \(-0.145569\pi\)
0.897239 + 0.441545i \(0.145569\pi\)
\(798\) 0 0
\(799\) 5.85641 0.207185
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −43.6077 −1.53888
\(804\) 0 0
\(805\) 0.0717968 0.00253050
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −45.7128 −1.60718 −0.803588 0.595185i \(-0.797079\pi\)
−0.803588 + 0.595185i \(0.797079\pi\)
\(810\) 0 0
\(811\) −2.07180 −0.0727506 −0.0363753 0.999338i \(-0.511581\pi\)
−0.0363753 + 0.999338i \(0.511581\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.85641 −0.135084
\(816\) 0 0
\(817\) −32.3923 −1.13326
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.3923 1.82850 0.914252 0.405146i \(-0.132779\pi\)
0.914252 + 0.405146i \(0.132779\pi\)
\(822\) 0 0
\(823\) 23.8564 0.831582 0.415791 0.909460i \(-0.363505\pi\)
0.415791 + 0.909460i \(0.363505\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.9808 −0.903440 −0.451720 0.892160i \(-0.649189\pi\)
−0.451720 + 0.892160i \(0.649189\pi\)
\(828\) 0 0
\(829\) −20.3923 −0.708254 −0.354127 0.935197i \(-0.615222\pi\)
−0.354127 + 0.935197i \(0.615222\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.00000 0.138592
\(834\) 0 0
\(835\) −0.928203 −0.0321218
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 38.7846 1.33899 0.669497 0.742815i \(-0.266510\pi\)
0.669497 + 0.742815i \(0.266510\pi\)
\(840\) 0 0
\(841\) −4.71281 −0.162511
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.267949 −0.00921773
\(846\) 0 0
\(847\) −16.0000 −0.549767
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.124356 0.00426286
\(852\) 0 0
\(853\) −38.9282 −1.33288 −0.666438 0.745560i \(-0.732182\pi\)
−0.666438 + 0.745560i \(0.732182\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17.4449 −0.595905 −0.297953 0.954581i \(-0.596304\pi\)
−0.297953 + 0.954581i \(0.596304\pi\)
\(858\) 0 0
\(859\) −43.9282 −1.49881 −0.749405 0.662111i \(-0.769661\pi\)
−0.749405 + 0.662111i \(0.769661\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.32051 −0.0449506 −0.0224753 0.999747i \(-0.507155\pi\)
−0.0224753 + 0.999747i \(0.507155\pi\)
\(864\) 0 0
\(865\) 3.78461 0.128681
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −64.3923 −2.18436
\(870\) 0 0
\(871\) 29.5692 1.00191
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.66025 0.0899330
\(876\) 0 0
\(877\) 12.1436 0.410060 0.205030 0.978756i \(-0.434271\pi\)
0.205030 + 0.978756i \(0.434271\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 21.4449 0.722496 0.361248 0.932470i \(-0.382351\pi\)
0.361248 + 0.932470i \(0.382351\pi\)
\(882\) 0 0
\(883\) −21.0718 −0.709122 −0.354561 0.935033i \(-0.615370\pi\)
−0.354561 + 0.935033i \(0.615370\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.71281 0.326124 0.163062 0.986616i \(-0.447863\pi\)
0.163062 + 0.986616i \(0.447863\pi\)
\(888\) 0 0
\(889\) −14.3923 −0.482702
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.67949 0.290448
\(894\) 0 0
\(895\) −3.07180 −0.102679
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.56922 −0.252448
\(900\) 0 0
\(901\) 32.0000 1.06607
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.53590 −0.150778
\(906\) 0 0
\(907\) 1.21539 0.0403564 0.0201782 0.999796i \(-0.493577\pi\)
0.0201782 + 0.999796i \(0.493577\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −19.4641 −0.644874 −0.322437 0.946591i \(-0.604502\pi\)
−0.322437 + 0.946591i \(0.604502\pi\)
\(912\) 0 0
\(913\) −67.1769 −2.22323
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.3923 0.409230
\(918\) 0 0
\(919\) 2.92820 0.0965925 0.0482963 0.998833i \(-0.484621\pi\)
0.0482963 + 0.998833i \(0.484621\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −50.7846 −1.67160
\(924\) 0 0
\(925\) 2.28719 0.0752022
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22.9282 0.752250 0.376125 0.926569i \(-0.377256\pi\)
0.376125 + 0.926569i \(0.377256\pi\)
\(930\) 0 0
\(931\) 5.92820 0.194289
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.56922 −0.182133
\(936\) 0 0
\(937\) 3.21539 0.105042 0.0525211 0.998620i \(-0.483274\pi\)
0.0525211 + 0.998620i \(0.483274\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 55.9808 1.82492 0.912460 0.409165i \(-0.134180\pi\)
0.912460 + 0.409165i \(0.134180\pi\)
\(942\) 0 0
\(943\) −2.46410 −0.0802422
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.1244 −0.913919 −0.456959 0.889488i \(-0.651062\pi\)
−0.456959 + 0.889488i \(0.651062\pi\)
\(948\) 0 0
\(949\) 29.0718 0.943710
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 40.9282 1.32579 0.662897 0.748710i \(-0.269327\pi\)
0.662897 + 0.748710i \(0.269327\pi\)
\(954\) 0 0
\(955\) 7.00000 0.226515
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.0000 0.322917
\(960\) 0 0
\(961\) −28.6410 −0.923904
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.17691 0.231033
\(966\) 0 0
\(967\) −45.7128 −1.47002 −0.735012 0.678054i \(-0.762824\pi\)
−0.735012 + 0.678054i \(0.762824\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.6410 1.17587 0.587933 0.808910i \(-0.299942\pi\)
0.587933 + 0.808910i \(0.299942\pi\)
\(972\) 0 0
\(973\) −6.92820 −0.222108
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22.6410 −0.724350 −0.362175 0.932110i \(-0.617966\pi\)
−0.362175 + 0.932110i \(0.617966\pi\)
\(978\) 0 0
\(979\) −74.1384 −2.36947
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −45.4641 −1.45008 −0.725040 0.688707i \(-0.758179\pi\)
−0.725040 + 0.688707i \(0.758179\pi\)
\(984\) 0 0
\(985\) 0.928203 0.0295750
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.46410 0.0465557
\(990\) 0 0
\(991\) 6.67949 0.212181 0.106091 0.994356i \(-0.466167\pi\)
0.106091 + 0.994356i \(0.466167\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.80385 0.0888879
\(996\) 0 0
\(997\) 37.7128 1.19438 0.597188 0.802101i \(-0.296284\pi\)
0.597188 + 0.802101i \(0.296284\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.a.bm.1.1 2
3.2 odd 2 3024.2.a.be.1.2 2
4.3 odd 2 1512.2.a.r.1.1 yes 2
12.11 even 2 1512.2.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.a.m.1.2 2 12.11 even 2
1512.2.a.r.1.1 yes 2 4.3 odd 2
3024.2.a.be.1.2 2 3.2 odd 2
3024.2.a.bm.1.1 2 1.1 even 1 trivial