Properties

Label 3024.2.a.bm.1.2
Level $3024$
Weight $2$
Character 3024.1
Self dual yes
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1512)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3024.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.73205 q^{5} -1.00000 q^{7} +5.19615 q^{11} -3.46410 q^{13} +4.00000 q^{17} -7.92820 q^{19} -3.73205 q^{23} +8.92820 q^{25} +8.92820 q^{29} +8.46410 q^{31} -3.73205 q^{35} +6.46410 q^{37} -1.19615 q^{41} +1.46410 q^{43} -5.46410 q^{47} +1.00000 q^{49} +8.00000 q^{53} +19.3923 q^{55} -2.53590 q^{59} -2.92820 q^{61} -12.9282 q^{65} +15.4641 q^{67} +2.66025 q^{71} -12.3923 q^{73} -5.19615 q^{77} -8.39230 q^{79} -0.928203 q^{83} +14.9282 q^{85} +17.7321 q^{89} +3.46410 q^{91} -29.5885 q^{95} -14.9282 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 2 q^{7} + 8 q^{17} - 2 q^{19} - 4 q^{23} + 4 q^{25} + 4 q^{29} + 10 q^{31} - 4 q^{35} + 6 q^{37} + 8 q^{41} - 4 q^{43} - 4 q^{47} + 2 q^{49} + 16 q^{53} + 18 q^{55} - 12 q^{59} + 8 q^{61}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.73205 1.66902 0.834512 0.550990i \(-0.185750\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.19615 1.56670 0.783349 0.621582i \(-0.213510\pi\)
0.783349 + 0.621582i \(0.213510\pi\)
\(12\) 0 0
\(13\) −3.46410 −0.960769 −0.480384 0.877058i \(-0.659503\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −7.92820 −1.81885 −0.909427 0.415863i \(-0.863480\pi\)
−0.909427 + 0.415863i \(0.863480\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.73205 −0.778186 −0.389093 0.921198i \(-0.627212\pi\)
−0.389093 + 0.921198i \(0.627212\pi\)
\(24\) 0 0
\(25\) 8.92820 1.78564
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.92820 1.65793 0.828963 0.559304i \(-0.188931\pi\)
0.828963 + 0.559304i \(0.188931\pi\)
\(30\) 0 0
\(31\) 8.46410 1.52020 0.760099 0.649808i \(-0.225151\pi\)
0.760099 + 0.649808i \(0.225151\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.73205 −0.630832
\(36\) 0 0
\(37\) 6.46410 1.06269 0.531346 0.847155i \(-0.321686\pi\)
0.531346 + 0.847155i \(0.321686\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.19615 −0.186808 −0.0934038 0.995628i \(-0.529775\pi\)
−0.0934038 + 0.995628i \(0.529775\pi\)
\(42\) 0 0
\(43\) 1.46410 0.223273 0.111637 0.993749i \(-0.464391\pi\)
0.111637 + 0.993749i \(0.464391\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.46410 −0.797021 −0.398511 0.917164i \(-0.630473\pi\)
−0.398511 + 0.917164i \(0.630473\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.00000 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(54\) 0 0
\(55\) 19.3923 2.61486
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.53590 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(60\) 0 0
\(61\) −2.92820 −0.374918 −0.187459 0.982272i \(-0.560025\pi\)
−0.187459 + 0.982272i \(0.560025\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.9282 −1.60355
\(66\) 0 0
\(67\) 15.4641 1.88924 0.944620 0.328165i \(-0.106430\pi\)
0.944620 + 0.328165i \(0.106430\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.66025 0.315714 0.157857 0.987462i \(-0.449541\pi\)
0.157857 + 0.987462i \(0.449541\pi\)
\(72\) 0 0
\(73\) −12.3923 −1.45041 −0.725205 0.688533i \(-0.758255\pi\)
−0.725205 + 0.688533i \(0.758255\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.19615 −0.592157
\(78\) 0 0
\(79\) −8.39230 −0.944208 −0.472104 0.881543i \(-0.656505\pi\)
−0.472104 + 0.881543i \(0.656505\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.928203 −0.101884 −0.0509418 0.998702i \(-0.516222\pi\)
−0.0509418 + 0.998702i \(0.516222\pi\)
\(84\) 0 0
\(85\) 14.9282 1.61919
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 17.7321 1.87959 0.939797 0.341734i \(-0.111014\pi\)
0.939797 + 0.341734i \(0.111014\pi\)
\(90\) 0 0
\(91\) 3.46410 0.363137
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −29.5885 −3.03571
\(96\) 0 0
\(97\) −14.9282 −1.51573 −0.757865 0.652412i \(-0.773757\pi\)
−0.757865 + 0.652412i \(0.773757\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 5.53590 0.545468 0.272734 0.962089i \(-0.412072\pi\)
0.272734 + 0.962089i \(0.412072\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.46410 −0.334887 −0.167444 0.985882i \(-0.553551\pi\)
−0.167444 + 0.985882i \(0.553551\pi\)
\(108\) 0 0
\(109\) 3.53590 0.338678 0.169339 0.985558i \(-0.445837\pi\)
0.169339 + 0.985558i \(0.445837\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.46410 0.325875 0.162938 0.986636i \(-0.447903\pi\)
0.162938 + 0.986636i \(0.447903\pi\)
\(114\) 0 0
\(115\) −13.9282 −1.29881
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 16.0000 1.45455
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 14.6603 1.31125
\(126\) 0 0
\(127\) −6.39230 −0.567225 −0.283613 0.958939i \(-0.591533\pi\)
−0.283613 + 0.958939i \(0.591533\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.39230 0.733239 0.366620 0.930371i \(-0.380515\pi\)
0.366620 + 0.930371i \(0.380515\pi\)
\(132\) 0 0
\(133\) 7.92820 0.687462
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) −6.92820 −0.587643 −0.293821 0.955860i \(-0.594927\pi\)
−0.293821 + 0.955860i \(0.594927\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −18.0000 −1.50524
\(144\) 0 0
\(145\) 33.3205 2.76712
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −23.4641 −1.92225 −0.961127 0.276106i \(-0.910956\pi\)
−0.961127 + 0.276106i \(0.910956\pi\)
\(150\) 0 0
\(151\) 20.9282 1.70311 0.851557 0.524263i \(-0.175659\pi\)
0.851557 + 0.524263i \(0.175659\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 31.5885 2.53725
\(156\) 0 0
\(157\) 22.3923 1.78710 0.893550 0.448963i \(-0.148207\pi\)
0.893550 + 0.448963i \(0.148207\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.73205 0.294127
\(162\) 0 0
\(163\) 6.39230 0.500684 0.250342 0.968157i \(-0.419457\pi\)
0.250342 + 0.968157i \(0.419457\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.46410 0.268060 0.134030 0.990977i \(-0.457208\pi\)
0.134030 + 0.990977i \(0.457208\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.1244 −0.769741 −0.384870 0.922971i \(-0.625754\pi\)
−0.384870 + 0.922971i \(0.625754\pi\)
\(174\) 0 0
\(175\) −8.92820 −0.674909
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.53590 −0.339029 −0.169514 0.985528i \(-0.554220\pi\)
−0.169514 + 0.985528i \(0.554220\pi\)
\(180\) 0 0
\(181\) −3.07180 −0.228325 −0.114162 0.993462i \(-0.536418\pi\)
−0.114162 + 0.993462i \(0.536418\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 24.1244 1.77366
\(186\) 0 0
\(187\) 20.7846 1.51992
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.87564 0.135717 0.0678584 0.997695i \(-0.478383\pi\)
0.0678584 + 0.997695i \(0.478383\pi\)
\(192\) 0 0
\(193\) −14.7846 −1.06422 −0.532110 0.846675i \(-0.678601\pi\)
−0.532110 + 0.846675i \(0.678601\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.46410 −0.246807 −0.123404 0.992357i \(-0.539381\pi\)
−0.123404 + 0.992357i \(0.539381\pi\)
\(198\) 0 0
\(199\) 3.53590 0.250653 0.125327 0.992116i \(-0.460002\pi\)
0.125327 + 0.992116i \(0.460002\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.92820 −0.626637
\(204\) 0 0
\(205\) −4.46410 −0.311786
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −41.1962 −2.84960
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.46410 0.372649
\(216\) 0 0
\(217\) −8.46410 −0.574581
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −13.8564 −0.932083
\(222\) 0 0
\(223\) 0.464102 0.0310785 0.0155393 0.999879i \(-0.495053\pi\)
0.0155393 + 0.999879i \(0.495053\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.3205 −0.884113 −0.442057 0.896987i \(-0.645751\pi\)
−0.442057 + 0.896987i \(0.645751\pi\)
\(228\) 0 0
\(229\) 1.07180 0.0708263 0.0354132 0.999373i \(-0.488725\pi\)
0.0354132 + 0.999373i \(0.488725\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.535898 −0.0351079 −0.0175539 0.999846i \(-0.505588\pi\)
−0.0175539 + 0.999846i \(0.505588\pi\)
\(234\) 0 0
\(235\) −20.3923 −1.33025
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.60770 0.362732 0.181366 0.983416i \(-0.441948\pi\)
0.181366 + 0.983416i \(0.441948\pi\)
\(240\) 0 0
\(241\) −10.5359 −0.678677 −0.339338 0.940664i \(-0.610203\pi\)
−0.339338 + 0.940664i \(0.610203\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.73205 0.238432
\(246\) 0 0
\(247\) 27.4641 1.74750
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.9282 0.942260 0.471130 0.882064i \(-0.343846\pi\)
0.471130 + 0.882064i \(0.343846\pi\)
\(252\) 0 0
\(253\) −19.3923 −1.21918
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.1244 1.50484 0.752418 0.658686i \(-0.228887\pi\)
0.752418 + 0.658686i \(0.228887\pi\)
\(258\) 0 0
\(259\) −6.46410 −0.401660
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.66025 −0.164038 −0.0820191 0.996631i \(-0.526137\pi\)
−0.0820191 + 0.996631i \(0.526137\pi\)
\(264\) 0 0
\(265\) 29.8564 1.83406
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.5885 −1.31627 −0.658136 0.752899i \(-0.728655\pi\)
−0.658136 + 0.752899i \(0.728655\pi\)
\(270\) 0 0
\(271\) 22.9282 1.39279 0.696395 0.717659i \(-0.254786\pi\)
0.696395 + 0.717659i \(0.254786\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 46.3923 2.79756
\(276\) 0 0
\(277\) −3.39230 −0.203824 −0.101912 0.994793i \(-0.532496\pi\)
−0.101912 + 0.994793i \(0.532496\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.3205 1.39118 0.695592 0.718437i \(-0.255142\pi\)
0.695592 + 0.718437i \(0.255142\pi\)
\(282\) 0 0
\(283\) −14.9282 −0.887390 −0.443695 0.896178i \(-0.646333\pi\)
−0.443695 + 0.896178i \(0.646333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.19615 0.0706066
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.9282 1.10580 0.552899 0.833248i \(-0.313522\pi\)
0.552899 + 0.833248i \(0.313522\pi\)
\(294\) 0 0
\(295\) −9.46410 −0.551021
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.9282 0.747657
\(300\) 0 0
\(301\) −1.46410 −0.0843894
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.9282 −0.625747
\(306\) 0 0
\(307\) −19.9282 −1.13736 −0.568681 0.822558i \(-0.692546\pi\)
−0.568681 + 0.822558i \(0.692546\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.85641 0.445496 0.222748 0.974876i \(-0.428497\pi\)
0.222748 + 0.974876i \(0.428497\pi\)
\(312\) 0 0
\(313\) −5.60770 −0.316966 −0.158483 0.987362i \(-0.550660\pi\)
−0.158483 + 0.987362i \(0.550660\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.5359 −1.49040 −0.745202 0.666838i \(-0.767647\pi\)
−0.745202 + 0.666838i \(0.767647\pi\)
\(318\) 0 0
\(319\) 46.3923 2.59747
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −31.7128 −1.76455
\(324\) 0 0
\(325\) −30.9282 −1.71559
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.46410 0.301246
\(330\) 0 0
\(331\) −14.9282 −0.820528 −0.410264 0.911967i \(-0.634563\pi\)
−0.410264 + 0.911967i \(0.634563\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 57.7128 3.15319
\(336\) 0 0
\(337\) 5.92820 0.322930 0.161465 0.986878i \(-0.448378\pi\)
0.161465 + 0.986878i \(0.448378\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 43.9808 2.38169
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.5167 0.564564 0.282282 0.959331i \(-0.408909\pi\)
0.282282 + 0.959331i \(0.408909\pi\)
\(348\) 0 0
\(349\) 8.92820 0.477916 0.238958 0.971030i \(-0.423194\pi\)
0.238958 + 0.971030i \(0.423194\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −29.4449 −1.56719 −0.783596 0.621271i \(-0.786617\pi\)
−0.783596 + 0.621271i \(0.786617\pi\)
\(354\) 0 0
\(355\) 9.92820 0.526934
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.4641 1.44950 0.724750 0.689012i \(-0.241955\pi\)
0.724750 + 0.689012i \(0.241955\pi\)
\(360\) 0 0
\(361\) 43.8564 2.30823
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −46.2487 −2.42077
\(366\) 0 0
\(367\) 12.3205 0.643125 0.321563 0.946888i \(-0.395792\pi\)
0.321563 + 0.946888i \(0.395792\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) −16.4641 −0.852479 −0.426239 0.904610i \(-0.640162\pi\)
−0.426239 + 0.904610i \(0.640162\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −30.9282 −1.59288
\(378\) 0 0
\(379\) 11.3205 0.581495 0.290748 0.956800i \(-0.406096\pi\)
0.290748 + 0.956800i \(0.406096\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.4641 0.790179 0.395089 0.918643i \(-0.370714\pi\)
0.395089 + 0.918643i \(0.370714\pi\)
\(384\) 0 0
\(385\) −19.3923 −0.988323
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 31.7128 1.60790 0.803952 0.594695i \(-0.202727\pi\)
0.803952 + 0.594695i \(0.202727\pi\)
\(390\) 0 0
\(391\) −14.9282 −0.754952
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −31.3205 −1.57591
\(396\) 0 0
\(397\) −3.85641 −0.193547 −0.0967737 0.995306i \(-0.530852\pi\)
−0.0967737 + 0.995306i \(0.530852\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.78461 0.139057 0.0695284 0.997580i \(-0.477851\pi\)
0.0695284 + 0.997580i \(0.477851\pi\)
\(402\) 0 0
\(403\) −29.3205 −1.46056
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 33.5885 1.66492
\(408\) 0 0
\(409\) 9.46410 0.467970 0.233985 0.972240i \(-0.424823\pi\)
0.233985 + 0.972240i \(0.424823\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.53590 0.124783
\(414\) 0 0
\(415\) −3.46410 −0.170046
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −32.2487 −1.57545 −0.787726 0.616025i \(-0.788742\pi\)
−0.787726 + 0.616025i \(0.788742\pi\)
\(420\) 0 0
\(421\) −20.4641 −0.997359 −0.498680 0.866786i \(-0.666182\pi\)
−0.498680 + 0.866786i \(0.666182\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 35.7128 1.73233
\(426\) 0 0
\(427\) 2.92820 0.141706
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.0526 −1.20674 −0.603370 0.797462i \(-0.706176\pi\)
−0.603370 + 0.797462i \(0.706176\pi\)
\(432\) 0 0
\(433\) −25.3205 −1.21683 −0.608413 0.793621i \(-0.708194\pi\)
−0.608413 + 0.793621i \(0.708194\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 29.5885 1.41541
\(438\) 0 0
\(439\) −27.7128 −1.32266 −0.661330 0.750095i \(-0.730008\pi\)
−0.661330 + 0.750095i \(0.730008\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.26795 −0.297799 −0.148900 0.988852i \(-0.547573\pi\)
−0.148900 + 0.988852i \(0.547573\pi\)
\(444\) 0 0
\(445\) 66.1769 3.13709
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −37.3205 −1.76126 −0.880632 0.473801i \(-0.842882\pi\)
−0.880632 + 0.473801i \(0.842882\pi\)
\(450\) 0 0
\(451\) −6.21539 −0.292671
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.9282 0.606084
\(456\) 0 0
\(457\) −12.8564 −0.601397 −0.300699 0.953719i \(-0.597220\pi\)
−0.300699 + 0.953719i \(0.597220\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.41154 −0.112317 −0.0561584 0.998422i \(-0.517885\pi\)
−0.0561584 + 0.998422i \(0.517885\pi\)
\(462\) 0 0
\(463\) 16.9282 0.786720 0.393360 0.919384i \(-0.371313\pi\)
0.393360 + 0.919384i \(0.371313\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.679492 −0.0314431 −0.0157216 0.999876i \(-0.505005\pi\)
−0.0157216 + 0.999876i \(0.505005\pi\)
\(468\) 0 0
\(469\) −15.4641 −0.714066
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.60770 0.349802
\(474\) 0 0
\(475\) −70.7846 −3.24782
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 21.8564 0.998645 0.499322 0.866416i \(-0.333582\pi\)
0.499322 + 0.866416i \(0.333582\pi\)
\(480\) 0 0
\(481\) −22.3923 −1.02100
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −55.7128 −2.52979
\(486\) 0 0
\(487\) −29.1769 −1.32213 −0.661066 0.750328i \(-0.729896\pi\)
−0.661066 + 0.750328i \(0.729896\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.05256 −0.318278 −0.159139 0.987256i \(-0.550872\pi\)
−0.159139 + 0.987256i \(0.550872\pi\)
\(492\) 0 0
\(493\) 35.7128 1.60842
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.66025 −0.119329
\(498\) 0 0
\(499\) 24.3923 1.09195 0.545975 0.837802i \(-0.316159\pi\)
0.545975 + 0.837802i \(0.316159\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.0000 0.624229 0.312115 0.950044i \(-0.398963\pi\)
0.312115 + 0.950044i \(0.398963\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.9282 −0.838978 −0.419489 0.907760i \(-0.637791\pi\)
−0.419489 + 0.907760i \(0.637791\pi\)
\(510\) 0 0
\(511\) 12.3923 0.548203
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.6603 0.910400
\(516\) 0 0
\(517\) −28.3923 −1.24869
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.7321 0.601612 0.300806 0.953685i \(-0.402744\pi\)
0.300806 + 0.953685i \(0.402744\pi\)
\(522\) 0 0
\(523\) −19.7846 −0.865121 −0.432560 0.901605i \(-0.642390\pi\)
−0.432560 + 0.901605i \(0.642390\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 33.8564 1.47481
\(528\) 0 0
\(529\) −9.07180 −0.394426
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.14359 0.179479
\(534\) 0 0
\(535\) −12.9282 −0.558935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.19615 0.223814
\(540\) 0 0
\(541\) 7.24871 0.311646 0.155823 0.987785i \(-0.450197\pi\)
0.155823 + 0.987785i \(0.450197\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.1962 0.565261
\(546\) 0 0
\(547\) −34.9282 −1.49342 −0.746711 0.665149i \(-0.768368\pi\)
−0.746711 + 0.665149i \(0.768368\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −70.7846 −3.01553
\(552\) 0 0
\(553\) 8.39230 0.356877
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.535898 0.0227067 0.0113534 0.999936i \(-0.496386\pi\)
0.0113534 + 0.999936i \(0.496386\pi\)
\(558\) 0 0
\(559\) −5.07180 −0.214514
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −40.9282 −1.72492 −0.862459 0.506127i \(-0.831077\pi\)
−0.862459 + 0.506127i \(0.831077\pi\)
\(564\) 0 0
\(565\) 12.9282 0.543894
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.3205 −0.726113 −0.363057 0.931767i \(-0.618267\pi\)
−0.363057 + 0.931767i \(0.618267\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −33.3205 −1.38956
\(576\) 0 0
\(577\) 2.78461 0.115925 0.0579624 0.998319i \(-0.481540\pi\)
0.0579624 + 0.998319i \(0.481540\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.928203 0.0385084
\(582\) 0 0
\(583\) 41.5692 1.72162
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.1769 −0.956614 −0.478307 0.878193i \(-0.658749\pi\)
−0.478307 + 0.878193i \(0.658749\pi\)
\(588\) 0 0
\(589\) −67.1051 −2.76502
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −32.9090 −1.35141 −0.675705 0.737172i \(-0.736161\pi\)
−0.675705 + 0.737172i \(0.736161\pi\)
\(594\) 0 0
\(595\) −14.9282 −0.611997
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.1244 −0.413670 −0.206835 0.978376i \(-0.566316\pi\)
−0.206835 + 0.978376i \(0.566316\pi\)
\(600\) 0 0
\(601\) −9.60770 −0.391906 −0.195953 0.980613i \(-0.562780\pi\)
−0.195953 + 0.980613i \(0.562780\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 59.7128 2.42767
\(606\) 0 0
\(607\) 14.9282 0.605917 0.302959 0.953004i \(-0.402026\pi\)
0.302959 + 0.953004i \(0.402026\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.9282 0.765753
\(612\) 0 0
\(613\) 20.1769 0.814938 0.407469 0.913219i \(-0.366411\pi\)
0.407469 + 0.913219i \(0.366411\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.3923 −0.659929 −0.329965 0.943993i \(-0.607037\pi\)
−0.329965 + 0.943993i \(0.607037\pi\)
\(618\) 0 0
\(619\) −0.215390 −0.00865727 −0.00432863 0.999991i \(-0.501378\pi\)
−0.00432863 + 0.999991i \(0.501378\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −17.7321 −0.710420
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25.8564 1.03096
\(630\) 0 0
\(631\) 46.2487 1.84113 0.920566 0.390587i \(-0.127728\pi\)
0.920566 + 0.390587i \(0.127728\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −23.8564 −0.946713
\(636\) 0 0
\(637\) −3.46410 −0.137253
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −34.1051 −1.34707 −0.673536 0.739155i \(-0.735225\pi\)
−0.673536 + 0.739155i \(0.735225\pi\)
\(642\) 0 0
\(643\) −4.21539 −0.166239 −0.0831194 0.996540i \(-0.526488\pi\)
−0.0831194 + 0.996540i \(0.526488\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.3205 −0.916824 −0.458412 0.888740i \(-0.651582\pi\)
−0.458412 + 0.888740i \(0.651582\pi\)
\(648\) 0 0
\(649\) −13.1769 −0.517239
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.5359 −1.19496 −0.597481 0.801883i \(-0.703832\pi\)
−0.597481 + 0.801883i \(0.703832\pi\)
\(654\) 0 0
\(655\) 31.3205 1.22379
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.6603 −1.58390 −0.791949 0.610587i \(-0.790934\pi\)
−0.791949 + 0.610587i \(0.790934\pi\)
\(660\) 0 0
\(661\) −49.0333 −1.90718 −0.953588 0.301116i \(-0.902641\pi\)
−0.953588 + 0.301116i \(0.902641\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 29.5885 1.14739
\(666\) 0 0
\(667\) −33.3205 −1.29018
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.2154 −0.587384
\(672\) 0 0
\(673\) −44.9282 −1.73185 −0.865927 0.500170i \(-0.833271\pi\)
−0.865927 + 0.500170i \(0.833271\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.3731 −1.16733 −0.583666 0.811994i \(-0.698382\pi\)
−0.583666 + 0.811994i \(0.698382\pi\)
\(678\) 0 0
\(679\) 14.9282 0.572892
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −29.1962 −1.11716 −0.558580 0.829451i \(-0.688654\pi\)
−0.558580 + 0.829451i \(0.688654\pi\)
\(684\) 0 0
\(685\) −37.3205 −1.42594
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −27.7128 −1.05577
\(690\) 0 0
\(691\) −21.8564 −0.831457 −0.415728 0.909489i \(-0.636473\pi\)
−0.415728 + 0.909489i \(0.636473\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.8564 −0.980789
\(696\) 0 0
\(697\) −4.78461 −0.181230
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12.1436 −0.458657 −0.229329 0.973349i \(-0.573653\pi\)
−0.229329 + 0.973349i \(0.573653\pi\)
\(702\) 0 0
\(703\) −51.2487 −1.93288
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −13.5359 −0.508351 −0.254176 0.967158i \(-0.581804\pi\)
−0.254176 + 0.967158i \(0.581804\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.5885 −1.18300
\(714\) 0 0
\(715\) −67.1769 −2.51227
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.3923 0.611330 0.305665 0.952139i \(-0.401121\pi\)
0.305665 + 0.952139i \(0.401121\pi\)
\(720\) 0 0
\(721\) −5.53590 −0.206168
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 79.7128 2.96046
\(726\) 0 0
\(727\) −16.7846 −0.622507 −0.311253 0.950327i \(-0.600749\pi\)
−0.311253 + 0.950327i \(0.600749\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.85641 0.216607
\(732\) 0 0
\(733\) 22.2487 0.821775 0.410887 0.911686i \(-0.365219\pi\)
0.410887 + 0.911686i \(0.365219\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 80.3538 2.95987
\(738\) 0 0
\(739\) 43.5692 1.60272 0.801360 0.598183i \(-0.204110\pi\)
0.801360 + 0.598183i \(0.204110\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 34.3731 1.26103 0.630513 0.776179i \(-0.282845\pi\)
0.630513 + 0.776179i \(0.282845\pi\)
\(744\) 0 0
\(745\) −87.5692 −3.20829
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.46410 0.126576
\(750\) 0 0
\(751\) −21.1769 −0.772757 −0.386378 0.922340i \(-0.626274\pi\)
−0.386378 + 0.922340i \(0.626274\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 78.1051 2.84254
\(756\) 0 0
\(757\) 6.78461 0.246591 0.123295 0.992370i \(-0.460654\pi\)
0.123295 + 0.992370i \(0.460654\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.8564 −0.502294 −0.251147 0.967949i \(-0.580808\pi\)
−0.251147 + 0.967949i \(0.580808\pi\)
\(762\) 0 0
\(763\) −3.53590 −0.128008
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.78461 0.317194
\(768\) 0 0
\(769\) 30.1051 1.08562 0.542809 0.839856i \(-0.317361\pi\)
0.542809 + 0.839856i \(0.317361\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34.1244 1.22737 0.613684 0.789552i \(-0.289687\pi\)
0.613684 + 0.789552i \(0.289687\pi\)
\(774\) 0 0
\(775\) 75.5692 2.71453
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.48334 0.339776
\(780\) 0 0
\(781\) 13.8231 0.494629
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 83.5692 2.98271
\(786\) 0 0
\(787\) −31.7128 −1.13044 −0.565220 0.824940i \(-0.691209\pi\)
−0.565220 + 0.824940i \(0.691209\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.46410 −0.123169
\(792\) 0 0
\(793\) 10.1436 0.360210
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33.3397 1.18095 0.590477 0.807054i \(-0.298940\pi\)
0.590477 + 0.807054i \(0.298940\pi\)
\(798\) 0 0
\(799\) −21.8564 −0.773224
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −64.3923 −2.27236
\(804\) 0 0
\(805\) 13.9282 0.490905
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.71281 0.341484 0.170742 0.985316i \(-0.445383\pi\)
0.170742 + 0.985316i \(0.445383\pi\)
\(810\) 0 0
\(811\) −15.9282 −0.559315 −0.279657 0.960100i \(-0.590221\pi\)
−0.279657 + 0.960100i \(0.590221\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.8564 0.835653
\(816\) 0 0
\(817\) −11.6077 −0.406102
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.6077 1.10312 0.551558 0.834136i \(-0.314034\pi\)
0.551558 + 0.834136i \(0.314034\pi\)
\(822\) 0 0
\(823\) −3.85641 −0.134426 −0.0672129 0.997739i \(-0.521411\pi\)
−0.0672129 + 0.997739i \(0.521411\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.9808 0.903440 0.451720 0.892160i \(-0.350811\pi\)
0.451720 + 0.892160i \(0.350811\pi\)
\(828\) 0 0
\(829\) 0.392305 0.0136253 0.00681266 0.999977i \(-0.497831\pi\)
0.00681266 + 0.999977i \(0.497831\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.00000 0.138592
\(834\) 0 0
\(835\) 12.9282 0.447399
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.78461 −0.0961354 −0.0480677 0.998844i \(-0.515306\pi\)
−0.0480677 + 0.998844i \(0.515306\pi\)
\(840\) 0 0
\(841\) 50.7128 1.74872
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.73205 −0.128386
\(846\) 0 0
\(847\) −16.0000 −0.549767
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.1244 −0.826972
\(852\) 0 0
\(853\) −25.0718 −0.858442 −0.429221 0.903200i \(-0.641212\pi\)
−0.429221 + 0.903200i \(0.641212\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.4449 1.41573 0.707865 0.706348i \(-0.249659\pi\)
0.707865 + 0.706348i \(0.249659\pi\)
\(858\) 0 0
\(859\) −30.0718 −1.02604 −0.513018 0.858378i \(-0.671473\pi\)
−0.513018 + 0.858378i \(0.671473\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 33.3205 1.13424 0.567122 0.823634i \(-0.308057\pi\)
0.567122 + 0.823634i \(0.308057\pi\)
\(864\) 0 0
\(865\) −37.7846 −1.28472
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −43.6077 −1.47929
\(870\) 0 0
\(871\) −53.5692 −1.81512
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.6603 −0.495607
\(876\) 0 0
\(877\) 39.8564 1.34586 0.672928 0.739708i \(-0.265037\pi\)
0.672928 + 0.739708i \(0.265037\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.4449 −1.26155 −0.630775 0.775966i \(-0.717263\pi\)
−0.630775 + 0.775966i \(0.717263\pi\)
\(882\) 0 0
\(883\) −34.9282 −1.17543 −0.587714 0.809069i \(-0.699972\pi\)
−0.587714 + 0.809069i \(0.699972\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −45.7128 −1.53489 −0.767443 0.641117i \(-0.778471\pi\)
−0.767443 + 0.641117i \(0.778471\pi\)
\(888\) 0 0
\(889\) 6.39230 0.214391
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 43.3205 1.44967
\(894\) 0 0
\(895\) −16.9282 −0.565847
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 75.5692 2.52037
\(900\) 0 0
\(901\) 32.0000 1.06607
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.4641 −0.381080
\(906\) 0 0
\(907\) 42.7846 1.42064 0.710320 0.703879i \(-0.248550\pi\)
0.710320 + 0.703879i \(0.248550\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.5359 −0.415333 −0.207666 0.978200i \(-0.566587\pi\)
−0.207666 + 0.978200i \(0.566587\pi\)
\(912\) 0 0
\(913\) −4.82309 −0.159621
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.39230 −0.277138
\(918\) 0 0
\(919\) −10.9282 −0.360488 −0.180244 0.983622i \(-0.557689\pi\)
−0.180244 + 0.983622i \(0.557689\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.21539 −0.303328
\(924\) 0 0
\(925\) 57.7128 1.89759
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.07180 0.297636 0.148818 0.988865i \(-0.452453\pi\)
0.148818 + 0.988865i \(0.452453\pi\)
\(930\) 0 0
\(931\) −7.92820 −0.259836
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 77.5692 2.53678
\(936\) 0 0
\(937\) 44.7846 1.46305 0.731525 0.681815i \(-0.238809\pi\)
0.731525 + 0.681815i \(0.238809\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.01924 0.131023 0.0655117 0.997852i \(-0.479132\pi\)
0.0655117 + 0.997852i \(0.479132\pi\)
\(942\) 0 0
\(943\) 4.46410 0.145371
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.87564 −0.125942 −0.0629708 0.998015i \(-0.520057\pi\)
−0.0629708 + 0.998015i \(0.520057\pi\)
\(948\) 0 0
\(949\) 42.9282 1.39351
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.0718 0.876942 0.438471 0.898745i \(-0.355520\pi\)
0.438471 + 0.898745i \(0.355520\pi\)
\(954\) 0 0
\(955\) 7.00000 0.226515
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.0000 0.322917
\(960\) 0 0
\(961\) 40.6410 1.31100
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −55.1769 −1.77621
\(966\) 0 0
\(967\) 9.71281 0.312343 0.156172 0.987730i \(-0.450085\pi\)
0.156172 + 0.987730i \(0.450085\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −32.6410 −1.04750 −0.523750 0.851872i \(-0.675467\pi\)
−0.523750 + 0.851872i \(0.675467\pi\)
\(972\) 0 0
\(973\) 6.92820 0.222108
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 46.6410 1.49218 0.746089 0.665846i \(-0.231929\pi\)
0.746089 + 0.665846i \(0.231929\pi\)
\(978\) 0 0
\(979\) 92.1384 2.94476
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −38.5359 −1.22910 −0.614552 0.788876i \(-0.710663\pi\)
−0.614552 + 0.788876i \(0.710663\pi\)
\(984\) 0 0
\(985\) −12.9282 −0.411927
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.46410 −0.173748
\(990\) 0 0
\(991\) 41.3205 1.31259 0.656295 0.754505i \(-0.272123\pi\)
0.656295 + 0.754505i \(0.272123\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13.1962 0.418346
\(996\) 0 0
\(997\) −17.7128 −0.560970 −0.280485 0.959858i \(-0.590495\pi\)
−0.280485 + 0.959858i \(0.590495\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.a.bm.1.2 2
3.2 odd 2 3024.2.a.be.1.1 2
4.3 odd 2 1512.2.a.r.1.2 yes 2
12.11 even 2 1512.2.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.a.m.1.1 2 12.11 even 2
1512.2.a.r.1.2 yes 2 4.3 odd 2
3024.2.a.be.1.1 2 3.2 odd 2
3024.2.a.bm.1.2 2 1.1 even 1 trivial