Properties

Label 3025.1.f.a
Level 30253025
Weight 11
Character orbit 3025.f
Analytic conductor 1.5101.510
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -55
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,1,Mod(243,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.243");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3025=52112 3025 = 5^{2} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3025.f (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.509671663211.50967166321
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.275.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(i1)q2+iq4+(i+1)q7+iq9+(i1)q132iq14+q16+(i1)q17+(i+1)q18+2q26+(i1)q28+(i1)q32+2iq34q36++(i+1)q98+O(q100) q + ( - i - 1) q^{2} + i q^{4} + (i + 1) q^{7} + i q^{9} + (i - 1) q^{13} - 2 i q^{14} + q^{16} + ( - i - 1) q^{17} + ( - i + 1) q^{18} + 2 q^{26} + (i - 1) q^{28} + ( - i - 1) q^{32} + 2 i q^{34} - q^{36} + \cdots + ( - i + 1) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q72q13+2q162q17+2q18+4q262q282q322q362q432q522q63+2q684q712q732q81+2q83+4q86++2q98+O(q100) 2 q - 2 q^{2} + 2 q^{7} - 2 q^{13} + 2 q^{16} - 2 q^{17} + 2 q^{18} + 4 q^{26} - 2 q^{28} - 2 q^{32} - 2 q^{36} - 2 q^{43} - 2 q^{52} - 2 q^{63} + 2 q^{68} - 4 q^{71} - 2 q^{73} - 2 q^{81} + 2 q^{83} + 4 q^{86}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3025Z)×\left(\mathbb{Z}/3025\mathbb{Z}\right)^\times.

nn 727727 23012301
χ(n)\chi(n) ii 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
243.1
1.00000i
1.00000i
−1.00000 + 1.00000i 0 1.00000i 0 0 1.00000 1.00000i 0 1.00000i 0
1332.1 −1.00000 1.00000i 0 1.00000i 0 0 1.00000 + 1.00000i 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by Q(55)\Q(\sqrt{-55})
5.c odd 4 1 inner
55.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3025.1.f.a 2
5.b even 2 1 3025.1.f.c yes 2
5.c odd 4 1 inner 3025.1.f.a 2
5.c odd 4 1 3025.1.f.c yes 2
11.b odd 2 1 3025.1.f.c yes 2
11.c even 5 4 3025.1.bl.c 8
11.d odd 10 4 3025.1.bl.a 8
55.d odd 2 1 CM 3025.1.f.a 2
55.e even 4 1 inner 3025.1.f.a 2
55.e even 4 1 3025.1.f.c yes 2
55.h odd 10 4 3025.1.bl.c 8
55.j even 10 4 3025.1.bl.a 8
55.k odd 20 4 3025.1.bl.a 8
55.k odd 20 4 3025.1.bl.c 8
55.l even 20 4 3025.1.bl.a 8
55.l even 20 4 3025.1.bl.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3025.1.f.a 2 1.a even 1 1 trivial
3025.1.f.a 2 5.c odd 4 1 inner
3025.1.f.a 2 55.d odd 2 1 CM
3025.1.f.a 2 55.e even 4 1 inner
3025.1.f.c yes 2 5.b even 2 1
3025.1.f.c yes 2 5.c odd 4 1
3025.1.f.c yes 2 11.b odd 2 1
3025.1.f.c yes 2 55.e even 4 1
3025.1.bl.a 8 11.d odd 10 4
3025.1.bl.a 8 55.j even 10 4
3025.1.bl.a 8 55.k odd 20 4
3025.1.bl.a 8 55.l even 20 4
3025.1.bl.c 8 11.c even 5 4
3025.1.bl.c 8 55.h odd 10 4
3025.1.bl.c 8 55.k odd 20 4
3025.1.bl.c 8 55.l even 20 4

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+2T2+2 T_{2}^{2} + 2T_{2} + 2 acting on S1new(3025,[χ])S_{1}^{\mathrm{new}}(3025, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
1717 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+4 T^{2} + 4 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
7373 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less