Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3024,2,Mod(1,3024)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3024, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3024.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3024.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(24.1467615712\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1512) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 3024.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000 | 0.447214 | 0.223607 | − | 0.974679i | \(-0.428217\pi\) | ||||
0.223607 | + | 0.974679i | \(0.428217\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −1.00000 | −0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.00000 | −0.904534 | −0.452267 | − | 0.891883i | \(-0.649385\pi\) | ||||
−0.452267 | + | 0.891883i | \(0.649385\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 2.00000 | 0.485071 | 0.242536 | − | 0.970143i | \(-0.422021\pi\) | ||||
0.242536 | + | 0.970143i | \(0.422021\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −1.00000 | −0.229416 | −0.114708 | − | 0.993399i | \(-0.536593\pi\) | ||||
−0.114708 | + | 0.993399i | \(0.536593\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −1.00000 | −0.208514 | −0.104257 | − | 0.994550i | \(-0.533247\pi\) | ||||
−0.104257 | + | 0.994550i | \(0.533247\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.00000 | −0.800000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 4.00000 | 0.742781 | 0.371391 | − | 0.928477i | \(-0.378881\pi\) | ||||
0.371391 | + | 0.928477i | \(0.378881\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −1.00000 | −0.179605 | −0.0898027 | − | 0.995960i | \(-0.528624\pi\) | ||||
−0.0898027 | + | 0.995960i | \(0.528624\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −1.00000 | −0.169031 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −3.00000 | −0.493197 | −0.246598 | − | 0.969118i | \(-0.579313\pi\) | ||||
−0.246598 | + | 0.969118i | \(0.579313\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −1.00000 | −0.156174 | −0.0780869 | − | 0.996947i | \(-0.524881\pi\) | ||||
−0.0780869 | + | 0.996947i | \(0.524881\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −2.00000 | −0.304997 | −0.152499 | − | 0.988304i | \(-0.548732\pi\) | ||||
−0.152499 | + | 0.988304i | \(0.548732\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −10.0000 | −1.45865 | −0.729325 | − | 0.684167i | \(-0.760166\pi\) | ||||
−0.729325 | + | 0.684167i | \(0.760166\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 4.00000 | 0.549442 | 0.274721 | − | 0.961524i | \(-0.411414\pi\) | ||||
0.274721 | + | 0.961524i | \(0.411414\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −3.00000 | −0.404520 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −6.00000 | −0.781133 | −0.390567 | − | 0.920575i | \(-0.627721\pi\) | ||||
−0.390567 | + | 0.920575i | \(0.627721\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −8.00000 | −1.02430 | −0.512148 | − | 0.858898i | \(-0.671150\pi\) | ||||
−0.512148 | + | 0.858898i | \(0.671150\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 3.00000 | 0.356034 | 0.178017 | − | 0.984027i | \(-0.443032\pi\) | ||||
0.178017 | + | 0.984027i | \(0.443032\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −2.00000 | −0.234082 | −0.117041 | − | 0.993127i | \(-0.537341\pi\) | ||||
−0.117041 | + | 0.993127i | \(0.537341\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 3.00000 | 0.341882 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −10.0000 | −1.12509 | −0.562544 | − | 0.826767i | \(-0.690177\pi\) | ||||
−0.562544 | + | 0.826767i | \(0.690177\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −12.0000 | −1.31717 | −0.658586 | − | 0.752506i | \(-0.728845\pi\) | ||||
−0.658586 | + | 0.752506i | \(0.728845\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 2.00000 | 0.216930 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −1.00000 | −0.106000 | −0.0529999 | − | 0.998595i | \(-0.516878\pi\) | ||||
−0.0529999 | + | 0.998595i | \(0.516878\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −1.00000 | −0.102598 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −8.00000 | −0.812277 | −0.406138 | − | 0.913812i | \(-0.633125\pi\) | ||||
−0.406138 | + | 0.913812i | \(0.633125\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 18.0000 | 1.79107 | 0.895533 | − | 0.444994i | \(-0.146794\pi\) | ||||
0.895533 | + | 0.444994i | \(0.146794\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −9.00000 | −0.886796 | −0.443398 | − | 0.896325i | \(-0.646227\pi\) | ||||
−0.443398 | + | 0.896325i | \(0.646227\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000 | 1.16008 | 0.580042 | − | 0.814587i | \(-0.303036\pi\) | ||||
0.580042 | + | 0.814587i | \(0.303036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −17.0000 | −1.62830 | −0.814152 | − | 0.580651i | \(-0.802798\pi\) | ||||
−0.814152 | + | 0.580651i | \(0.802798\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000 | 0.564433 | 0.282216 | − | 0.959351i | \(-0.408930\pi\) | ||||
0.282216 | + | 0.959351i | \(0.408930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −1.00000 | −0.0932505 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −2.00000 | −0.183340 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.00000 | −0.181818 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −9.00000 | −0.804984 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −8.00000 | −0.709885 | −0.354943 | − | 0.934888i | \(-0.615500\pi\) | ||||
−0.354943 | + | 0.934888i | \(0.615500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −10.0000 | −0.873704 | −0.436852 | − | 0.899533i | \(-0.643907\pi\) | ||||
−0.436852 | + | 0.899533i | \(0.643907\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 1.00000 | 0.0867110 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 16.0000 | 1.36697 | 0.683486 | − | 0.729964i | \(-0.260463\pi\) | ||||
0.683486 | + | 0.729964i | \(0.260463\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 12.0000 | 1.01783 | 0.508913 | − | 0.860818i | \(-0.330047\pi\) | ||||
0.508913 | + | 0.860818i | \(0.330047\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 4.00000 | 0.332182 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −10.0000 | −0.819232 | −0.409616 | − | 0.912258i | \(-0.634337\pi\) | ||||
−0.409616 | + | 0.912258i | \(0.634337\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −22.0000 | −1.79033 | −0.895167 | − | 0.445730i | \(-0.852944\pi\) | ||||
−0.895167 | + | 0.445730i | \(0.852944\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −1.00000 | −0.0803219 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 1.00000 | 0.0788110 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −4.00000 | −0.313304 | −0.156652 | − | 0.987654i | \(-0.550070\pi\) | ||||
−0.156652 | + | 0.987654i | \(0.550070\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 18.0000 | 1.39288 | 0.696441 | − | 0.717614i | \(-0.254766\pi\) | ||||
0.696441 | + | 0.717614i | \(0.254766\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 7.00000 | 0.532200 | 0.266100 | − | 0.963945i | \(-0.414265\pi\) | ||||
0.266100 | + | 0.963945i | \(0.414265\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 4.00000 | 0.302372 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 8.00000 | 0.597948 | 0.298974 | − | 0.954261i | \(-0.403356\pi\) | ||||
0.298974 | + | 0.954261i | \(0.403356\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 2.00000 | 0.148659 | 0.0743294 | − | 0.997234i | \(-0.476318\pi\) | ||||
0.0743294 | + | 0.997234i | \(0.476318\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −3.00000 | −0.220564 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −6.00000 | −0.438763 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 13.0000 | 0.940647 | 0.470323 | − | 0.882494i | \(-0.344137\pi\) | ||||
0.470323 | + | 0.882494i | \(0.344137\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 6.00000 | 0.431889 | 0.215945 | − | 0.976406i | \(-0.430717\pi\) | ||||
0.215945 | + | 0.976406i | \(0.430717\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −18.0000 | −1.28245 | −0.641223 | − | 0.767354i | \(-0.721573\pi\) | ||||
−0.641223 | + | 0.767354i | \(0.721573\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −5.00000 | −0.354441 | −0.177220 | − | 0.984171i | \(-0.556711\pi\) | ||||
−0.177220 | + | 0.984171i | \(0.556711\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −4.00000 | −0.280745 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −1.00000 | −0.0698430 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 3.00000 | 0.207514 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 10.0000 | 0.688428 | 0.344214 | − | 0.938891i | \(-0.388145\pi\) | ||||
0.344214 | + | 0.938891i | \(0.388145\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −2.00000 | −0.136399 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 1.00000 | 0.0678844 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −3.00000 | −0.200895 | −0.100447 | − | 0.994942i | \(-0.532027\pi\) | ||||
−0.100447 | + | 0.994942i | \(0.532027\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −10.0000 | −0.663723 | −0.331862 | − | 0.943328i | \(-0.607677\pi\) | ||||
−0.331862 | + | 0.943328i | \(0.607677\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −4.00000 | −0.264327 | −0.132164 | − | 0.991228i | \(-0.542192\pi\) | ||||
−0.132164 | + | 0.991228i | \(0.542192\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −26.0000 | −1.70332 | −0.851658 | − | 0.524097i | \(-0.824403\pi\) | ||||
−0.851658 | + | 0.524097i | \(0.824403\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −10.0000 | −0.652328 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 8.00000 | 0.517477 | 0.258738 | − | 0.965947i | \(-0.416693\pi\) | ||||
0.258738 | + | 0.965947i | \(0.416693\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −2.00000 | −0.128831 | −0.0644157 | − | 0.997923i | \(-0.520518\pi\) | ||||
−0.0644157 | + | 0.997923i | \(0.520518\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 1.00000 | 0.0638877 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 16.0000 | 1.00991 | 0.504956 | − | 0.863145i | \(-0.331509\pi\) | ||||
0.504956 | + | 0.863145i | \(0.331509\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 3.00000 | 0.188608 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 3.00000 | 0.187135 | 0.0935674 | − | 0.995613i | \(-0.470173\pi\) | ||||
0.0935674 | + | 0.995613i | \(0.470173\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 3.00000 | 0.186411 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −21.0000 | −1.29492 | −0.647458 | − | 0.762101i | \(-0.724168\pi\) | ||||
−0.647458 | + | 0.762101i | \(0.724168\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 4.00000 | 0.245718 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −3.00000 | −0.182913 | −0.0914566 | − | 0.995809i | \(-0.529152\pi\) | ||||
−0.0914566 | + | 0.995809i | \(0.529152\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −8.00000 | −0.485965 | −0.242983 | − | 0.970031i | \(-0.578126\pi\) | ||||
−0.242983 | + | 0.970031i | \(0.578126\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 12.0000 | 0.723627 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −11.0000 | −0.660926 | −0.330463 | − | 0.943819i | \(-0.607205\pi\) | ||||
−0.330463 | + | 0.943819i | \(0.607205\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −18.0000 | −1.07379 | −0.536895 | − | 0.843649i | \(-0.680403\pi\) | ||||
−0.536895 | + | 0.843649i | \(0.680403\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 28.0000 | 1.66443 | 0.832214 | − | 0.554455i | \(-0.187073\pi\) | ||||
0.832214 | + | 0.554455i | \(0.187073\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 1.00000 | 0.0590281 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −30.0000 | −1.75262 | −0.876309 | − | 0.481749i | \(-0.840002\pi\) | ||||
−0.876309 | + | 0.481749i | \(0.840002\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −6.00000 | −0.349334 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 2.00000 | 0.115278 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −8.00000 | −0.458079 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 11.0000 | 0.627803 | 0.313902 | − | 0.949456i | \(-0.398364\pi\) | ||||
0.313902 | + | 0.949456i | \(0.398364\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −16.0000 | −0.904373 | −0.452187 | − | 0.891923i | \(-0.649356\pi\) | ||||
−0.452187 | + | 0.891923i | \(0.649356\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −18.0000 | −1.01098 | −0.505490 | − | 0.862832i | \(-0.668688\pi\) | ||||
−0.505490 | + | 0.862832i | \(0.668688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −12.0000 | −0.671871 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −2.00000 | −0.111283 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 10.0000 | 0.551318 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 4.00000 | 0.219860 | 0.109930 | − | 0.993939i | \(-0.464937\pi\) | ||||
0.109930 | + | 0.993939i | \(0.464937\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 11.0000 | 0.599208 | 0.299604 | − | 0.954064i | \(-0.403145\pi\) | ||||
0.299604 | + | 0.954064i | \(0.403145\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 3.00000 | 0.162459 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −1.00000 | −0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 21.0000 | 1.12734 | 0.563670 | − | 0.826000i | \(-0.309389\pi\) | ||||
0.563670 | + | 0.826000i | \(0.309389\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 14.0000 | 0.749403 | 0.374701 | − | 0.927146i | \(-0.377745\pi\) | ||||
0.374701 | + | 0.927146i | \(0.377745\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 21.0000 | 1.11772 | 0.558859 | − | 0.829263i | \(-0.311239\pi\) | ||||
0.558859 | + | 0.829263i | \(0.311239\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 3.00000 | 0.159223 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 36.0000 | 1.90001 | 0.950004 | − | 0.312239i | \(-0.101079\pi\) | ||||
0.950004 | + | 0.312239i | \(0.101079\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −18.0000 | −0.947368 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −2.00000 | −0.104685 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −5.00000 | −0.260998 | −0.130499 | − | 0.991448i | \(-0.541658\pi\) | ||||
−0.130499 | + | 0.991448i | \(0.541658\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −4.00000 | −0.207670 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 23.0000 | 1.19089 | 0.595447 | − | 0.803394i | \(-0.296975\pi\) | ||||
0.595447 | + | 0.803394i | \(0.296975\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 18.0000 | 0.924598 | 0.462299 | − | 0.886724i | \(-0.347025\pi\) | ||||
0.462299 | + | 0.886724i | \(0.347025\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −18.0000 | −0.919757 | −0.459879 | − | 0.887982i | \(-0.652107\pi\) | ||||
−0.459879 | + | 0.887982i | \(0.652107\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 3.00000 | 0.152894 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −4.00000 | −0.202808 | −0.101404 | − | 0.994845i | \(-0.532333\pi\) | ||||
−0.101404 | + | 0.994845i | \(0.532333\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −2.00000 | −0.101144 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −10.0000 | −0.503155 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −14.0000 | −0.702640 | −0.351320 | − | 0.936255i | \(-0.614267\pi\) | ||||
−0.351320 | + | 0.936255i | \(0.614267\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −12.0000 | −0.599251 | −0.299626 | − | 0.954057i | \(-0.596862\pi\) | ||||
−0.299626 | + | 0.954057i | \(0.596862\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 9.00000 | 0.446113 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 30.0000 | 1.48340 | 0.741702 | − | 0.670729i | \(-0.234019\pi\) | ||||
0.741702 | + | 0.670729i | \(0.234019\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 6.00000 | 0.295241 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −12.0000 | −0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 38.0000 | 1.85642 | 0.928211 | − | 0.372055i | \(-0.121347\pi\) | ||||
0.928211 | + | 0.372055i | \(0.121347\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 13.0000 | 0.633581 | 0.316791 | − | 0.948495i | \(-0.397395\pi\) | ||||
0.316791 | + | 0.948495i | \(0.397395\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −8.00000 | −0.388057 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 8.00000 | 0.387147 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −15.0000 | −0.722525 | −0.361262 | − | 0.932464i | \(-0.617654\pi\) | ||||
−0.361262 | + | 0.932464i | \(0.617654\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 28.0000 | 1.34559 | 0.672797 | − | 0.739827i | \(-0.265093\pi\) | ||||
0.672797 | + | 0.739827i | \(0.265093\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 1.00000 | 0.0478365 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −24.0000 | −1.14546 | −0.572729 | − | 0.819745i | \(-0.694115\pi\) | ||||
−0.572729 | + | 0.819745i | \(0.694115\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 35.0000 | 1.66290 | 0.831450 | − | 0.555599i | \(-0.187511\pi\) | ||||
0.831450 | + | 0.555599i | \(0.187511\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −1.00000 | −0.0474045 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −22.0000 | −1.03824 | −0.519122 | − | 0.854700i | \(-0.673741\pi\) | ||||
−0.519122 | + | 0.854700i | \(0.673741\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 3.00000 | 0.141264 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −35.0000 | −1.63723 | −0.818615 | − | 0.574342i | \(-0.805258\pi\) | ||||
−0.818615 | + | 0.574342i | \(0.805258\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 15.0000 | 0.698620 | 0.349310 | − | 0.937007i | \(-0.386416\pi\) | ||||
0.349310 | + | 0.937007i | \(0.386416\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 10.0000 | 0.464739 | 0.232370 | − | 0.972628i | \(-0.425352\pi\) | ||||
0.232370 | + | 0.972628i | \(0.425352\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 6.00000 | 0.277647 | 0.138823 | − | 0.990317i | \(-0.455668\pi\) | ||||
0.138823 | + | 0.990317i | \(0.455668\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 6.00000 | 0.275880 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 4.00000 | 0.183533 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −8.00000 | −0.365529 | −0.182765 | − | 0.983157i | \(-0.558505\pi\) | ||||
−0.182765 | + | 0.983157i | \(0.558505\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −8.00000 | −0.363261 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −22.0000 | −0.996915 | −0.498458 | − | 0.866914i | \(-0.666100\pi\) | ||||
−0.498458 | + | 0.866914i | \(0.666100\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −15.0000 | −0.676941 | −0.338470 | − | 0.940977i | \(-0.609909\pi\) | ||||
−0.338470 | + | 0.940977i | \(0.609909\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 8.00000 | 0.360302 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −3.00000 | −0.134568 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 26.0000 | 1.16392 | 0.581960 | − | 0.813217i | \(-0.302286\pi\) | ||||
0.581960 | + | 0.813217i | \(0.302286\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 4.00000 | 0.178351 | 0.0891756 | − | 0.996016i | \(-0.471577\pi\) | ||||
0.0891756 | + | 0.996016i | \(0.471577\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 18.0000 | 0.800989 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 18.0000 | 0.797836 | 0.398918 | − | 0.916987i | \(-0.369386\pi\) | ||||
0.398918 | + | 0.916987i | \(0.369386\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 2.00000 | 0.0884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −9.00000 | −0.396587 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 30.0000 | 1.31940 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 9.00000 | 0.394297 | 0.197149 | − | 0.980374i | \(-0.436832\pi\) | ||||
0.197149 | + | 0.980374i | \(0.436832\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 43.0000 | 1.88026 | 0.940129 | − | 0.340818i | \(-0.110704\pi\) | ||||
0.940129 | + | 0.340818i | \(0.110704\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −2.00000 | −0.0871214 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −22.0000 | −0.956522 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 12.0000 | 0.518805 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −3.00000 | −0.129219 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −11.0000 | −0.472927 | −0.236463 | − | 0.971640i | \(-0.575988\pi\) | ||||
−0.236463 | + | 0.971640i | \(0.575988\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −17.0000 | −0.728200 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 20.0000 | 0.855138 | 0.427569 | − | 0.903983i | \(-0.359370\pi\) | ||||
0.427569 | + | 0.903983i | \(0.359370\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −4.00000 | −0.170406 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 10.0000 | 0.425243 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 14.0000 | 0.593199 | 0.296600 | − | 0.955002i | \(-0.404147\pi\) | ||||
0.296600 | + | 0.955002i | \(0.404147\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −20.0000 | −0.842900 | −0.421450 | − | 0.906852i | \(-0.638479\pi\) | ||||
−0.421450 | + | 0.906852i | \(0.638479\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 6.00000 | 0.252422 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −42.0000 | −1.76073 | −0.880366 | − | 0.474295i | \(-0.842703\pi\) | ||||
−0.880366 | + | 0.474295i | \(0.842703\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 10.0000 | 0.418487 | 0.209243 | − | 0.977864i | \(-0.432900\pi\) | ||||
0.209243 | + | 0.977864i | \(0.432900\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 4.00000 | 0.166812 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 42.0000 | 1.74848 | 0.874241 | − | 0.485491i | \(-0.161359\pi\) | ||||
0.874241 | + | 0.485491i | \(0.161359\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 12.0000 | 0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −12.0000 | −0.496989 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −26.0000 | −1.07313 | −0.536567 | − | 0.843857i | \(-0.680279\pi\) | ||||
−0.536567 | + | 0.843857i | \(0.680279\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 1.00000 | 0.0412043 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 33.0000 | 1.35515 | 0.677574 | − | 0.735455i | \(-0.263031\pi\) | ||||
0.677574 | + | 0.735455i | \(0.263031\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | −2.00000 | −0.0819920 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −11.0000 | −0.449448 | −0.224724 | − | 0.974422i | \(-0.572148\pi\) | ||||
−0.224724 | + | 0.974422i | \(0.572148\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −8.00000 | −0.326327 | −0.163163 | − | 0.986599i | \(-0.552170\pi\) | ||||
−0.163163 | + | 0.986599i | \(0.552170\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −2.00000 | −0.0813116 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −4.00000 | −0.162355 | −0.0811775 | − | 0.996700i | \(-0.525868\pi\) | ||||
−0.0811775 | + | 0.996700i | \(0.525868\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −23.0000 | −0.928961 | −0.464481 | − | 0.885583i | \(-0.653759\pi\) | ||||
−0.464481 | + | 0.885583i | \(0.653759\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 6.00000 | 0.241551 | 0.120775 | − | 0.992680i | \(-0.461462\pi\) | ||||
0.120775 | + | 0.992680i | \(0.461462\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 21.0000 | 0.844061 | 0.422031 | − | 0.906582i | \(-0.361317\pi\) | ||||
0.422031 | + | 0.906582i | \(0.361317\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 1.00000 | 0.0400642 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 11.0000 | 0.440000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −6.00000 | −0.239236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 22.0000 | 0.875806 | 0.437903 | − | 0.899022i | \(-0.355721\pi\) | ||||
0.437903 | + | 0.899022i | \(0.355721\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −8.00000 | −0.317470 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 26.0000 | 1.02694 | 0.513469 | − | 0.858108i | \(-0.328360\pi\) | ||||
0.513469 | + | 0.858108i | \(0.328360\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 35.0000 | 1.38027 | 0.690133 | − | 0.723683i | \(-0.257552\pi\) | ||||
0.690133 | + | 0.723683i | \(0.257552\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −30.0000 | −1.17942 | −0.589711 | − | 0.807614i | \(-0.700758\pi\) | ||||
−0.589711 | + | 0.807614i | \(0.700758\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 18.0000 | 0.706562 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 34.0000 | 1.33052 | 0.665261 | − | 0.746611i | \(-0.268320\pi\) | ||||
0.665261 | + | 0.746611i | \(0.268320\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −10.0000 | −0.390732 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 41.0000 | 1.59713 | 0.798567 | − | 0.601906i | \(-0.205592\pi\) | ||||
0.798567 | + | 0.601906i | \(0.205592\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 20.0000 | 0.777910 | 0.388955 | − | 0.921257i | \(-0.372836\pi\) | ||||
0.388955 | + | 0.921257i | \(0.372836\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 1.00000 | 0.0387783 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −4.00000 | −0.154881 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 24.0000 | 0.926510 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 10.0000 | 0.385472 | 0.192736 | − | 0.981251i | \(-0.438264\pi\) | ||||
0.192736 | + | 0.981251i | \(0.438264\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 27.0000 | 1.03769 | 0.518847 | − | 0.854867i | \(-0.326361\pi\) | ||||
0.518847 | + | 0.854867i | \(0.326361\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 8.00000 | 0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −33.0000 | −1.26271 | −0.631355 | − | 0.775494i | \(-0.717501\pi\) | ||||
−0.631355 | + | 0.775494i | \(0.717501\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 16.0000 | 0.611329 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −20.0000 | −0.760836 | −0.380418 | − | 0.924815i | \(-0.624220\pi\) | ||||
−0.380418 | + | 0.924815i | \(0.624220\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 12.0000 | 0.455186 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −2.00000 | −0.0757554 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 20.0000 | 0.755390 | 0.377695 | − | 0.925930i | \(-0.376717\pi\) | ||||
0.377695 | + | 0.925930i | \(0.376717\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 3.00000 | 0.113147 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −18.0000 | −0.676960 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 31.0000 | 1.16423 | 0.582115 | − | 0.813107i | \(-0.302225\pi\) | ||||
0.582115 | + | 0.813107i | \(0.302225\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 1.00000 | 0.0374503 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −6.00000 | −0.223762 | −0.111881 | − | 0.993722i | \(-0.535688\pi\) | ||||
−0.111881 | + | 0.993722i | \(0.535688\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 9.00000 | 0.335178 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −16.0000 | −0.594225 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 16.0000 | 0.593407 | 0.296704 | − | 0.954970i | \(-0.404113\pi\) | ||||
0.296704 | + | 0.954970i | \(0.404113\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −4.00000 | −0.147945 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −26.0000 | −0.960332 | −0.480166 | − | 0.877178i | \(-0.659424\pi\) | ||||
−0.480166 | + | 0.877178i | \(0.659424\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −22.0000 | −0.809283 | −0.404642 | − | 0.914475i | \(-0.632604\pi\) | ||||
−0.404642 | + | 0.914475i | \(0.632604\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −37.0000 | −1.35740 | −0.678699 | − | 0.734416i | \(-0.737456\pi\) | ||||
−0.678699 | + | 0.734416i | \(0.737456\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −10.0000 | −0.366372 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −12.0000 | −0.438470 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 10.0000 | 0.364905 | 0.182453 | − | 0.983215i | \(-0.441596\pi\) | ||||
0.182453 | + | 0.983215i | \(0.441596\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −22.0000 | −0.800662 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 10.0000 | 0.363456 | 0.181728 | − | 0.983349i | \(-0.441831\pi\) | ||||
0.181728 | + | 0.983349i | \(0.441831\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 42.0000 | 1.52250 | 0.761249 | − | 0.648459i | \(-0.224586\pi\) | ||||
0.761249 | + | 0.648459i | \(0.224586\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 17.0000 | 0.615441 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 16.0000 | 0.576975 | 0.288487 | − | 0.957484i | \(-0.406848\pi\) | ||||
0.288487 | + | 0.957484i | \(0.406848\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 35.0000 | 1.25886 | 0.629431 | − | 0.777056i | \(-0.283288\pi\) | ||||
0.629431 | + | 0.777056i | \(0.283288\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 4.00000 | 0.143684 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 1.00000 | 0.0358287 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −9.00000 | −0.322045 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 32.0000 | 1.14068 | 0.570338 | − | 0.821410i | \(-0.306812\pi\) | ||||
0.570338 | + | 0.821410i | \(0.306812\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −6.00000 | −0.213335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −33.0000 | −1.16892 | −0.584460 | − | 0.811423i | \(-0.698694\pi\) | ||||
−0.584460 | + | 0.811423i | \(0.698694\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −20.0000 | −0.707549 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 6.00000 | 0.211735 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 1.00000 | 0.0352454 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 12.0000 | 0.421898 | 0.210949 | − | 0.977497i | \(-0.432345\pi\) | ||||
0.210949 | + | 0.977497i | \(0.432345\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 33.0000 | 1.15879 | 0.579393 | − | 0.815048i | \(-0.303290\pi\) | ||||
0.579393 | + | 0.815048i | \(0.303290\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −4.00000 | −0.140114 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 2.00000 | 0.0699711 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −42.0000 | −1.46581 | −0.732905 | − | 0.680331i | \(-0.761836\pi\) | ||||
−0.732905 | + | 0.680331i | \(0.761836\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −14.0000 | −0.488009 | −0.244005 | − | 0.969774i | \(-0.578461\pi\) | ||||
−0.244005 | + | 0.969774i | \(0.578461\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −9.00000 | −0.312961 | −0.156480 | − | 0.987681i | \(-0.550015\pi\) | ||||
−0.156480 | + | 0.987681i | \(0.550015\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −46.0000 | −1.59765 | −0.798823 | − | 0.601566i | \(-0.794544\pi\) | ||||
−0.798823 | + | 0.601566i | \(0.794544\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 2.00000 | 0.0692959 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 18.0000 | 0.622916 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −12.0000 | −0.414286 | −0.207143 | − | 0.978311i | \(-0.566417\pi\) | ||||
−0.207143 | + | 0.978311i | \(0.566417\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −13.0000 | −0.448276 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −13.0000 | −0.447214 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 2.00000 | 0.0687208 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 3.00000 | 0.102839 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 40.0000 | 1.36957 | 0.684787 | − | 0.728743i | \(-0.259895\pi\) | ||||
0.684787 | + | 0.728743i | \(0.259895\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 27.0000 | 0.922302 | 0.461151 | − | 0.887322i | \(-0.347437\pi\) | ||||
0.461151 | + | 0.887322i | \(0.347437\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −25.0000 | −0.852989 | −0.426494 | − | 0.904490i | \(-0.640252\pi\) | ||||
−0.426494 | + | 0.904490i | \(0.640252\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −16.0000 | −0.544646 | −0.272323 | − | 0.962206i | \(-0.587792\pi\) | ||||
−0.272323 | + | 0.962206i | \(0.587792\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 7.00000 | 0.238007 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 30.0000 | 1.01768 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 9.00000 | 0.304256 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 14.0000 | 0.472746 | 0.236373 | − | 0.971662i | \(-0.424041\pi\) | ||||
0.236373 | + | 0.971662i | \(0.424041\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 41.0000 | 1.38133 | 0.690663 | − | 0.723177i | \(-0.257319\pi\) | ||||
0.690663 | + | 0.723177i | \(0.257319\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 32.0000 | 1.07689 | 0.538443 | − | 0.842662i | \(-0.319013\pi\) | ||||
0.538443 | + | 0.842662i | \(0.319013\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −12.0000 | −0.402921 | −0.201460 | − | 0.979497i | \(-0.564569\pi\) | ||||
−0.201460 | + | 0.979497i | \(0.564569\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 8.00000 | 0.268311 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 10.0000 | 0.334637 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 8.00000 | 0.267411 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −4.00000 | −0.133407 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 8.00000 | 0.266519 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 2.00000 | 0.0664822 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −26.0000 | −0.863316 | −0.431658 | − | 0.902037i | \(-0.642071\pi\) | ||||
−0.431658 | + | 0.902037i | \(0.642071\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 40.0000 | 1.32526 | 0.662630 | − | 0.748947i | \(-0.269440\pi\) | ||||
0.662630 | + | 0.748947i | \(0.269440\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 36.0000 | 1.19143 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 10.0000 | 0.330229 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −28.0000 | −0.923635 | −0.461817 | − | 0.886975i | \(-0.652802\pi\) | ||||
−0.461817 | + | 0.886975i | \(0.652802\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 12.0000 | 0.394558 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −58.0000 | −1.90292 | −0.951459 | − | 0.307775i | \(-0.900416\pi\) | ||||
−0.951459 | + | 0.307775i | \(0.900416\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −1.00000 | −0.0327737 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −6.00000 | −0.196221 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −12.0000 | −0.392023 | −0.196011 | − | 0.980602i | \(-0.562799\pi\) | ||||
−0.196011 | + | 0.980602i | \(0.562799\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −3.00000 | −0.0977972 | −0.0488986 | − | 0.998804i | \(-0.515571\pi\) | ||||
−0.0488986 | + | 0.998804i | \(0.515571\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 1.00000 | 0.0325645 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 7.00000 | 0.227469 | 0.113735 | − | 0.993511i | \(-0.463719\pi\) | ||||
0.113735 | + | 0.993511i | \(0.463719\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 20.0000 | 0.647864 | 0.323932 | − | 0.946080i | \(-0.394995\pi\) | ||||
0.323932 | + | 0.946080i | \(0.394995\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 13.0000 | 0.420670 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −16.0000 | −0.516667 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.0000 | −0.967742 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 6.00000 | 0.193147 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −6.00000 | −0.192947 | −0.0964735 | − | 0.995336i | \(-0.530756\pi\) | ||||
−0.0964735 | + | 0.995336i | \(0.530756\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −44.0000 | −1.41203 | −0.706014 | − | 0.708198i | \(-0.749508\pi\) | ||||
−0.706014 | + | 0.708198i | \(0.749508\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −12.0000 | −0.384702 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −12.0000 | −0.383914 | −0.191957 | − | 0.981403i | \(-0.561483\pi\) | ||||
−0.191957 | + | 0.981403i | \(0.561483\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 3.00000 | 0.0958804 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −6.00000 | −0.191370 | −0.0956851 | − | 0.995412i | \(-0.530504\pi\) | ||||
−0.0956851 | + | 0.995412i | \(0.530504\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −18.0000 | −0.573528 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 2.00000 | 0.0635963 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −60.0000 | −1.90596 | −0.952981 | − | 0.303029i | \(-0.902002\pi\) | ||||
−0.952981 | + | 0.303029i | \(0.902002\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −5.00000 | −0.158511 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 22.0000 | 0.696747 | 0.348373 | − | 0.937356i | \(-0.386734\pi\) | ||||
0.348373 | + | 0.937356i | \(0.386734\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3024.2.a.q.1.1 | 1 | ||
3.2 | odd | 2 | 3024.2.a.h.1.1 | 1 | |||
4.3 | odd | 2 | 1512.2.a.k.1.1 | yes | 1 | ||
12.11 | even | 2 | 1512.2.a.e.1.1 | ✓ | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1512.2.a.e.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
1512.2.a.k.1.1 | yes | 1 | 4.3 | odd | 2 | ||
3024.2.a.h.1.1 | 1 | 3.2 | odd | 2 | |||
3024.2.a.q.1.1 | 1 | 1.1 | even | 1 | trivial |