Properties

Label 3025.2.a.g
Level $3025$
Weight $2$
Character orbit 3025.a
Self dual yes
Analytic conductor $24.155$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,2,Mod(1,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 605)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + 3 q^{3} - q^{4} + 3 q^{6} + 3 q^{7} - 3 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + 3 q^{3} - q^{4} + 3 q^{6} + 3 q^{7} - 3 q^{8} + 6 q^{9} - 3 q^{12} - 4 q^{13} + 3 q^{14} - q^{16} + 6 q^{18} + 4 q^{19} + 9 q^{21} + 8 q^{23} - 9 q^{24} - 4 q^{26} + 9 q^{27} - 3 q^{28} + 6 q^{29} - 2 q^{31} + 5 q^{32} - 6 q^{36} + 8 q^{37} + 4 q^{38} - 12 q^{39} - 5 q^{41} + 9 q^{42} - 5 q^{43} + 8 q^{46} + 3 q^{47} - 3 q^{48} + 2 q^{49} + 4 q^{52} - 4 q^{53} + 9 q^{54} - 9 q^{56} + 12 q^{57} + 6 q^{58} - 2 q^{59} - 11 q^{61} - 2 q^{62} + 18 q^{63} + 7 q^{64} + 13 q^{67} + 24 q^{69} + 2 q^{71} - 18 q^{72} + 8 q^{73} + 8 q^{74} - 4 q^{76} - 12 q^{78} + 10 q^{79} + 9 q^{81} - 5 q^{82} - 4 q^{83} - 9 q^{84} - 5 q^{86} + 18 q^{87} + q^{89} - 12 q^{91} - 8 q^{92} - 6 q^{93} + 3 q^{94} + 15 q^{96} + 8 q^{97} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 3.00000 −1.00000 0 3.00000 3.00000 −3.00000 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3025.2.a.g 1
5.b even 2 1 605.2.a.a 1
11.b odd 2 1 3025.2.a.c 1
15.d odd 2 1 5445.2.a.h 1
20.d odd 2 1 9680.2.a.bf 1
55.d odd 2 1 605.2.a.c yes 1
55.h odd 10 4 605.2.g.b 4
55.j even 10 4 605.2.g.d 4
165.d even 2 1 5445.2.a.d 1
220.g even 2 1 9680.2.a.be 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
605.2.a.a 1 5.b even 2 1
605.2.a.c yes 1 55.d odd 2 1
605.2.g.b 4 55.h odd 10 4
605.2.g.d 4 55.j even 10 4
3025.2.a.c 1 11.b odd 2 1
3025.2.a.g 1 1.a even 1 1 trivial
5445.2.a.d 1 165.d even 2 1
5445.2.a.h 1 15.d odd 2 1
9680.2.a.be 1 220.g even 2 1
9680.2.a.bf 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{19} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 3 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 8 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T - 8 \) Copy content Toggle raw display
$41$ \( T + 5 \) Copy content Toggle raw display
$43$ \( T + 5 \) Copy content Toggle raw display
$47$ \( T - 3 \) Copy content Toggle raw display
$53$ \( T + 4 \) Copy content Toggle raw display
$59$ \( T + 2 \) Copy content Toggle raw display
$61$ \( T + 11 \) Copy content Toggle raw display
$67$ \( T - 13 \) Copy content Toggle raw display
$71$ \( T - 2 \) Copy content Toggle raw display
$73$ \( T - 8 \) Copy content Toggle raw display
$79$ \( T - 10 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T - 1 \) Copy content Toggle raw display
$97$ \( T - 8 \) Copy content Toggle raw display
show more
show less