Properties

Label 3024.2.cc.a.881.4
Level $3024$
Weight $2$
Character 3024.881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(881,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 881.4
Root \(-1.29589 - 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 3024.881
Dual form 3024.2.cc.a.2897.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.717144 - 1.24213i) q^{5} +(2.40147 - 1.11037i) q^{7} +(2.80150 - 1.61745i) q^{11} +(4.43334 + 2.55959i) q^{13} -1.09132 q^{17} +4.48911i q^{19} +(3.47141 + 2.00422i) q^{23} +(1.47141 + 2.54856i) q^{25} +(-1.02859 + 0.593857i) q^{29} +(3.24275 + 1.87220i) q^{31} +(0.342971 - 3.77924i) q^{35} -0.239123 q^{37} +(-3.71620 + 6.43664i) q^{41} +(3.82326 + 6.62208i) q^{43} +(-2.11042 - 3.65536i) q^{47} +(4.53414 - 5.33307i) q^{49} -7.01414i q^{53} -4.63977i q^{55} +(-4.73531 + 8.20179i) q^{59} +(-2.82757 + 1.63250i) q^{61} +(6.35868 - 3.67119i) q^{65} +(0.330095 - 0.571741i) q^{67} +3.82347i q^{71} -7.31073i q^{73} +(4.93176 - 6.99498i) q^{77} +(1.83009 + 3.16982i) q^{79} +(-5.45245 - 9.44392i) q^{83} +(-0.782630 + 1.35556i) q^{85} -13.6915 q^{89} +(13.4887 + 1.22412i) q^{91} +(5.57605 + 3.21934i) q^{95} +(2.69709 - 1.55716i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{7} + 24 q^{23} - 30 q^{29} - 4 q^{37} + 10 q^{43} + 6 q^{49} + 78 q^{65} - 12 q^{67} + 24 q^{77} + 6 q^{79} - 6 q^{85} + 24 q^{91} + 72 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.717144 1.24213i 0.320716 0.555497i −0.659920 0.751336i \(-0.729410\pi\)
0.980636 + 0.195839i \(0.0627430\pi\)
\(6\) 0 0
\(7\) 2.40147 1.11037i 0.907671 0.419682i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.80150 1.61745i 0.844686 0.487679i −0.0141686 0.999900i \(-0.504510\pi\)
0.858854 + 0.512220i \(0.171177\pi\)
\(12\) 0 0
\(13\) 4.43334 + 2.55959i 1.22959 + 0.709903i 0.966944 0.254990i \(-0.0820722\pi\)
0.262644 + 0.964893i \(0.415406\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.09132 −0.264683 −0.132341 0.991204i \(-0.542250\pi\)
−0.132341 + 0.991204i \(0.542250\pi\)
\(18\) 0 0
\(19\) 4.48911i 1.02987i 0.857228 + 0.514936i \(0.172184\pi\)
−0.857228 + 0.514936i \(0.827816\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.47141 + 2.00422i 0.723839 + 0.417909i 0.816164 0.577820i \(-0.196097\pi\)
−0.0923250 + 0.995729i \(0.529430\pi\)
\(24\) 0 0
\(25\) 1.47141 + 2.54856i 0.294282 + 0.509711i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.02859 + 0.593857i −0.191004 + 0.110276i −0.592453 0.805605i \(-0.701840\pi\)
0.401448 + 0.915882i \(0.368507\pi\)
\(30\) 0 0
\(31\) 3.24275 + 1.87220i 0.582414 + 0.336257i 0.762092 0.647468i \(-0.224172\pi\)
−0.179678 + 0.983726i \(0.557506\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.342971 3.77924i 0.0579728 0.638808i
\(36\) 0 0
\(37\) −0.239123 −0.0393116 −0.0196558 0.999807i \(-0.506257\pi\)
−0.0196558 + 0.999807i \(0.506257\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.71620 + 6.43664i −0.580373 + 1.00523i 0.415062 + 0.909793i \(0.363760\pi\)
−0.995435 + 0.0954418i \(0.969574\pi\)
\(42\) 0 0
\(43\) 3.82326 + 6.62208i 0.583041 + 1.00986i 0.995116 + 0.0987075i \(0.0314708\pi\)
−0.412075 + 0.911150i \(0.635196\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.11042 3.65536i −0.307837 0.533189i 0.670052 0.742314i \(-0.266272\pi\)
−0.977889 + 0.209125i \(0.932939\pi\)
\(48\) 0 0
\(49\) 4.53414 5.33307i 0.647734 0.761867i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.01414i 0.963466i −0.876318 0.481733i \(-0.840008\pi\)
0.876318 0.481733i \(-0.159992\pi\)
\(54\) 0 0
\(55\) 4.63977i 0.625627i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.73531 + 8.20179i −0.616484 + 1.06778i 0.373638 + 0.927575i \(0.378110\pi\)
−0.990122 + 0.140208i \(0.955223\pi\)
\(60\) 0 0
\(61\) −2.82757 + 1.63250i −0.362033 + 0.209020i −0.669972 0.742386i \(-0.733694\pi\)
0.307939 + 0.951406i \(0.400361\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.35868 3.67119i 0.788698 0.455355i
\(66\) 0 0
\(67\) 0.330095 0.571741i 0.0403275 0.0698493i −0.845157 0.534518i \(-0.820493\pi\)
0.885485 + 0.464669i \(0.153827\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.82347i 0.453762i 0.973922 + 0.226881i \(0.0728529\pi\)
−0.973922 + 0.226881i \(0.927147\pi\)
\(72\) 0 0
\(73\) 7.31073i 0.855656i −0.903860 0.427828i \(-0.859279\pi\)
0.903860 0.427828i \(-0.140721\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.93176 6.99498i 0.562026 0.797152i
\(78\) 0 0
\(79\) 1.83009 + 3.16982i 0.205902 + 0.356632i 0.950420 0.310970i \(-0.100654\pi\)
−0.744518 + 0.667602i \(0.767321\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.45245 9.44392i −0.598484 1.03660i −0.993045 0.117735i \(-0.962437\pi\)
0.394561 0.918870i \(-0.370897\pi\)
\(84\) 0 0
\(85\) −0.782630 + 1.35556i −0.0848882 + 0.147031i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.6915 −1.45129 −0.725646 0.688068i \(-0.758459\pi\)
−0.725646 + 0.688068i \(0.758459\pi\)
\(90\) 0 0
\(91\) 13.4887 + 1.22412i 1.41399 + 0.128322i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.57605 + 3.21934i 0.572091 + 0.330297i
\(96\) 0 0
\(97\) 2.69709 1.55716i 0.273848 0.158106i −0.356787 0.934186i \(-0.616128\pi\)
0.630635 + 0.776080i \(0.282795\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.54471 6.13962i −0.352712 0.610915i 0.634012 0.773324i \(-0.281407\pi\)
−0.986724 + 0.162408i \(0.948074\pi\)
\(102\) 0 0
\(103\) −1.47529 0.851761i −0.145365 0.0839265i 0.425553 0.904933i \(-0.360079\pi\)
−0.570918 + 0.821007i \(0.693413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.93582i 0.477164i −0.971122 0.238582i \(-0.923317\pi\)
0.971122 0.238582i \(-0.0766826\pi\)
\(108\) 0 0
\(109\) 8.13844 0.779521 0.389760 0.920916i \(-0.372558\pi\)
0.389760 + 0.920916i \(0.372558\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.39699 + 1.96125i 0.319562 + 0.184499i 0.651197 0.758908i \(-0.274267\pi\)
−0.331635 + 0.943408i \(0.607600\pi\)
\(114\) 0 0
\(115\) 4.97900 2.87463i 0.464294 0.268060i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.62076 + 1.21177i −0.240245 + 0.111083i
\(120\) 0 0
\(121\) −0.267713 + 0.463693i −0.0243376 + 0.0421539i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3923 1.01896
\(126\) 0 0
\(127\) −6.16827 −0.547345 −0.273673 0.961823i \(-0.588239\pi\)
−0.273673 + 0.961823i \(0.588239\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.13138 7.15575i 0.360960 0.625201i −0.627159 0.778891i \(-0.715782\pi\)
0.988119 + 0.153690i \(0.0491158\pi\)
\(132\) 0 0
\(133\) 4.98459 + 10.7805i 0.432219 + 0.934786i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.96169 5.17404i 0.765649 0.442048i −0.0656711 0.997841i \(-0.520919\pi\)
0.831320 + 0.555794i \(0.187585\pi\)
\(138\) 0 0
\(139\) −15.4589 8.92521i −1.31121 0.757026i −0.328912 0.944361i \(-0.606682\pi\)
−0.982296 + 0.187334i \(0.940015\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.5600 1.38482
\(144\) 0 0
\(145\) 1.70352i 0.141470i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.1758 + 8.76175i 1.24325 + 0.717790i 0.969754 0.244083i \(-0.0784869\pi\)
0.273495 + 0.961873i \(0.411820\pi\)
\(150\) 0 0
\(151\) 0.550343 + 0.953223i 0.0447863 + 0.0775722i 0.887550 0.460712i \(-0.152406\pi\)
−0.842763 + 0.538284i \(0.819073\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.65103 2.68527i 0.373580 0.215686i
\(156\) 0 0
\(157\) −8.45150 4.87948i −0.674503 0.389425i 0.123277 0.992372i \(-0.460660\pi\)
−0.797781 + 0.602947i \(0.793993\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.5619 + 0.958511i 0.832397 + 0.0755413i
\(162\) 0 0
\(163\) 7.22545 0.565941 0.282970 0.959129i \(-0.408680\pi\)
0.282970 + 0.959129i \(0.408680\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.65419 + 14.9895i −0.669681 + 1.15992i 0.308312 + 0.951285i \(0.400236\pi\)
−0.977993 + 0.208637i \(0.933097\pi\)
\(168\) 0 0
\(169\) 6.60301 + 11.4367i 0.507924 + 0.879750i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.978103 1.69412i −0.0743638 0.128802i 0.826446 0.563017i \(-0.190359\pi\)
−0.900809 + 0.434215i \(0.857026\pi\)
\(174\) 0 0
\(175\) 6.36340 + 4.48647i 0.481028 + 0.339145i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 23.2017i 1.73418i −0.498152 0.867090i \(-0.665988\pi\)
0.498152 0.867090i \(-0.334012\pi\)
\(180\) 0 0
\(181\) 10.2744i 0.763689i 0.924226 + 0.381845i \(0.124711\pi\)
−0.924226 + 0.381845i \(0.875289\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.171486 + 0.297022i −0.0126079 + 0.0218375i
\(186\) 0 0
\(187\) −3.05733 + 1.76515i −0.223574 + 0.129080i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.6758 11.3598i 1.42369 0.821968i 0.427079 0.904215i \(-0.359543\pi\)
0.996612 + 0.0822464i \(0.0262094\pi\)
\(192\) 0 0
\(193\) −8.43598 + 14.6116i −0.607235 + 1.05176i 0.384459 + 0.923142i \(0.374388\pi\)
−0.991694 + 0.128620i \(0.958945\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.94426i 0.637252i −0.947880 0.318626i \(-0.896779\pi\)
0.947880 0.318626i \(-0.103221\pi\)
\(198\) 0 0
\(199\) 5.78528i 0.410108i −0.978751 0.205054i \(-0.934263\pi\)
0.978751 0.205054i \(-0.0657369\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.81073 + 2.56825i −0.127088 + 0.180256i
\(204\) 0 0
\(205\) 5.33009 + 9.23200i 0.372270 + 0.644791i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.26091 + 12.5763i 0.502248 + 0.869918i
\(210\) 0 0
\(211\) 12.9451 22.4216i 0.891180 1.54357i 0.0527186 0.998609i \(-0.483211\pi\)
0.838462 0.544960i \(-0.183455\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.9673 0.747964
\(216\) 0 0
\(217\) 9.86621 + 0.895374i 0.669762 + 0.0607819i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.83818 2.79332i −0.325451 0.187899i
\(222\) 0 0
\(223\) −15.4827 + 8.93892i −1.03680 + 0.598594i −0.918924 0.394435i \(-0.870940\pi\)
−0.117871 + 0.993029i \(0.537607\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.48365 9.49796i −0.363963 0.630402i 0.624646 0.780908i \(-0.285243\pi\)
−0.988609 + 0.150506i \(0.951910\pi\)
\(228\) 0 0
\(229\) −16.8349 9.71965i −1.11248 0.642293i −0.173012 0.984920i \(-0.555350\pi\)
−0.939471 + 0.342627i \(0.888683\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.94031i 0.192626i 0.995351 + 0.0963131i \(0.0307050\pi\)
−0.995351 + 0.0963131i \(0.969295\pi\)
\(234\) 0 0
\(235\) −6.05391 −0.394914
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.7255 6.19234i −0.693772 0.400549i 0.111252 0.993792i \(-0.464514\pi\)
−0.805023 + 0.593243i \(0.797847\pi\)
\(240\) 0 0
\(241\) 11.6943 6.75168i 0.753293 0.434914i −0.0735896 0.997289i \(-0.523445\pi\)
0.826882 + 0.562375i \(0.190112\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.37273 9.45656i −0.215476 0.604157i
\(246\) 0 0
\(247\) −11.4903 + 19.9018i −0.731109 + 1.26632i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.51441 0.474305 0.237153 0.971472i \(-0.423786\pi\)
0.237153 + 0.971472i \(0.423786\pi\)
\(252\) 0 0
\(253\) 12.9669 0.815222
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.87788 + 6.71668i −0.241895 + 0.418975i −0.961254 0.275664i \(-0.911102\pi\)
0.719359 + 0.694639i \(0.244436\pi\)
\(258\) 0 0
\(259\) −0.574248 + 0.265516i −0.0356820 + 0.0164984i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.1127 + 6.99329i −0.746903 + 0.431224i −0.824574 0.565755i \(-0.808585\pi\)
0.0776710 + 0.996979i \(0.475252\pi\)
\(264\) 0 0
\(265\) −8.71246 5.03014i −0.535202 0.308999i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.8321 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(270\) 0 0
\(271\) 16.6537i 1.01164i 0.862639 + 0.505821i \(0.168810\pi\)
−0.862639 + 0.505821i \(0.831190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.24433 + 4.75986i 0.497152 + 0.287031i
\(276\) 0 0
\(277\) −15.7044 27.2008i −0.943585 1.63434i −0.758560 0.651603i \(-0.774097\pi\)
−0.185025 0.982734i \(-0.559237\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.10464 + 4.67922i −0.483483 + 0.279139i −0.721867 0.692032i \(-0.756716\pi\)
0.238384 + 0.971171i \(0.423382\pi\)
\(282\) 0 0
\(283\) 13.6603 + 7.88676i 0.812018 + 0.468819i 0.847656 0.530546i \(-0.178013\pi\)
−0.0356380 + 0.999365i \(0.511346\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.77726 + 19.5838i −0.104908 + 1.15599i
\(288\) 0 0
\(289\) −15.8090 −0.929943
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.4287 + 21.5271i −0.726090 + 1.25762i 0.232434 + 0.972612i \(0.425331\pi\)
−0.958524 + 0.285013i \(0.908002\pi\)
\(294\) 0 0
\(295\) 6.79179 + 11.7637i 0.395433 + 0.684911i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.2600 + 17.7708i 0.593349 + 1.02771i
\(300\) 0 0
\(301\) 16.5344 + 11.6575i 0.953029 + 0.671926i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.68294i 0.268144i
\(306\) 0 0
\(307\) 18.8878i 1.07799i −0.842310 0.538993i \(-0.818805\pi\)
0.842310 0.538993i \(-0.181195\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.97716 6.88864i 0.225524 0.390619i −0.730953 0.682428i \(-0.760924\pi\)
0.956476 + 0.291809i \(0.0942573\pi\)
\(312\) 0 0
\(313\) 9.64210 5.56687i 0.545004 0.314658i −0.202101 0.979365i \(-0.564777\pi\)
0.747104 + 0.664707i \(0.231444\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.1380 11.6267i 1.13107 0.653021i 0.186863 0.982386i \(-0.440168\pi\)
0.944203 + 0.329365i \(0.106835\pi\)
\(318\) 0 0
\(319\) −1.92107 + 3.32738i −0.107559 + 0.186298i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.89904i 0.272590i
\(324\) 0 0
\(325\) 15.0648i 0.835646i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.12695 6.43489i −0.503185 0.354767i
\(330\) 0 0
\(331\) −9.57962 16.5924i −0.526544 0.912000i −0.999522 0.0309261i \(-0.990154\pi\)
0.472978 0.881074i \(-0.343179\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.473451 0.820041i −0.0258674 0.0448036i
\(336\) 0 0
\(337\) 14.2781 24.7304i 0.777779 1.34715i −0.155441 0.987845i \(-0.549680\pi\)
0.933219 0.359307i \(-0.116987\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.1128 0.655943
\(342\) 0 0
\(343\) 4.96690 17.8418i 0.268187 0.963367i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.56690 + 1.48200i 0.137798 + 0.0795578i 0.567314 0.823501i \(-0.307983\pi\)
−0.429516 + 0.903059i \(0.641316\pi\)
\(348\) 0 0
\(349\) −23.3885 + 13.5034i −1.25196 + 0.722818i −0.971498 0.237048i \(-0.923820\pi\)
−0.280460 + 0.959866i \(0.590487\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.8238 25.6755i −0.788990 1.36657i −0.926586 0.376083i \(-0.877271\pi\)
0.137596 0.990488i \(-0.456063\pi\)
\(354\) 0 0
\(355\) 4.74924 + 2.74198i 0.252064 + 0.145529i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.6261i 1.29972i 0.760056 + 0.649858i \(0.225172\pi\)
−0.760056 + 0.649858i \(0.774828\pi\)
\(360\) 0 0
\(361\) −1.15211 −0.0606373
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.08087 5.24284i −0.475314 0.274423i
\(366\) 0 0
\(367\) 4.85598 2.80360i 0.253480 0.146347i −0.367877 0.929875i \(-0.619915\pi\)
0.621357 + 0.783528i \(0.286582\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.78832 16.8443i −0.404349 0.874510i
\(372\) 0 0
\(373\) 1.86677 3.23333i 0.0966574 0.167416i −0.813642 0.581367i \(-0.802518\pi\)
0.910299 + 0.413951i \(0.135852\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.08012 −0.313142
\(378\) 0 0
\(379\) 30.4419 1.56369 0.781847 0.623470i \(-0.214278\pi\)
0.781847 + 0.623470i \(0.214278\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.49251 + 14.7095i −0.433947 + 0.751618i −0.997209 0.0746601i \(-0.976213\pi\)
0.563262 + 0.826278i \(0.309546\pi\)
\(384\) 0 0
\(385\) −5.15189 11.1423i −0.262565 0.567864i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.43310 + 5.44621i −0.478277 + 0.276134i −0.719698 0.694287i \(-0.755720\pi\)
0.241421 + 0.970420i \(0.422387\pi\)
\(390\) 0 0
\(391\) −3.78840 2.18724i −0.191588 0.110613i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.24976 0.264144
\(396\) 0 0
\(397\) 22.3035i 1.11938i −0.828702 0.559690i \(-0.810920\pi\)
0.828702 0.559690i \(-0.189080\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −20.8554 12.0409i −1.04147 0.601293i −0.121221 0.992626i \(-0.538681\pi\)
−0.920249 + 0.391333i \(0.872014\pi\)
\(402\) 0 0
\(403\) 9.58414 + 16.6002i 0.477420 + 0.826915i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.669905 + 0.386770i −0.0332060 + 0.0191715i
\(408\) 0 0
\(409\) 22.8191 + 13.1746i 1.12833 + 0.651443i 0.943515 0.331330i \(-0.107497\pi\)
0.184817 + 0.982773i \(0.440831\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.26464 + 24.9543i −0.111436 + 1.22792i
\(414\) 0 0
\(415\) −15.6408 −0.767775
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.1761 + 28.0178i −0.790252 + 1.36876i 0.135558 + 0.990769i \(0.456717\pi\)
−0.925811 + 0.377988i \(0.876616\pi\)
\(420\) 0 0
\(421\) −5.54746 9.60849i −0.270367 0.468289i 0.698589 0.715523i \(-0.253812\pi\)
−0.968956 + 0.247234i \(0.920478\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.60577 2.78128i −0.0778914 0.134912i
\(426\) 0 0
\(427\) −4.97764 + 7.06006i −0.240885 + 0.341660i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.3047i 0.785368i 0.919673 + 0.392684i \(0.128453\pi\)
−0.919673 + 0.392684i \(0.871547\pi\)
\(432\) 0 0
\(433\) 12.5359i 0.602438i −0.953555 0.301219i \(-0.902606\pi\)
0.953555 0.301219i \(-0.0973936\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.99716 + 15.5835i −0.430393 + 0.745462i
\(438\) 0 0
\(439\) 16.1276 9.31127i 0.769728 0.444403i −0.0630496 0.998010i \(-0.520083\pi\)
0.832778 + 0.553608i \(0.186749\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.11436 2.37543i 0.195479 0.112860i −0.399066 0.916922i \(-0.630666\pi\)
0.594545 + 0.804062i \(0.297332\pi\)
\(444\) 0 0
\(445\) −9.81875 + 17.0066i −0.465453 + 0.806189i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.2393i 0.766379i −0.923670 0.383189i \(-0.874826\pi\)
0.923670 0.383189i \(-0.125174\pi\)
\(450\) 0 0
\(451\) 24.0431i 1.13214i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11.1938 15.8768i 0.524774 0.744315i
\(456\) 0 0
\(457\) 2.87360 + 4.97722i 0.134421 + 0.232825i 0.925376 0.379050i \(-0.123749\pi\)
−0.790955 + 0.611874i \(0.790416\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.1346 31.4101i −0.844613 1.46291i −0.885957 0.463768i \(-0.846497\pi\)
0.0413440 0.999145i \(-0.486836\pi\)
\(462\) 0 0
\(463\) −14.6202 + 25.3230i −0.679461 + 1.17686i 0.295683 + 0.955286i \(0.404453\pi\)
−0.975144 + 0.221574i \(0.928881\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.64215 0.122264 0.0611320 0.998130i \(-0.480529\pi\)
0.0611320 + 0.998130i \(0.480529\pi\)
\(468\) 0 0
\(469\) 0.157867 1.73955i 0.00728961 0.0803249i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21.4218 + 12.3679i 0.984973 + 0.568675i
\(474\) 0 0
\(475\) −11.4408 + 6.60532i −0.524938 + 0.303073i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.5409 26.9177i −0.710083 1.22990i −0.964826 0.262891i \(-0.915324\pi\)
0.254742 0.967009i \(-0.418009\pi\)
\(480\) 0 0
\(481\) −1.06012 0.612058i −0.0483371 0.0279074i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.46684i 0.202829i
\(486\) 0 0
\(487\) −34.8720 −1.58020 −0.790100 0.612978i \(-0.789971\pi\)
−0.790100 + 0.612978i \(0.789971\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.6758 13.0919i −1.02334 0.590828i −0.108273 0.994121i \(-0.534532\pi\)
−0.915071 + 0.403293i \(0.867866\pi\)
\(492\) 0 0
\(493\) 1.12252 0.648085i 0.0505556 0.0291883i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.24548 + 9.18195i 0.190436 + 0.411867i
\(498\) 0 0
\(499\) 6.23912 10.8065i 0.279302 0.483764i −0.691910 0.721984i \(-0.743230\pi\)
0.971211 + 0.238220i \(0.0765638\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −37.8479 −1.68756 −0.843778 0.536693i \(-0.819673\pi\)
−0.843778 + 0.536693i \(0.819673\pi\)
\(504\) 0 0
\(505\) −10.1683 −0.452482
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.6924 + 30.6441i −0.784200 + 1.35827i 0.145276 + 0.989391i \(0.453593\pi\)
−0.929476 + 0.368883i \(0.879740\pi\)
\(510\) 0 0
\(511\) −8.11764 17.5565i −0.359103 0.776654i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.11599 + 1.22167i −0.0932419 + 0.0538332i
\(516\) 0 0
\(517\) −11.8247 6.82701i −0.520051 0.300252i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.31879 0.101588 0.0507940 0.998709i \(-0.483825\pi\)
0.0507940 + 0.998709i \(0.483825\pi\)
\(522\) 0 0
\(523\) 20.1840i 0.882585i −0.897363 0.441293i \(-0.854520\pi\)
0.897363 0.441293i \(-0.145480\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.53886 2.04316i −0.154155 0.0890015i
\(528\) 0 0
\(529\) −3.46621 6.00365i −0.150705 0.261028i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −32.9503 + 19.0239i −1.42724 + 0.824016i
\(534\) 0 0
\(535\) −6.13093 3.53970i −0.265063 0.153034i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.07644 22.2744i 0.175585 0.959424i
\(540\) 0 0
\(541\) −22.7713 −0.979014 −0.489507 0.871999i \(-0.662823\pi\)
−0.489507 + 0.871999i \(0.662823\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.83643 10.1090i 0.250005 0.433022i
\(546\) 0 0
\(547\) −14.7918 25.6201i −0.632451 1.09544i −0.987049 0.160419i \(-0.948716\pi\)
0.354598 0.935019i \(-0.384618\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.66589 4.61745i −0.113571 0.196710i
\(552\) 0 0
\(553\) 7.91461 + 5.58014i 0.336563 + 0.237292i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.71407i 0.199741i 0.995000 + 0.0998707i \(0.0318429\pi\)
−0.995000 + 0.0998707i \(0.968157\pi\)
\(558\) 0 0
\(559\) 39.1439i 1.65561i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.6742 23.6844i 0.576299 0.998179i −0.419601 0.907709i \(-0.637830\pi\)
0.995899 0.0904697i \(-0.0288368\pi\)
\(564\) 0 0
\(565\) 4.87226 2.81300i 0.204977 0.118344i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.4018 + 11.7790i −0.855288 + 0.493801i −0.862432 0.506174i \(-0.831059\pi\)
0.00714355 + 0.999974i \(0.497726\pi\)
\(570\) 0 0
\(571\) 9.59385 16.6170i 0.401490 0.695401i −0.592416 0.805632i \(-0.701826\pi\)
0.993906 + 0.110231i \(0.0351591\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.7961i 0.491932i
\(576\) 0 0
\(577\) 2.23413i 0.0930079i 0.998918 + 0.0465039i \(0.0148080\pi\)
−0.998918 + 0.0465039i \(0.985192\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −23.5802 16.6250i −0.978271 0.689723i
\(582\) 0 0
\(583\) −11.3450 19.6501i −0.469862 0.813826i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.9883 + 22.4963i 0.536083 + 0.928522i 0.999110 + 0.0421784i \(0.0134298\pi\)
−0.463028 + 0.886344i \(0.653237\pi\)
\(588\) 0 0
\(589\) −8.40451 + 14.5570i −0.346302 + 0.599813i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.71754 0.234791 0.117396 0.993085i \(-0.462545\pi\)
0.117396 + 0.993085i \(0.462545\pi\)
\(594\) 0 0
\(595\) −0.374290 + 4.12434i −0.0153444 + 0.169081i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.8662 + 12.6245i 0.893429 + 0.515822i 0.875063 0.484010i \(-0.160820\pi\)
0.0183665 + 0.999831i \(0.494153\pi\)
\(600\) 0 0
\(601\) −40.2546 + 23.2410i −1.64202 + 0.948021i −0.661907 + 0.749586i \(0.730252\pi\)
−0.980114 + 0.198435i \(0.936414\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.383978 + 0.665069i 0.0156109 + 0.0270389i
\(606\) 0 0
\(607\) −6.09405 3.51840i −0.247350 0.142808i 0.371200 0.928553i \(-0.378946\pi\)
−0.618550 + 0.785745i \(0.712280\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.6073i 0.874138i
\(612\) 0 0
\(613\) 6.54256 0.264252 0.132126 0.991233i \(-0.457820\pi\)
0.132126 + 0.991233i \(0.457820\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0043 + 17.3230i 1.20793 + 0.697396i 0.962306 0.271970i \(-0.0876751\pi\)
0.245620 + 0.969366i \(0.421008\pi\)
\(618\) 0 0
\(619\) 14.7072 8.49123i 0.591134 0.341291i −0.174412 0.984673i \(-0.555802\pi\)
0.765546 + 0.643381i \(0.222469\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −32.8797 + 15.2027i −1.31730 + 0.609081i
\(624\) 0 0
\(625\) 0.812855 1.40791i 0.0325142 0.0563162i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.260959 0.0104051
\(630\) 0 0
\(631\) −26.2438 −1.04475 −0.522374 0.852716i \(-0.674953\pi\)
−0.522374 + 0.852716i \(0.674953\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.42354 + 7.66179i −0.175543 + 0.304049i
\(636\) 0 0
\(637\) 33.7518 12.0378i 1.33730 0.476954i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.5092 + 9.53157i −0.652073 + 0.376474i −0.789250 0.614072i \(-0.789530\pi\)
0.137177 + 0.990547i \(0.456197\pi\)
\(642\) 0 0
\(643\) 15.3447 + 8.85928i 0.605136 + 0.349376i 0.771060 0.636763i \(-0.219727\pi\)
−0.165923 + 0.986139i \(0.553060\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.7902 0.856661 0.428330 0.903622i \(-0.359102\pi\)
0.428330 + 0.903622i \(0.359102\pi\)
\(648\) 0 0
\(649\) 30.6365i 1.20259i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.0852 + 7.55475i 0.512064 + 0.295640i 0.733682 0.679493i \(-0.237800\pi\)
−0.221618 + 0.975134i \(0.571134\pi\)
\(654\) 0 0
\(655\) −5.92558 10.2634i −0.231532 0.401024i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −27.1850 + 15.6952i −1.05898 + 0.611400i −0.925149 0.379605i \(-0.876060\pi\)
−0.133827 + 0.991005i \(0.542727\pi\)
\(660\) 0 0
\(661\) 37.8554 + 21.8558i 1.47240 + 0.850093i 0.999518 0.0310314i \(-0.00987918\pi\)
0.472885 + 0.881124i \(0.343213\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.9654 + 1.53964i 0.657890 + 0.0597046i
\(666\) 0 0
\(667\) −4.76088 −0.184342
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.28096 + 9.14690i −0.203869 + 0.353112i
\(672\) 0 0
\(673\) −4.60589 7.97763i −0.177544 0.307515i 0.763495 0.645814i \(-0.223482\pi\)
−0.941039 + 0.338299i \(0.890149\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.4194 19.7789i −0.438882 0.760165i 0.558722 0.829355i \(-0.311292\pi\)
−0.997604 + 0.0691899i \(0.977959\pi\)
\(678\) 0 0
\(679\) 4.74795 6.73427i 0.182209 0.258437i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 34.1826i 1.30796i −0.756511 0.653981i \(-0.773098\pi\)
0.756511 0.653981i \(-0.226902\pi\)
\(684\) 0 0
\(685\) 14.8421i 0.567088i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 17.9533 31.0961i 0.683967 1.18467i
\(690\) 0 0
\(691\) −0.224082 + 0.129374i −0.00852446 + 0.00492160i −0.504256 0.863554i \(-0.668233\pi\)
0.495732 + 0.868476i \(0.334900\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.1725 + 12.8013i −0.841052 + 0.485582i
\(696\) 0 0
\(697\) 4.05555 7.02441i 0.153615 0.266069i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.16189i 0.194962i 0.995237 + 0.0974810i \(0.0310785\pi\)
−0.995237 + 0.0974810i \(0.968921\pi\)
\(702\) 0 0
\(703\) 1.07345i 0.0404860i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.3298 10.8082i −0.576537 0.406483i
\(708\) 0 0
\(709\) −11.7472 20.3468i −0.441175 0.764138i 0.556602 0.830780i \(-0.312105\pi\)
−0.997777 + 0.0666412i \(0.978772\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.50460 + 12.9984i 0.281050 + 0.486792i
\(714\) 0 0
\(715\) 11.8759 20.5697i 0.444134 0.769263i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.1566 0.378776 0.189388 0.981902i \(-0.439350\pi\)
0.189388 + 0.981902i \(0.439350\pi\)
\(720\) 0 0
\(721\) −4.48865 0.407352i −0.167166 0.0151706i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.02696 1.74761i −0.112418 0.0649047i
\(726\) 0 0
\(727\) −5.74874 + 3.31904i −0.213209 + 0.123096i −0.602802 0.797891i \(-0.705949\pi\)
0.389593 + 0.920987i \(0.372616\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.17238 7.22678i −0.154321 0.267292i
\(732\) 0 0
\(733\) −5.20130 3.00297i −0.192114 0.110917i 0.400858 0.916140i \(-0.368712\pi\)
−0.592972 + 0.805223i \(0.702046\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.13565i 0.0786676i
\(738\) 0 0
\(739\) 15.6386 0.575275 0.287638 0.957739i \(-0.407130\pi\)
0.287638 + 0.957739i \(0.407130\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.3807 + 15.8083i 1.00450 + 0.579949i 0.909577 0.415535i \(-0.136406\pi\)
0.0949246 + 0.995484i \(0.469739\pi\)
\(744\) 0 0
\(745\) 21.7664 12.5669i 0.797461 0.460414i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.48062 11.8532i −0.200257 0.433108i
\(750\) 0 0
\(751\) −7.13680 + 12.3613i −0.260426 + 0.451070i −0.966355 0.257212i \(-0.917196\pi\)
0.705929 + 0.708282i \(0.250530\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.57870 0.0574548
\(756\) 0 0
\(757\) −10.8227 −0.393358 −0.196679 0.980468i \(-0.563016\pi\)
−0.196679 + 0.980468i \(0.563016\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.93098 5.07660i 0.106248 0.184027i −0.808000 0.589183i \(-0.799450\pi\)
0.914247 + 0.405157i \(0.132783\pi\)
\(762\) 0 0
\(763\) 19.5442 9.03671i 0.707549 0.327151i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −41.9865 + 24.2409i −1.51604 + 0.875288i
\(768\) 0 0
\(769\) −27.5683 15.9166i −0.994140 0.573967i −0.0876307 0.996153i \(-0.527930\pi\)
−0.906509 + 0.422186i \(0.861263\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.0382 0.684755 0.342378 0.939562i \(-0.388768\pi\)
0.342378 + 0.939562i \(0.388768\pi\)
\(774\) 0 0
\(775\) 11.0191i 0.395818i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −28.8948 16.6824i −1.03526 0.597710i
\(780\) 0 0
\(781\) 6.18427 + 10.7115i 0.221290 + 0.383286i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.1219 + 6.99857i −0.432649 + 0.249790i
\(786\) 0 0
\(787\) −16.4123 9.47564i −0.585035 0.337770i 0.178097 0.984013i \(-0.443006\pi\)
−0.763132 + 0.646243i \(0.776339\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.3355 + 0.937963i 0.367488 + 0.0333501i
\(792\) 0 0
\(793\) −16.7141 −0.593535
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.7207 + 46.2816i −0.946497 + 1.63938i −0.193770 + 0.981047i \(0.562071\pi\)
−0.752727 + 0.658333i \(0.771262\pi\)
\(798\) 0 0
\(799\) 2.30314 + 3.98916i 0.0814792 + 0.141126i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.8247 20.4810i −0.417286 0.722760i
\(804\) 0 0
\(805\) 8.76501 12.4319i 0.308926 0.438167i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.58095i 0.0907413i −0.998970 0.0453706i \(-0.985553\pi\)
0.998970 0.0453706i \(-0.0144469\pi\)
\(810\) 0 0
\(811\) 6.06938i 0.213125i −0.994306 0.106562i \(-0.966016\pi\)
0.994306 0.106562i \(-0.0339844\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.18169 8.97494i 0.181507 0.314379i
\(816\) 0 0
\(817\) −29.7272 + 17.1630i −1.04002 + 0.600458i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.03938 + 4.64154i −0.280576 + 0.161991i −0.633684 0.773592i \(-0.718458\pi\)
0.353108 + 0.935583i \(0.385125\pi\)
\(822\) 0 0
\(823\) 9.03448 15.6482i 0.314922 0.545461i −0.664499 0.747289i \(-0.731355\pi\)
0.979421 + 0.201828i \(0.0646882\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.5440i 1.68804i 0.536310 + 0.844021i \(0.319818\pi\)
−0.536310 + 0.844021i \(0.680182\pi\)
\(828\) 0 0
\(829\) 5.44792i 0.189214i −0.995515 0.0946071i \(-0.969841\pi\)
0.995515 0.0946071i \(-0.0301595\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.94817 + 5.82006i −0.171444 + 0.201653i
\(834\) 0 0
\(835\) 12.4126 + 21.4992i 0.429556 + 0.744012i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.2673 + 42.0322i 0.837801 + 1.45111i 0.891729 + 0.452569i \(0.149492\pi\)
−0.0539281 + 0.998545i \(0.517174\pi\)
\(840\) 0 0
\(841\) −13.7947 + 23.8931i −0.475678 + 0.823899i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.9412 0.651598
\(846\) 0 0
\(847\) −0.128033 + 1.41081i −0.00439926 + 0.0484759i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.830095 0.479256i −0.0284553 0.0164287i
\(852\) 0 0
\(853\) 10.7703 6.21823i 0.368768 0.212908i −0.304152 0.952623i \(-0.598373\pi\)
0.672920 + 0.739715i \(0.265040\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.29077 + 9.16388i 0.180729 + 0.313032i 0.942129 0.335250i \(-0.108821\pi\)
−0.761400 + 0.648283i \(0.775488\pi\)
\(858\) 0 0
\(859\) −28.1452 16.2496i −0.960302 0.554431i −0.0640360 0.997948i \(-0.520397\pi\)
−0.896266 + 0.443517i \(0.853731\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.2203i 0.858510i 0.903183 + 0.429255i \(0.141224\pi\)
−0.903183 + 0.429255i \(0.858776\pi\)
\(864\) 0 0
\(865\) −2.80576 −0.0953987
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.2540 + 5.92017i 0.347844 + 0.200828i
\(870\) 0 0
\(871\) 2.92685 1.68982i 0.0991724 0.0572572i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 27.3583 12.6497i 0.924878 0.427638i
\(876\) 0 0
\(877\) 7.47893 12.9539i 0.252546 0.437422i −0.711680 0.702503i \(-0.752066\pi\)
0.964226 + 0.265082i \(0.0853989\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −36.4482 −1.22797 −0.613985 0.789318i \(-0.710434\pi\)
−0.613985 + 0.789318i \(0.710434\pi\)
\(882\) 0 0
\(883\) −15.9831 −0.537873 −0.268936 0.963158i \(-0.586672\pi\)
−0.268936 + 0.963158i \(0.586672\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24.5208 + 42.4713i −0.823329 + 1.42605i 0.0798613 + 0.996806i \(0.474552\pi\)
−0.903190 + 0.429241i \(0.858781\pi\)
\(888\) 0 0
\(889\) −14.8129 + 6.84909i −0.496810 + 0.229711i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16.4093 9.47393i 0.549117 0.317033i
\(894\) 0 0
\(895\) −28.8196 16.6390i −0.963332 0.556180i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.44728 −0.148325
\(900\) 0 0
\(901\) 7.65464i 0.255013i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.7621 + 7.36821i 0.424227 + 0.244928i
\(906\) 0 0
\(907\) −2.42915 4.20741i −0.0806585 0.139705i 0.822874 0.568223i \(-0.192369\pi\)
−0.903533 + 0.428519i \(0.859036\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.4945 8.36843i 0.480226 0.277258i −0.240285 0.970702i \(-0.577241\pi\)
0.720510 + 0.693444i \(0.243908\pi\)
\(912\) 0 0
\(913\) −30.5501 17.6381i −1.01106 0.583737i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.97582 21.7717i 0.0652472 0.718965i
\(918\) 0 0
\(919\) −30.6400 −1.01072 −0.505360 0.862909i \(-0.668640\pi\)
−0.505360 + 0.862909i \(0.668640\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.78651 + 16.9507i −0.322127 + 0.557940i
\(924\) 0 0
\(925\) −0.351848 0.609419i −0.0115687 0.0200376i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.8723 + 25.7595i 0.487943 + 0.845142i 0.999904 0.0138670i \(-0.00441415\pi\)
−0.511961 + 0.859009i \(0.671081\pi\)
\(930\) 0 0
\(931\) 23.9407 + 20.3542i 0.784626 + 0.667083i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.06346i 0.165593i
\(936\) 0 0
\(937\) 4.03712i 0.131887i 0.997823 + 0.0659434i \(0.0210057\pi\)
−0.997823 + 0.0659434i \(0.978994\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.20264 12.4753i 0.234799 0.406684i −0.724415 0.689364i \(-0.757890\pi\)
0.959214 + 0.282680i \(0.0912234\pi\)
\(942\) 0 0
\(943\) −25.8009 + 14.8962i −0.840193 + 0.485085i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.0334 15.6077i 0.878467 0.507183i 0.00831468 0.999965i \(-0.497353\pi\)
0.870153 + 0.492782i \(0.164020\pi\)
\(948\) 0 0
\(949\) 18.7125 32.4109i 0.607432 1.05210i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.55869i 0.277243i 0.990345 + 0.138622i \(0.0442672\pi\)
−0.990345 + 0.138622i \(0.955733\pi\)
\(954\) 0 0
\(955\) 32.5865i 1.05447i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.7761 22.3761i 0.509438 0.722563i
\(960\) 0 0
\(961\) −8.48973 14.7046i −0.273862 0.474343i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.0996 + 20.9572i 0.389501 + 0.674635i
\(966\) 0 0
\(967\) −16.0280 + 27.7614i −0.515427 + 0.892745i 0.484413 + 0.874840i \(0.339033\pi\)
−0.999840 + 0.0179059i \(0.994300\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −33.2366 −1.06661 −0.533307 0.845922i \(-0.679051\pi\)
−0.533307 + 0.845922i \(0.679051\pi\)
\(972\) 0 0
\(973\) −47.0345 4.26845i −1.50786 0.136840i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −45.1558 26.0707i −1.44466 0.834076i −0.446507 0.894780i \(-0.647332\pi\)
−0.998156 + 0.0607042i \(0.980665\pi\)
\(978\) 0 0
\(979\) −38.3567 + 22.1453i −1.22589 + 0.707765i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.1192 + 20.9911i 0.386544 + 0.669513i 0.991982 0.126379i \(-0.0403356\pi\)
−0.605438 + 0.795892i \(0.707002\pi\)
\(984\) 0 0
\(985\) −11.1099 6.41432i −0.353992 0.204377i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30.6506i 0.974632i
\(990\) 0 0
\(991\) 24.1981 0.768678 0.384339 0.923192i \(-0.374429\pi\)
0.384339 + 0.923192i \(0.374429\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.18607 4.14888i −0.227814 0.131528i
\(996\) 0 0
\(997\) −8.81920 + 5.09177i −0.279307 + 0.161258i −0.633110 0.774062i \(-0.718222\pi\)
0.353803 + 0.935320i \(0.384888\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cc.a.881.4 12
3.2 odd 2 1008.2.cc.a.545.2 12
4.3 odd 2 189.2.o.a.125.6 12
7.6 odd 2 inner 3024.2.cc.a.881.3 12
9.2 odd 6 inner 3024.2.cc.a.2897.3 12
9.7 even 3 1008.2.cc.a.209.5 12
12.11 even 2 63.2.o.a.41.2 yes 12
21.20 even 2 1008.2.cc.a.545.5 12
28.3 even 6 1323.2.i.c.1097.5 12
28.11 odd 6 1323.2.i.c.1097.6 12
28.19 even 6 1323.2.s.c.962.2 12
28.23 odd 6 1323.2.s.c.962.1 12
28.27 even 2 189.2.o.a.125.5 12
36.7 odd 6 63.2.o.a.20.1 12
36.11 even 6 189.2.o.a.62.5 12
36.23 even 6 567.2.c.c.566.2 12
36.31 odd 6 567.2.c.c.566.11 12
63.20 even 6 inner 3024.2.cc.a.2897.4 12
63.34 odd 6 1008.2.cc.a.209.2 12
84.11 even 6 441.2.i.c.68.2 12
84.23 even 6 441.2.s.c.374.5 12
84.47 odd 6 441.2.s.c.374.6 12
84.59 odd 6 441.2.i.c.68.1 12
84.83 odd 2 63.2.o.a.41.1 yes 12
252.11 even 6 1323.2.s.c.656.2 12
252.47 odd 6 1323.2.i.c.521.2 12
252.79 odd 6 441.2.i.c.227.5 12
252.83 odd 6 189.2.o.a.62.6 12
252.115 even 6 441.2.s.c.362.5 12
252.139 even 6 567.2.c.c.566.12 12
252.151 odd 6 441.2.s.c.362.6 12
252.167 odd 6 567.2.c.c.566.1 12
252.187 even 6 441.2.i.c.227.6 12
252.191 even 6 1323.2.i.c.521.1 12
252.223 even 6 63.2.o.a.20.2 yes 12
252.227 odd 6 1323.2.s.c.656.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.o.a.20.1 12 36.7 odd 6
63.2.o.a.20.2 yes 12 252.223 even 6
63.2.o.a.41.1 yes 12 84.83 odd 2
63.2.o.a.41.2 yes 12 12.11 even 2
189.2.o.a.62.5 12 36.11 even 6
189.2.o.a.62.6 12 252.83 odd 6
189.2.o.a.125.5 12 28.27 even 2
189.2.o.a.125.6 12 4.3 odd 2
441.2.i.c.68.1 12 84.59 odd 6
441.2.i.c.68.2 12 84.11 even 6
441.2.i.c.227.5 12 252.79 odd 6
441.2.i.c.227.6 12 252.187 even 6
441.2.s.c.362.5 12 252.115 even 6
441.2.s.c.362.6 12 252.151 odd 6
441.2.s.c.374.5 12 84.23 even 6
441.2.s.c.374.6 12 84.47 odd 6
567.2.c.c.566.1 12 252.167 odd 6
567.2.c.c.566.2 12 36.23 even 6
567.2.c.c.566.11 12 36.31 odd 6
567.2.c.c.566.12 12 252.139 even 6
1008.2.cc.a.209.2 12 63.34 odd 6
1008.2.cc.a.209.5 12 9.7 even 3
1008.2.cc.a.545.2 12 3.2 odd 2
1008.2.cc.a.545.5 12 21.20 even 2
1323.2.i.c.521.1 12 252.191 even 6
1323.2.i.c.521.2 12 252.47 odd 6
1323.2.i.c.1097.5 12 28.3 even 6
1323.2.i.c.1097.6 12 28.11 odd 6
1323.2.s.c.656.1 12 252.227 odd 6
1323.2.s.c.656.2 12 252.11 even 6
1323.2.s.c.962.1 12 28.23 odd 6
1323.2.s.c.962.2 12 28.19 even 6
3024.2.cc.a.881.3 12 7.6 odd 2 inner
3024.2.cc.a.881.4 12 1.1 even 1 trivial
3024.2.cc.a.2897.3 12 9.2 odd 6 inner
3024.2.cc.a.2897.4 12 63.20 even 6 inner