Properties

Label 304.6.i.b.49.1
Level $304$
Weight $6$
Character 304.49
Analytic conductor $48.757$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,6,Mod(49,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 304.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.7566812231\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 386x^{6} + 3436x^{5} + 128708x^{4} + 568528x^{3} + 7340704x^{2} - 19430784x + 211527936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.1
Root \(-6.34386 - 10.9879i\) of defining polynomial
Character \(\chi\) \(=\) 304.49
Dual form 304.6.i.b.273.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.84386 + 8.38982i) q^{3} +(-23.1201 + 40.0451i) q^{5} -177.800 q^{7} +(74.5740 + 129.166i) q^{9} -5.50017 q^{11} +(515.695 + 893.211i) q^{13} +(-223.981 - 387.946i) q^{15} +(-466.501 + 808.003i) q^{17} +(-1046.56 + 1175.08i) q^{19} +(861.238 - 1491.71i) q^{21} +(1770.58 + 3066.73i) q^{23} +(493.425 + 854.637i) q^{25} -3799.02 q^{27} +(-2089.31 - 3618.79i) q^{29} -3762.40 q^{31} +(26.6421 - 46.1454i) q^{33} +(4110.74 - 7120.02i) q^{35} -7922.43 q^{37} -9991.83 q^{39} +(2497.50 - 4325.80i) q^{41} +(7272.70 - 12596.7i) q^{43} -6896.62 q^{45} +(7679.23 + 13300.8i) q^{47} +14805.8 q^{49} +(-4519.33 - 7827.71i) q^{51} +(10286.1 + 17816.1i) q^{53} +(127.164 - 220.255i) q^{55} +(-4789.36 - 14472.4i) q^{57} +(6119.91 - 10600.0i) q^{59} +(-9096.89 - 15756.3i) q^{61} +(-13259.2 - 22965.7i) q^{63} -47691.7 q^{65} +(11387.1 + 19723.0i) q^{67} -34305.8 q^{69} +(33788.2 - 58522.8i) q^{71} +(40463.9 - 70085.6i) q^{73} -9560.33 q^{75} +977.929 q^{77} +(-43313.1 + 75020.6i) q^{79} +(280.475 - 485.798i) q^{81} -29466.9 q^{83} +(-21571.1 - 37362.2i) q^{85} +40481.4 q^{87} +(-23045.4 - 39915.7i) q^{89} +(-91690.6 - 158813. i) q^{91} +(18224.5 - 31565.8i) q^{93} +(-22859.9 - 69077.5i) q^{95} +(-2229.77 + 3862.07i) q^{97} +(-410.169 - 710.434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 14 q^{3} - 36 q^{5} - 76 q^{7} + 156 q^{9} - 144 q^{11} - 674 q^{13} + 20 q^{15} + 522 q^{17} - 320 q^{19} - 770 q^{21} + 204 q^{23} - 2158 q^{25} - 13156 q^{27} - 5712 q^{29} + 2324 q^{31} - 15650 q^{33}+ \cdots + 138328 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.84386 + 8.38982i −0.310734 + 0.538207i −0.978521 0.206145i \(-0.933908\pi\)
0.667787 + 0.744352i \(0.267242\pi\)
\(4\) 0 0
\(5\) −23.1201 + 40.0451i −0.413584 + 0.716349i −0.995279 0.0970584i \(-0.969057\pi\)
0.581694 + 0.813407i \(0.302390\pi\)
\(6\) 0 0
\(7\) −177.800 −1.37147 −0.685735 0.727851i \(-0.740519\pi\)
−0.685735 + 0.727851i \(0.740519\pi\)
\(8\) 0 0
\(9\) 74.5740 + 129.166i 0.306889 + 0.531547i
\(10\) 0 0
\(11\) −5.50017 −0.0137055 −0.00685274 0.999977i \(-0.502181\pi\)
−0.00685274 + 0.999977i \(0.502181\pi\)
\(12\) 0 0
\(13\) 515.695 + 893.211i 0.846321 + 1.46587i 0.884469 + 0.466598i \(0.154521\pi\)
−0.0381488 + 0.999272i \(0.512146\pi\)
\(14\) 0 0
\(15\) −223.981 387.946i −0.257029 0.445188i
\(16\) 0 0
\(17\) −466.501 + 808.003i −0.391498 + 0.678095i −0.992647 0.121042i \(-0.961377\pi\)
0.601149 + 0.799137i \(0.294710\pi\)
\(18\) 0 0
\(19\) −1046.56 + 1175.08i −0.665087 + 0.746766i
\(20\) 0 0
\(21\) 861.238 1491.71i 0.426162 0.738135i
\(22\) 0 0
\(23\) 1770.58 + 3066.73i 0.697904 + 1.20881i 0.969192 + 0.246307i \(0.0792172\pi\)
−0.271288 + 0.962498i \(0.587449\pi\)
\(24\) 0 0
\(25\) 493.425 + 854.637i 0.157896 + 0.273484i
\(26\) 0 0
\(27\) −3799.02 −1.00291
\(28\) 0 0
\(29\) −2089.31 3618.79i −0.461326 0.799041i 0.537701 0.843136i \(-0.319293\pi\)
−0.999027 + 0.0440948i \(0.985960\pi\)
\(30\) 0 0
\(31\) −3762.40 −0.703170 −0.351585 0.936156i \(-0.614357\pi\)
−0.351585 + 0.936156i \(0.614357\pi\)
\(32\) 0 0
\(33\) 26.6421 46.1454i 0.00425876 0.00737639i
\(34\) 0 0
\(35\) 4110.74 7120.02i 0.567218 0.982451i
\(36\) 0 0
\(37\) −7922.43 −0.951380 −0.475690 0.879613i \(-0.657802\pi\)
−0.475690 + 0.879613i \(0.657802\pi\)
\(38\) 0 0
\(39\) −9991.83 −1.05192
\(40\) 0 0
\(41\) 2497.50 4325.80i 0.232031 0.401889i −0.726375 0.687299i \(-0.758796\pi\)
0.958406 + 0.285409i \(0.0921296\pi\)
\(42\) 0 0
\(43\) 7272.70 12596.7i 0.599825 1.03893i −0.393022 0.919529i \(-0.628570\pi\)
0.992847 0.119398i \(-0.0380964\pi\)
\(44\) 0 0
\(45\) −6896.62 −0.507697
\(46\) 0 0
\(47\) 7679.23 + 13300.8i 0.507076 + 0.878281i 0.999966 + 0.00818981i \(0.00260693\pi\)
−0.492891 + 0.870091i \(0.664060\pi\)
\(48\) 0 0
\(49\) 14805.8 0.880930
\(50\) 0 0
\(51\) −4519.33 7827.71i −0.243304 0.421415i
\(52\) 0 0
\(53\) 10286.1 + 17816.1i 0.502994 + 0.871211i 0.999994 + 0.00346060i \(0.00110155\pi\)
−0.497000 + 0.867751i \(0.665565\pi\)
\(54\) 0 0
\(55\) 127.164 220.255i 0.00566837 0.00981791i
\(56\) 0 0
\(57\) −4789.36 14472.4i −0.195250 0.590000i
\(58\) 0 0
\(59\) 6119.91 10600.0i 0.228884 0.396438i −0.728594 0.684946i \(-0.759826\pi\)
0.957478 + 0.288508i \(0.0931591\pi\)
\(60\) 0 0
\(61\) −9096.89 15756.3i −0.313017 0.542162i 0.665997 0.745955i \(-0.268006\pi\)
−0.979014 + 0.203793i \(0.934673\pi\)
\(62\) 0 0
\(63\) −13259.2 22965.7i −0.420889 0.729001i
\(64\) 0 0
\(65\) −47691.7 −1.40010
\(66\) 0 0
\(67\) 11387.1 + 19723.0i 0.309903 + 0.536768i 0.978341 0.207000i \(-0.0663700\pi\)
−0.668438 + 0.743768i \(0.733037\pi\)
\(68\) 0 0
\(69\) −34305.8 −0.867450
\(70\) 0 0
\(71\) 33788.2 58522.8i 0.795461 1.37778i −0.127086 0.991892i \(-0.540562\pi\)
0.922546 0.385886i \(-0.126104\pi\)
\(72\) 0 0
\(73\) 40463.9 70085.6i 0.888711 1.53929i 0.0473118 0.998880i \(-0.484935\pi\)
0.841400 0.540413i \(-0.181732\pi\)
\(74\) 0 0
\(75\) −9560.33 −0.196255
\(76\) 0 0
\(77\) 977.929 0.0187966
\(78\) 0 0
\(79\) −43313.1 + 75020.6i −0.780822 + 1.35242i 0.150642 + 0.988588i \(0.451866\pi\)
−0.931464 + 0.363835i \(0.881467\pi\)
\(80\) 0 0
\(81\) 280.475 485.798i 0.00474988 0.00822703i
\(82\) 0 0
\(83\) −29466.9 −0.469504 −0.234752 0.972055i \(-0.575428\pi\)
−0.234752 + 0.972055i \(0.575428\pi\)
\(84\) 0 0
\(85\) −21571.1 37362.2i −0.323835 0.560899i
\(86\) 0 0
\(87\) 40481.4 0.573399
\(88\) 0 0
\(89\) −23045.4 39915.7i −0.308396 0.534157i 0.669616 0.742708i \(-0.266459\pi\)
−0.978012 + 0.208550i \(0.933125\pi\)
\(90\) 0 0
\(91\) −91690.6 158813.i −1.16070 2.01040i
\(92\) 0 0
\(93\) 18224.5 31565.8i 0.218499 0.378451i
\(94\) 0 0
\(95\) −22859.9 69077.5i −0.259876 0.785285i
\(96\) 0 0
\(97\) −2229.77 + 3862.07i −0.0240619 + 0.0416765i −0.877806 0.479017i \(-0.840993\pi\)
0.853744 + 0.520693i \(0.174327\pi\)
\(98\) 0 0
\(99\) −410.169 710.434i −0.00420606 0.00728510i
\(100\) 0 0
\(101\) −44061.3 76316.3i −0.429787 0.744413i 0.567067 0.823672i \(-0.308078\pi\)
−0.996854 + 0.0792585i \(0.974745\pi\)
\(102\) 0 0
\(103\) −50601.9 −0.469974 −0.234987 0.971998i \(-0.575505\pi\)
−0.234987 + 0.971998i \(0.575505\pi\)
\(104\) 0 0
\(105\) 39823.8 + 68976.8i 0.352508 + 0.610562i
\(106\) 0 0
\(107\) −63576.1 −0.536827 −0.268414 0.963304i \(-0.586499\pi\)
−0.268414 + 0.963304i \(0.586499\pi\)
\(108\) 0 0
\(109\) 15795.7 27358.9i 0.127342 0.220563i −0.795304 0.606211i \(-0.792689\pi\)
0.922646 + 0.385648i \(0.126022\pi\)
\(110\) 0 0
\(111\) 38375.2 66467.8i 0.295626 0.512040i
\(112\) 0 0
\(113\) 236103. 1.73942 0.869711 0.493561i \(-0.164305\pi\)
0.869711 + 0.493561i \(0.164305\pi\)
\(114\) 0 0
\(115\) −163744. −1.15457
\(116\) 0 0
\(117\) −76914.9 + 133221.i −0.519453 + 0.899718i
\(118\) 0 0
\(119\) 82943.8 143663.i 0.536928 0.929987i
\(120\) 0 0
\(121\) −161021. −0.999812
\(122\) 0 0
\(123\) 24195.1 + 41907.2i 0.144200 + 0.249761i
\(124\) 0 0
\(125\) −190132. −1.08838
\(126\) 0 0
\(127\) 75478.8 + 130733.i 0.415256 + 0.719244i 0.995455 0.0952305i \(-0.0303588\pi\)
−0.580200 + 0.814474i \(0.697025\pi\)
\(128\) 0 0
\(129\) 70455.9 + 122033.i 0.372772 + 0.645660i
\(130\) 0 0
\(131\) −42728.8 + 74008.4i −0.217542 + 0.376793i −0.954056 0.299629i \(-0.903137\pi\)
0.736514 + 0.676422i \(0.236470\pi\)
\(132\) 0 0
\(133\) 186077. 208930.i 0.912147 1.02417i
\(134\) 0 0
\(135\) 87833.7 152132.i 0.414788 0.718434i
\(136\) 0 0
\(137\) −152559. 264240.i −0.694443 1.20281i −0.970368 0.241632i \(-0.922317\pi\)
0.275924 0.961179i \(-0.411016\pi\)
\(138\) 0 0
\(139\) 150373. + 260453.i 0.660134 + 1.14339i 0.980580 + 0.196118i \(0.0628337\pi\)
−0.320447 + 0.947267i \(0.603833\pi\)
\(140\) 0 0
\(141\) −148789. −0.630263
\(142\) 0 0
\(143\) −2836.41 4912.81i −0.0115992 0.0200905i
\(144\) 0 0
\(145\) 193220. 0.763190
\(146\) 0 0
\(147\) −71717.2 + 124218.i −0.273735 + 0.474123i
\(148\) 0 0
\(149\) 9608.88 16643.1i 0.0354574 0.0614140i −0.847752 0.530393i \(-0.822045\pi\)
0.883210 + 0.468979i \(0.155378\pi\)
\(150\) 0 0
\(151\) 187140. 0.667920 0.333960 0.942587i \(-0.391615\pi\)
0.333960 + 0.942587i \(0.391615\pi\)
\(152\) 0 0
\(153\) −139155. −0.480586
\(154\) 0 0
\(155\) 86986.9 150666.i 0.290820 0.503715i
\(156\) 0 0
\(157\) −42664.9 + 73897.8i −0.138141 + 0.239267i −0.926793 0.375573i \(-0.877446\pi\)
0.788652 + 0.614840i \(0.210779\pi\)
\(158\) 0 0
\(159\) −199299. −0.625189
\(160\) 0 0
\(161\) −314809. 545265.i −0.957155 1.65784i
\(162\) 0 0
\(163\) 47671.9 0.140538 0.0702689 0.997528i \(-0.477614\pi\)
0.0702689 + 0.997528i \(0.477614\pi\)
\(164\) 0 0
\(165\) 1231.93 + 2133.77i 0.00352271 + 0.00610151i
\(166\) 0 0
\(167\) −9863.67 17084.4i −0.0273683 0.0474032i 0.852017 0.523514i \(-0.175379\pi\)
−0.879385 + 0.476111i \(0.842046\pi\)
\(168\) 0 0
\(169\) −346237. + 599700.i −0.932517 + 1.61517i
\(170\) 0 0
\(171\) −229826. 47548.7i −0.601049 0.124351i
\(172\) 0 0
\(173\) −361533. + 626194.i −0.918402 + 1.59072i −0.116559 + 0.993184i \(0.537187\pi\)
−0.801843 + 0.597535i \(0.796147\pi\)
\(174\) 0 0
\(175\) −87730.9 151954.i −0.216550 0.375075i
\(176\) 0 0
\(177\) 59288.0 + 102690.i 0.142244 + 0.246374i
\(178\) 0 0
\(179\) −553218. −1.29052 −0.645259 0.763964i \(-0.723250\pi\)
−0.645259 + 0.763964i \(0.723250\pi\)
\(180\) 0 0
\(181\) 332593. + 576068.i 0.754599 + 1.30700i 0.945573 + 0.325409i \(0.105502\pi\)
−0.190974 + 0.981595i \(0.561165\pi\)
\(182\) 0 0
\(183\) 176256. 0.389060
\(184\) 0 0
\(185\) 183167. 317255.i 0.393476 0.681520i
\(186\) 0 0
\(187\) 2565.83 4444.15i 0.00536567 0.00929362i
\(188\) 0 0
\(189\) 675466. 1.37546
\(190\) 0 0
\(191\) 144263. 0.286135 0.143068 0.989713i \(-0.454303\pi\)
0.143068 + 0.989713i \(0.454303\pi\)
\(192\) 0 0
\(193\) 360326. 624104.i 0.696310 1.20604i −0.273427 0.961893i \(-0.588157\pi\)
0.969737 0.244152i \(-0.0785096\pi\)
\(194\) 0 0
\(195\) 231012. 400124.i 0.435059 0.753544i
\(196\) 0 0
\(197\) 1.00249e6 1.84041 0.920207 0.391432i \(-0.128020\pi\)
0.920207 + 0.391432i \(0.128020\pi\)
\(198\) 0 0
\(199\) 318120. + 551000.i 0.569454 + 0.986323i 0.996620 + 0.0821495i \(0.0261785\pi\)
−0.427166 + 0.904173i \(0.640488\pi\)
\(200\) 0 0
\(201\) −220630. −0.385190
\(202\) 0 0
\(203\) 371479. + 643421.i 0.632695 + 1.09586i
\(204\) 0 0
\(205\) 115485. + 200025.i 0.191929 + 0.332430i
\(206\) 0 0
\(207\) −264078. + 457397.i −0.428358 + 0.741938i
\(208\) 0 0
\(209\) 5756.23 6463.15i 0.00911533 0.0102348i
\(210\) 0 0
\(211\) 528520. 915424.i 0.817251 1.41552i −0.0904485 0.995901i \(-0.528830\pi\)
0.907700 0.419620i \(-0.137837\pi\)
\(212\) 0 0
\(213\) 327330. + 566953.i 0.494353 + 0.856245i
\(214\) 0 0
\(215\) 336291. + 582472.i 0.496156 + 0.859368i
\(216\) 0 0
\(217\) 668954. 0.964377
\(218\) 0 0
\(219\) 392003. + 678970.i 0.552306 + 0.956622i
\(220\) 0 0
\(221\) −962289. −1.32533
\(222\) 0 0
\(223\) −81135.2 + 140530.i −0.109256 + 0.189238i −0.915469 0.402388i \(-0.868180\pi\)
0.806213 + 0.591626i \(0.201514\pi\)
\(224\) 0 0
\(225\) −73593.3 + 127467.i −0.0969130 + 0.167858i
\(226\) 0 0
\(227\) 280544. 0.361357 0.180678 0.983542i \(-0.442171\pi\)
0.180678 + 0.983542i \(0.442171\pi\)
\(228\) 0 0
\(229\) −555296. −0.699738 −0.349869 0.936799i \(-0.613774\pi\)
−0.349869 + 0.936799i \(0.613774\pi\)
\(230\) 0 0
\(231\) −4736.95 + 8204.64i −0.00584076 + 0.0101165i
\(232\) 0 0
\(233\) 416075. 720664.i 0.502091 0.869647i −0.497906 0.867231i \(-0.665898\pi\)
0.999997 0.00241578i \(-0.000768967\pi\)
\(234\) 0 0
\(235\) −710177. −0.838874
\(236\) 0 0
\(237\) −419606. 726779.i −0.485256 0.840488i
\(238\) 0 0
\(239\) −61445.3 −0.0695815 −0.0347907 0.999395i \(-0.511076\pi\)
−0.0347907 + 0.999395i \(0.511076\pi\)
\(240\) 0 0
\(241\) 559423. + 968950.i 0.620437 + 1.07463i 0.989404 + 0.145187i \(0.0463783\pi\)
−0.368967 + 0.929443i \(0.620288\pi\)
\(242\) 0 0
\(243\) −458864. 794776.i −0.498504 0.863434i
\(244\) 0 0
\(245\) −342311. + 592899.i −0.364339 + 0.631053i
\(246\) 0 0
\(247\) −1.58930e6 328810.i −1.65754 0.342928i
\(248\) 0 0
\(249\) 142734. 247222.i 0.145891 0.252691i
\(250\) 0 0
\(251\) 604896. + 1.04771e6i 0.606033 + 1.04968i 0.991887 + 0.127120i \(0.0405733\pi\)
−0.385855 + 0.922560i \(0.626093\pi\)
\(252\) 0 0
\(253\) −9738.48 16867.5i −0.00956511 0.0165673i
\(254\) 0 0
\(255\) 417949. 0.402507
\(256\) 0 0
\(257\) 27061.0 + 46871.1i 0.0255571 + 0.0442662i 0.878521 0.477704i \(-0.158531\pi\)
−0.852964 + 0.521970i \(0.825197\pi\)
\(258\) 0 0
\(259\) 1.40861e6 1.30479
\(260\) 0 0
\(261\) 311617. 539736.i 0.283152 0.490433i
\(262\) 0 0
\(263\) −1.07965e6 + 1.87002e6i −0.962489 + 1.66708i −0.246272 + 0.969201i \(0.579206\pi\)
−0.716216 + 0.697878i \(0.754128\pi\)
\(264\) 0 0
\(265\) −951265. −0.832122
\(266\) 0 0
\(267\) 446514. 0.383316
\(268\) 0 0
\(269\) −1.02660e6 + 1.77812e6i −0.865006 + 1.49823i 0.00203447 + 0.999998i \(0.499352\pi\)
−0.867041 + 0.498237i \(0.833981\pi\)
\(270\) 0 0
\(271\) 945648. 1.63791e6i 0.782179 1.35477i −0.148491 0.988914i \(-0.547442\pi\)
0.930670 0.365860i \(-0.119225\pi\)
\(272\) 0 0
\(273\) 1.77655e6 1.44268
\(274\) 0 0
\(275\) −2713.92 4700.65i −0.00216404 0.00374823i
\(276\) 0 0
\(277\) 48008.8 0.0375943 0.0187971 0.999823i \(-0.494016\pi\)
0.0187971 + 0.999823i \(0.494016\pi\)
\(278\) 0 0
\(279\) −280577. 485974.i −0.215795 0.373768i
\(280\) 0 0
\(281\) 715331. + 1.23899e6i 0.540432 + 0.936056i 0.998879 + 0.0473339i \(0.0150725\pi\)
−0.458447 + 0.888722i \(0.651594\pi\)
\(282\) 0 0
\(283\) 874446. 1.51459e6i 0.649033 1.12416i −0.334321 0.942459i \(-0.608507\pi\)
0.983354 0.181699i \(-0.0581598\pi\)
\(284\) 0 0
\(285\) 690278. + 142811.i 0.503398 + 0.104148i
\(286\) 0 0
\(287\) −444055. + 769126.i −0.318223 + 0.551179i
\(288\) 0 0
\(289\) 274683. + 475764.i 0.193458 + 0.335079i
\(290\) 0 0
\(291\) −21601.4 37414.7i −0.0149537 0.0259006i
\(292\) 0 0
\(293\) −2.57086e6 −1.74948 −0.874741 0.484591i \(-0.838968\pi\)
−0.874741 + 0.484591i \(0.838968\pi\)
\(294\) 0 0
\(295\) 282985. + 490145.i 0.189325 + 0.327921i
\(296\) 0 0
\(297\) 20895.3 0.0137454
\(298\) 0 0
\(299\) −1.82616e6 + 3.16300e6i −1.18130 + 2.04607i
\(300\) 0 0
\(301\) −1.29308e6 + 2.23969e6i −0.822642 + 1.42486i
\(302\) 0 0
\(303\) 853707. 0.534198
\(304\) 0 0
\(305\) 841283. 0.517836
\(306\) 0 0
\(307\) −453293. + 785126.i −0.274494 + 0.475438i −0.970007 0.243076i \(-0.921844\pi\)
0.695513 + 0.718513i \(0.255177\pi\)
\(308\) 0 0
\(309\) 245109. 424541.i 0.146037 0.252944i
\(310\) 0 0
\(311\) 1.35970e6 0.797157 0.398578 0.917134i \(-0.369504\pi\)
0.398578 + 0.917134i \(0.369504\pi\)
\(312\) 0 0
\(313\) −1.10408e6 1.91231e6i −0.636998 1.10331i −0.986088 0.166223i \(-0.946843\pi\)
0.349090 0.937089i \(-0.386491\pi\)
\(314\) 0 0
\(315\) 1.22622e6 0.696292
\(316\) 0 0
\(317\) 514679. + 891451.i 0.287666 + 0.498252i 0.973252 0.229739i \(-0.0737873\pi\)
−0.685586 + 0.727992i \(0.740454\pi\)
\(318\) 0 0
\(319\) 11491.6 + 19904.0i 0.00632270 + 0.0109512i
\(320\) 0 0
\(321\) 307954. 533392.i 0.166810 0.288924i
\(322\) 0 0
\(323\) −461252. 1.39380e6i −0.245998 0.743350i
\(324\) 0 0
\(325\) −508914. + 881465.i −0.267261 + 0.462910i
\(326\) 0 0
\(327\) 153024. + 265046.i 0.0791390 + 0.137073i
\(328\) 0 0
\(329\) −1.36537e6 2.36488e6i −0.695439 1.20454i
\(330\) 0 0
\(331\) −1.31278e6 −0.658601 −0.329300 0.944225i \(-0.606813\pi\)
−0.329300 + 0.944225i \(0.606813\pi\)
\(332\) 0 0
\(333\) −590807. 1.02331e6i −0.291968 0.505703i
\(334\) 0 0
\(335\) −1.05308e6 −0.512685
\(336\) 0 0
\(337\) 1.55929e6 2.70077e6i 0.747915 1.29543i −0.200906 0.979611i \(-0.564389\pi\)
0.948821 0.315816i \(-0.102278\pi\)
\(338\) 0 0
\(339\) −1.14365e6 + 1.98086e6i −0.540498 + 0.936170i
\(340\) 0 0
\(341\) 20693.8 0.00963728
\(342\) 0 0
\(343\) 355816. 0.163302
\(344\) 0 0
\(345\) 793152. 1.37378e6i 0.358764 0.621397i
\(346\) 0 0
\(347\) 803660. 1.39198e6i 0.358301 0.620596i −0.629376 0.777101i \(-0.716689\pi\)
0.987677 + 0.156505i \(0.0500227\pi\)
\(348\) 0 0
\(349\) −724001. −0.318182 −0.159091 0.987264i \(-0.550856\pi\)
−0.159091 + 0.987264i \(0.550856\pi\)
\(350\) 0 0
\(351\) −1.95914e6 3.39333e6i −0.848784 1.47014i
\(352\) 0 0
\(353\) 724652. 0.309523 0.154761 0.987952i \(-0.450539\pi\)
0.154761 + 0.987952i \(0.450539\pi\)
\(354\) 0 0
\(355\) 1.56237e6 + 2.70610e6i 0.657980 + 1.13965i
\(356\) 0 0
\(357\) 803537. + 1.39177e6i 0.333684 + 0.577957i
\(358\) 0 0
\(359\) 361869. 626775.i 0.148189 0.256670i −0.782369 0.622815i \(-0.785989\pi\)
0.930558 + 0.366144i \(0.119322\pi\)
\(360\) 0 0
\(361\) −285541. 2.45958e6i −0.115319 0.993329i
\(362\) 0 0
\(363\) 779963. 1.35093e6i 0.310676 0.538106i
\(364\) 0 0
\(365\) 1.87106e6 + 3.24077e6i 0.735114 + 1.27326i
\(366\) 0 0
\(367\) −2.43800e6 4.22274e6i −0.944863 1.63655i −0.756025 0.654543i \(-0.772861\pi\)
−0.188838 0.982008i \(-0.560472\pi\)
\(368\) 0 0
\(369\) 744994. 0.284831
\(370\) 0 0
\(371\) −1.82887e6 3.16770e6i −0.689841 1.19484i
\(372\) 0 0
\(373\) −1.30910e6 −0.487194 −0.243597 0.969877i \(-0.578327\pi\)
−0.243597 + 0.969877i \(0.578327\pi\)
\(374\) 0 0
\(375\) 920976. 1.59518e6i 0.338197 0.585775i
\(376\) 0 0
\(377\) 2.15490e6 3.73239e6i 0.780860 1.35249i
\(378\) 0 0
\(379\) −60313.7 −0.0215684 −0.0107842 0.999942i \(-0.503433\pi\)
−0.0107842 + 0.999942i \(0.503433\pi\)
\(380\) 0 0
\(381\) −1.46244e6 −0.516136
\(382\) 0 0
\(383\) 510882. 884873.i 0.177960 0.308236i −0.763221 0.646137i \(-0.776383\pi\)
0.941182 + 0.337901i \(0.109717\pi\)
\(384\) 0 0
\(385\) −22609.8 + 39161.3i −0.00777400 + 0.0134650i
\(386\) 0 0
\(387\) 2.16942e6 0.736318
\(388\) 0 0
\(389\) −1.16397e6 2.01606e6i −0.390004 0.675506i 0.602446 0.798160i \(-0.294193\pi\)
−0.992450 + 0.122654i \(0.960860\pi\)
\(390\) 0 0
\(391\) −3.30391e6 −1.09291
\(392\) 0 0
\(393\) −413945. 716973.i −0.135195 0.234165i
\(394\) 0 0
\(395\) −2.00281e6 3.46896e6i −0.645871 1.11868i
\(396\) 0 0
\(397\) 1.75278e6 3.03591e6i 0.558152 0.966747i −0.439499 0.898243i \(-0.644844\pi\)
0.997651 0.0685040i \(-0.0218226\pi\)
\(398\) 0 0
\(399\) 851547. + 2.57318e6i 0.267779 + 0.809167i
\(400\) 0 0
\(401\) 318265. 551251.i 0.0988389 0.171194i −0.812365 0.583149i \(-0.801820\pi\)
0.911204 + 0.411955i \(0.135154\pi\)
\(402\) 0 0
\(403\) −1.94025e6 3.36061e6i −0.595108 1.03076i
\(404\) 0 0
\(405\) 12969.2 + 22463.4i 0.00392895 + 0.00680514i
\(406\) 0 0
\(407\) 43574.7 0.0130391
\(408\) 0 0
\(409\) 844535. + 1.46278e6i 0.249637 + 0.432384i 0.963425 0.267978i \(-0.0863553\pi\)
−0.713788 + 0.700362i \(0.753022\pi\)
\(410\) 0 0
\(411\) 2.95590e6 0.863149
\(412\) 0 0
\(413\) −1.08812e6 + 1.88468e6i −0.313907 + 0.543703i
\(414\) 0 0
\(415\) 681277. 1.18001e6i 0.194180 0.336329i
\(416\) 0 0
\(417\) −2.91354e6 −0.820504
\(418\) 0 0
\(419\) −3.97406e6 −1.10586 −0.552929 0.833228i \(-0.686490\pi\)
−0.552929 + 0.833228i \(0.686490\pi\)
\(420\) 0 0
\(421\) −1.71438e6 + 2.96939e6i −0.471413 + 0.816511i −0.999465 0.0327009i \(-0.989589\pi\)
0.528052 + 0.849212i \(0.322922\pi\)
\(422\) 0 0
\(423\) −1.14534e6 + 1.98379e6i −0.311232 + 0.539069i
\(424\) 0 0
\(425\) −920733. −0.247264
\(426\) 0 0
\(427\) 1.61742e6 + 2.80146e6i 0.429294 + 0.743558i
\(428\) 0 0
\(429\) 54956.8 0.0144171
\(430\) 0 0
\(431\) 420749. + 728758.i 0.109101 + 0.188969i 0.915406 0.402531i \(-0.131869\pi\)
−0.806305 + 0.591500i \(0.798536\pi\)
\(432\) 0 0
\(433\) −3.16621e6 5.48403e6i −0.811558 1.40566i −0.911774 0.410693i \(-0.865287\pi\)
0.100216 0.994966i \(-0.468047\pi\)
\(434\) 0 0
\(435\) −935932. + 1.62108e6i −0.237149 + 0.410754i
\(436\) 0 0
\(437\) −5.45668e6 1.12893e6i −1.36686 0.282789i
\(438\) 0 0
\(439\) −2.56854e6 + 4.44884e6i −0.636099 + 1.10176i 0.350182 + 0.936682i \(0.386120\pi\)
−0.986281 + 0.165074i \(0.947214\pi\)
\(440\) 0 0
\(441\) 1.10413e6 + 1.91240e6i 0.270347 + 0.468255i
\(442\) 0 0
\(443\) 1.35968e6 + 2.35504e6i 0.329175 + 0.570149i 0.982348 0.187060i \(-0.0598959\pi\)
−0.653173 + 0.757209i \(0.726563\pi\)
\(444\) 0 0
\(445\) 2.13124e6 0.510191
\(446\) 0 0
\(447\) 93088.2 + 161234.i 0.0220356 + 0.0381669i
\(448\) 0 0
\(449\) 2.65490e6 0.621488 0.310744 0.950494i \(-0.399422\pi\)
0.310744 + 0.950494i \(0.399422\pi\)
\(450\) 0 0
\(451\) −13736.7 + 23792.6i −0.00318010 + 0.00550809i
\(452\) 0 0
\(453\) −906481. + 1.57007e6i −0.207545 + 0.359479i
\(454\) 0 0
\(455\) 8.47957e6 1.92019
\(456\) 0 0
\(457\) 2.65356e6 0.594345 0.297172 0.954824i \(-0.403956\pi\)
0.297172 + 0.954824i \(0.403956\pi\)
\(458\) 0 0
\(459\) 1.77225e6 3.06962e6i 0.392638 0.680069i
\(460\) 0 0
\(461\) −1.76886e6 + 3.06376e6i −0.387652 + 0.671432i −0.992133 0.125187i \(-0.960047\pi\)
0.604481 + 0.796619i \(0.293380\pi\)
\(462\) 0 0
\(463\) 5.93347e6 1.28634 0.643171 0.765723i \(-0.277619\pi\)
0.643171 + 0.765723i \(0.277619\pi\)
\(464\) 0 0
\(465\) 842705. + 1.45961e6i 0.180735 + 0.313043i
\(466\) 0 0
\(467\) −5.23855e6 −1.11152 −0.555762 0.831341i \(-0.687573\pi\)
−0.555762 + 0.831341i \(0.687573\pi\)
\(468\) 0 0
\(469\) −2.02463e6 3.50675e6i −0.425023 0.736162i
\(470\) 0 0
\(471\) −413326. 715902.i −0.0858501 0.148697i
\(472\) 0 0
\(473\) −40001.0 + 69283.8i −0.00822088 + 0.0142390i
\(474\) 0 0
\(475\) −1.52067e6 314610.i −0.309243 0.0639792i
\(476\) 0 0
\(477\) −1.53416e6 + 2.65724e6i −0.308726 + 0.534730i
\(478\) 0 0
\(479\) −857165. 1.48465e6i −0.170697 0.295656i 0.767967 0.640490i \(-0.221269\pi\)
−0.938664 + 0.344834i \(0.887935\pi\)
\(480\) 0 0
\(481\) −4.08556e6 7.07640e6i −0.805173 1.39460i
\(482\) 0 0
\(483\) 6.09956e6 1.18968
\(484\) 0 0
\(485\) −103105. 178583.i −0.0199033 0.0344735i
\(486\) 0 0
\(487\) −5.46940e6 −1.04500 −0.522501 0.852639i \(-0.675001\pi\)
−0.522501 + 0.852639i \(0.675001\pi\)
\(488\) 0 0
\(489\) −230916. + 399959.i −0.0436699 + 0.0756385i
\(490\) 0 0
\(491\) 570104. 987449.i 0.106721 0.184846i −0.807719 0.589568i \(-0.799298\pi\)
0.914440 + 0.404721i \(0.132631\pi\)
\(492\) 0 0
\(493\) 3.89866e6 0.722434
\(494\) 0 0
\(495\) 37932.6 0.00695824
\(496\) 0 0
\(497\) −6.00753e6 + 1.04053e7i −1.09095 + 1.88958i
\(498\) 0 0
\(499\) −2.55058e6 + 4.41773e6i −0.458550 + 0.794232i −0.998885 0.0472181i \(-0.984964\pi\)
0.540334 + 0.841450i \(0.318298\pi\)
\(500\) 0 0
\(501\) 191113. 0.0340170
\(502\) 0 0
\(503\) −22139.7 38347.0i −0.00390168 0.00675790i 0.864068 0.503375i \(-0.167909\pi\)
−0.867970 + 0.496617i \(0.834575\pi\)
\(504\) 0 0
\(505\) 4.07480e6 0.711013
\(506\) 0 0
\(507\) −3.35425e6 5.80973e6i −0.579530 1.00377i
\(508\) 0 0
\(509\) −1.99430e6 3.45423e6i −0.341190 0.590958i 0.643464 0.765476i \(-0.277497\pi\)
−0.984654 + 0.174518i \(0.944163\pi\)
\(510\) 0 0
\(511\) −7.19448e6 + 1.24612e7i −1.21884 + 2.11109i
\(512\) 0 0
\(513\) 3.97589e6 4.46417e6i 0.667023 0.748940i
\(514\) 0 0
\(515\) 1.16992e6 2.02636e6i 0.194374 0.336666i
\(516\) 0 0
\(517\) −42237.0 73156.7i −0.00694972 0.0120373i
\(518\) 0 0
\(519\) −3.50243e6 6.06639e6i −0.570758 0.988581i
\(520\) 0 0
\(521\) −791816. −0.127800 −0.0638998 0.997956i \(-0.520354\pi\)
−0.0638998 + 0.997956i \(0.520354\pi\)
\(522\) 0 0
\(523\) −318050. 550879.i −0.0508442 0.0880648i 0.839483 0.543386i \(-0.182858\pi\)
−0.890327 + 0.455321i \(0.849525\pi\)
\(524\) 0 0
\(525\) 1.69983e6 0.269157
\(526\) 0 0
\(527\) 1.75516e6 3.04003e6i 0.275290 0.476816i
\(528\) 0 0
\(529\) −3.05173e6 + 5.28575e6i −0.474140 + 0.821235i
\(530\) 0 0
\(531\) 1.82554e6 0.280967
\(532\) 0 0
\(533\) 5.15180e6 0.785490
\(534\) 0 0
\(535\) 1.46988e6 2.54591e6i 0.222023 0.384556i
\(536\) 0 0
\(537\) 2.67971e6 4.64140e6i 0.401008 0.694566i
\(538\) 0 0
\(539\) −81434.3 −0.0120736
\(540\) 0 0
\(541\) 4.33594e6 + 7.51007e6i 0.636928 + 1.10319i 0.986103 + 0.166134i \(0.0531285\pi\)
−0.349175 + 0.937057i \(0.613538\pi\)
\(542\) 0 0
\(543\) −6.44414e6 −0.937919
\(544\) 0 0
\(545\) 730394. + 1.26508e6i 0.105333 + 0.182443i
\(546\) 0 0
\(547\) −4.16293e6 7.21041e6i −0.594883 1.03037i −0.993563 0.113277i \(-0.963865\pi\)
0.398681 0.917090i \(-0.369468\pi\)
\(548\) 0 0
\(549\) 1.35678e6 2.35001e6i 0.192123 0.332767i
\(550\) 0 0
\(551\) 6.43897e6 + 1.33216e6i 0.903519 + 0.186929i
\(552\) 0 0
\(553\) 7.70107e6 1.33386e7i 1.07087 1.85481i
\(554\) 0 0
\(555\) 1.77447e6 + 3.07348e6i 0.244533 + 0.423543i
\(556\) 0 0
\(557\) 7.17085e6 + 1.24203e7i 0.979338 + 1.69626i 0.664804 + 0.747018i \(0.268515\pi\)
0.314534 + 0.949246i \(0.398152\pi\)
\(558\) 0 0
\(559\) 1.50020e7 2.03058
\(560\) 0 0
\(561\) 24857.1 + 43053.7i 0.00333459 + 0.00577569i
\(562\) 0 0
\(563\) −6.18370e6 −0.822201 −0.411100 0.911590i \(-0.634855\pi\)
−0.411100 + 0.911590i \(0.634855\pi\)
\(564\) 0 0
\(565\) −5.45871e6 + 9.45477e6i −0.719398 + 1.24603i
\(566\) 0 0
\(567\) −49868.5 + 86374.8i −0.00651431 + 0.0112831i
\(568\) 0 0
\(569\) −42487.1 −0.00550144 −0.00275072 0.999996i \(-0.500876\pi\)
−0.00275072 + 0.999996i \(0.500876\pi\)
\(570\) 0 0
\(571\) 1.07342e7 1.37778 0.688889 0.724867i \(-0.258099\pi\)
0.688889 + 0.724867i \(0.258099\pi\)
\(572\) 0 0
\(573\) −698790. + 1.21034e6i −0.0889120 + 0.154000i
\(574\) 0 0
\(575\) −1.74730e6 + 3.02641e6i −0.220393 + 0.381731i
\(576\) 0 0
\(577\) 1.19721e6 0.149703 0.0748516 0.997195i \(-0.476152\pi\)
0.0748516 + 0.997195i \(0.476152\pi\)
\(578\) 0 0
\(579\) 3.49074e6 + 6.04615e6i 0.432735 + 0.749518i
\(580\) 0 0
\(581\) 5.23921e6 0.643911
\(582\) 0 0
\(583\) −56575.5 97991.6i −0.00689377 0.0119404i
\(584\) 0 0
\(585\) −3.55656e6 6.16013e6i −0.429675 0.744219i
\(586\) 0 0
\(587\) −2.84952e6 + 4.93552e6i −0.341332 + 0.591204i −0.984680 0.174369i \(-0.944211\pi\)
0.643348 + 0.765574i \(0.277545\pi\)
\(588\) 0 0
\(589\) 3.93756e6 4.42113e6i 0.467669 0.525104i
\(590\) 0 0
\(591\) −4.85594e6 + 8.41073e6i −0.571879 + 0.990524i
\(592\) 0 0
\(593\) 6.90700e6 + 1.19633e7i 0.806590 + 1.39705i 0.915213 + 0.402971i \(0.132023\pi\)
−0.108623 + 0.994083i \(0.534644\pi\)
\(594\) 0 0
\(595\) 3.83533e6 + 6.64299e6i 0.444130 + 0.769256i
\(596\) 0 0
\(597\) −6.16372e6 −0.707794
\(598\) 0 0
\(599\) 1.30413e6 + 2.25882e6i 0.148509 + 0.257226i 0.930677 0.365843i \(-0.119219\pi\)
−0.782167 + 0.623068i \(0.785886\pi\)
\(600\) 0 0
\(601\) −1.09276e7 −1.23407 −0.617035 0.786935i \(-0.711666\pi\)
−0.617035 + 0.786935i \(0.711666\pi\)
\(602\) 0 0
\(603\) −1.69836e6 + 2.94165e6i −0.190212 + 0.329456i
\(604\) 0 0
\(605\) 3.72281e6 6.44810e6i 0.413507 0.716215i
\(606\) 0 0
\(607\) 1.12925e7 1.24400 0.621998 0.783019i \(-0.286321\pi\)
0.621998 + 0.783019i \(0.286321\pi\)
\(608\) 0 0
\(609\) −7.19758e6 −0.786400
\(610\) 0 0
\(611\) −7.92029e6 + 1.37183e7i −0.858297 + 1.48661i
\(612\) 0 0
\(613\) −6.37503e6 + 1.10419e7i −0.685221 + 1.18684i 0.288146 + 0.957587i \(0.406961\pi\)
−0.973367 + 0.229252i \(0.926372\pi\)
\(614\) 0 0
\(615\) −2.23757e6 −0.238555
\(616\) 0 0
\(617\) 4.94864e6 + 8.57129e6i 0.523326 + 0.906428i 0.999631 + 0.0271479i \(0.00864249\pi\)
−0.476305 + 0.879280i \(0.658024\pi\)
\(618\) 0 0
\(619\) 757549. 0.0794665 0.0397332 0.999210i \(-0.487349\pi\)
0.0397332 + 0.999210i \(0.487349\pi\)
\(620\) 0 0
\(621\) −6.72647e6 1.16506e7i −0.699936 1.21232i
\(622\) 0 0
\(623\) 4.09746e6 + 7.09701e6i 0.422956 + 0.732581i
\(624\) 0 0
\(625\) 2.85392e6 4.94314e6i 0.292242 0.506177i
\(626\) 0 0
\(627\) 26342.3 + 79600.4i 0.00267599 + 0.00808623i
\(628\) 0 0
\(629\) 3.69582e6 6.40135e6i 0.372464 0.645127i
\(630\) 0 0
\(631\) −6.41621e6 1.11132e7i −0.641512 1.11113i −0.985095 0.172010i \(-0.944974\pi\)
0.343583 0.939122i \(-0.388359\pi\)
\(632\) 0 0
\(633\) 5.12016e6 + 8.86838e6i 0.507896 + 0.879701i
\(634\) 0 0
\(635\) −6.98030e6 −0.686973
\(636\) 0 0
\(637\) 7.63527e6 + 1.32247e7i 0.745549 + 1.29133i
\(638\) 0 0
\(639\) 1.00789e7 0.976472
\(640\) 0 0
\(641\) 3.63523e6 6.29640e6i 0.349451 0.605267i −0.636701 0.771111i \(-0.719701\pi\)
0.986152 + 0.165844i \(0.0530347\pi\)
\(642\) 0 0
\(643\) 1.06040e6 1.83666e6i 0.101144 0.175187i −0.811012 0.585029i \(-0.801083\pi\)
0.912156 + 0.409842i \(0.134416\pi\)
\(644\) 0 0
\(645\) −6.51578e6 −0.616690
\(646\) 0 0
\(647\) 1.14421e7 1.07460 0.537300 0.843391i \(-0.319444\pi\)
0.537300 + 0.843391i \(0.319444\pi\)
\(648\) 0 0
\(649\) −33660.5 + 58301.7i −0.00313696 + 0.00543338i
\(650\) 0 0
\(651\) −3.24032e6 + 5.61240e6i −0.299665 + 0.519034i
\(652\) 0 0
\(653\) −1.73747e7 −1.59454 −0.797270 0.603623i \(-0.793723\pi\)
−0.797270 + 0.603623i \(0.793723\pi\)
\(654\) 0 0
\(655\) −1.97578e6 3.42216e6i −0.179944 0.311671i
\(656\) 0 0
\(657\) 1.20702e7 1.09094
\(658\) 0 0
\(659\) −3.32289e6 5.75541e6i −0.298059 0.516253i 0.677633 0.735400i \(-0.263006\pi\)
−0.975692 + 0.219147i \(0.929672\pi\)
\(660\) 0 0
\(661\) −1.18645e6 2.05499e6i −0.105620 0.182939i 0.808371 0.588673i \(-0.200349\pi\)
−0.913991 + 0.405734i \(0.867016\pi\)
\(662\) 0 0
\(663\) 4.66120e6 8.07343e6i 0.411826 0.713304i
\(664\) 0 0
\(665\) 4.06449e6 + 1.22820e7i 0.356412 + 1.07699i
\(666\) 0 0
\(667\) 7.39859e6 1.28147e7i 0.643923 1.11531i
\(668\) 0 0
\(669\) −786015. 1.36142e6i −0.0678994 0.117605i
\(670\) 0 0
\(671\) 50034.4 + 86662.1i 0.00429005 + 0.00743058i
\(672\) 0 0
\(673\) −1.92310e6 −0.163668 −0.0818340 0.996646i \(-0.526078\pi\)
−0.0818340 + 0.996646i \(0.526078\pi\)
\(674\) 0 0
\(675\) −1.87453e6 3.24679e6i −0.158356 0.274280i
\(676\) 0 0
\(677\) −525794. −0.0440904 −0.0220452 0.999757i \(-0.507018\pi\)
−0.0220452 + 0.999757i \(0.507018\pi\)
\(678\) 0 0
\(679\) 396453. 686676.i 0.0330002 0.0571581i
\(680\) 0 0
\(681\) −1.35892e6 + 2.35371e6i −0.112286 + 0.194485i
\(682\) 0 0
\(683\) −3.81145e6 −0.312635 −0.156318 0.987707i \(-0.549962\pi\)
−0.156318 + 0.987707i \(0.549962\pi\)
\(684\) 0 0
\(685\) 1.41087e7 1.14884
\(686\) 0 0
\(687\) 2.68978e6 4.65883e6i 0.217433 0.376604i
\(688\) 0 0
\(689\) −1.06090e7 + 1.83754e7i −0.851388 + 1.47465i
\(690\) 0 0
\(691\) 8.54562e6 0.680845 0.340423 0.940273i \(-0.389430\pi\)
0.340423 + 0.940273i \(0.389430\pi\)
\(692\) 0 0
\(693\) 72928.0 + 126315.i 0.00576848 + 0.00999130i
\(694\) 0 0
\(695\) −1.39065e7 −1.09208
\(696\) 0 0
\(697\) 2.33017e6 + 4.03598e6i 0.181680 + 0.314678i
\(698\) 0 0
\(699\) 4.03082e6 + 6.98159e6i 0.312033 + 0.540458i
\(700\) 0 0
\(701\) −2.37669e6 + 4.11655e6i −0.182675 + 0.316402i −0.942790 0.333386i \(-0.891809\pi\)
0.760116 + 0.649788i \(0.225142\pi\)
\(702\) 0 0
\(703\) 8.29127e6 9.30952e6i 0.632751 0.710459i
\(704\) 0 0
\(705\) 3.44000e6 5.95826e6i 0.260667 0.451488i
\(706\) 0 0
\(707\) 7.83408e6 + 1.35690e7i 0.589440 + 1.02094i
\(708\) 0 0
\(709\) −1.06627e7 1.84683e7i −0.796619 1.37978i −0.921806 0.387651i \(-0.873287\pi\)
0.125187 0.992133i \(-0.460047\pi\)
\(710\) 0 0
\(711\) −1.29201e7 −0.958502
\(712\) 0 0
\(713\) −6.66162e6 1.15383e7i −0.490745 0.849996i
\(714\) 0 0
\(715\) 262312. 0.0191890
\(716\) 0 0
\(717\) 297633. 515515.i 0.0216213 0.0374492i
\(718\) 0 0
\(719\) −5.44618e6 + 9.43307e6i −0.392889 + 0.680504i −0.992829 0.119541i \(-0.961858\pi\)
0.599940 + 0.800045i \(0.295191\pi\)
\(720\) 0 0
\(721\) 8.99702e6 0.644556
\(722\) 0 0
\(723\) −1.08391e7 −0.771164
\(724\) 0 0
\(725\) 2.06184e6 3.57121e6i 0.145683 0.252331i
\(726\) 0 0
\(727\) −5.05507e6 + 8.75563e6i −0.354724 + 0.614400i −0.987071 0.160285i \(-0.948759\pi\)
0.632347 + 0.774686i \(0.282092\pi\)
\(728\) 0 0
\(729\) 9.02701e6 0.629108
\(730\) 0 0
\(731\) 6.78544e6 + 1.17527e7i 0.469661 + 0.813477i
\(732\) 0 0
\(733\) −5.75940e6 −0.395929 −0.197965 0.980209i \(-0.563433\pi\)
−0.197965 + 0.980209i \(0.563433\pi\)
\(734\) 0 0
\(735\) −3.31621e6 5.74385e6i −0.226425 0.392179i
\(736\) 0 0
\(737\) −62631.0 108480.i −0.00424737 0.00735667i
\(738\) 0 0
\(739\) 1.21044e7 2.09654e7i 0.815326 1.41219i −0.0937672 0.995594i \(-0.529891\pi\)
0.909093 0.416592i \(-0.136776\pi\)
\(740\) 0 0
\(741\) 1.04570e7 1.17412e7i 0.699620 0.785540i
\(742\) 0 0
\(743\) −7.10772e6 + 1.23109e7i −0.472344 + 0.818123i −0.999499 0.0316458i \(-0.989925\pi\)
0.527156 + 0.849769i \(0.323258\pi\)
\(744\) 0 0
\(745\) 444316. + 769578.i 0.0293293 + 0.0507998i
\(746\) 0 0
\(747\) −2.19746e6 3.80612e6i −0.144086 0.249563i
\(748\) 0 0
\(749\) 1.13038e7 0.736242
\(750\) 0 0
\(751\) −4.15307e6 7.19333e6i −0.268701 0.465404i 0.699826 0.714314i \(-0.253261\pi\)
−0.968527 + 0.248910i \(0.919928\pi\)
\(752\) 0 0
\(753\) −1.17201e7 −0.753260
\(754\) 0 0
\(755\) −4.32669e6 + 7.49405e6i −0.276241 + 0.478464i
\(756\) 0 0
\(757\) −1.95684e6 + 3.38935e6i −0.124113 + 0.214969i −0.921386 0.388649i \(-0.872942\pi\)
0.797273 + 0.603619i \(0.206275\pi\)
\(758\) 0 0
\(759\) 188688. 0.0118888
\(760\) 0 0
\(761\) −2.93013e7 −1.83411 −0.917056 0.398758i \(-0.869441\pi\)
−0.917056 + 0.398758i \(0.869441\pi\)
\(762\) 0 0
\(763\) −2.80847e6 + 4.86441e6i −0.174646 + 0.302495i
\(764\) 0 0
\(765\) 3.21728e6 5.57249e6i 0.198763 0.344267i
\(766\) 0 0
\(767\) 1.26240e7 0.774836
\(768\) 0 0
\(769\) 3.04723e6 + 5.27795e6i 0.185818 + 0.321847i 0.943852 0.330369i \(-0.107173\pi\)
−0.758034 + 0.652216i \(0.773840\pi\)
\(770\) 0 0
\(771\) −524320. −0.0317658
\(772\) 0 0
\(773\) 212714. + 368431.i 0.0128040 + 0.0221773i 0.872356 0.488870i \(-0.162591\pi\)
−0.859552 + 0.511048i \(0.829258\pi\)
\(774\) 0 0
\(775\) −1.85646e6 3.21549e6i −0.111028 0.192306i
\(776\) 0 0
\(777\) −6.82310e6 + 1.18180e7i −0.405443 + 0.702247i
\(778\) 0 0
\(779\) 2.46940e6 + 7.46196e6i 0.145797 + 0.440564i
\(780\) 0 0
\(781\) −185841. + 321885.i −0.0109022 + 0.0188831i
\(782\) 0 0
\(783\) 7.93734e6 + 1.37479e7i 0.462669 + 0.801367i
\(784\) 0 0
\(785\) −1.97283e6 3.41704e6i −0.114266 0.197914i
\(786\) 0 0
\(787\) 1.02091e7 0.587556 0.293778 0.955874i \(-0.405087\pi\)
0.293778 + 0.955874i \(0.405087\pi\)
\(788\) 0 0
\(789\) −1.04594e7 1.81162e7i −0.598156 1.03604i
\(790\) 0 0
\(791\) −4.19790e7 −2.38557
\(792\) 0 0
\(793\) 9.38245e6 1.62509e7i 0.529826 0.917685i
\(794\) 0 0
\(795\) 4.60780e6 7.98094e6i 0.258569 0.447854i
\(796\) 0 0
\(797\) −6.53033e6 −0.364157 −0.182079 0.983284i \(-0.558283\pi\)
−0.182079 + 0.983284i \(0.558283\pi\)
\(798\) 0 0
\(799\) −1.43295e7 −0.794078
\(800\) 0 0
\(801\) 3.43717e6 5.95335e6i 0.189286 0.327854i
\(802\) 0 0
\(803\) −222558. + 385482.i −0.0121802 + 0.0210968i
\(804\) 0 0
\(805\) 2.91136e7 1.58346
\(806\) 0 0
\(807\) −9.94539e6 1.72259e7i −0.537574 0.931105i
\(808\) 0 0
\(809\) −1.81878e7 −0.977032 −0.488516 0.872555i \(-0.662462\pi\)
−0.488516 + 0.872555i \(0.662462\pi\)
\(810\) 0 0
\(811\) −2.30613e6 3.99433e6i −0.123121 0.213251i 0.797876 0.602822i \(-0.205957\pi\)
−0.920997 + 0.389570i \(0.872624\pi\)
\(812\) 0 0
\(813\) 9.16118e6 + 1.58676e7i 0.486099 + 0.841948i
\(814\) 0 0
\(815\) −1.10218e6 + 1.90903e6i −0.0581243 + 0.100674i
\(816\) 0 0
\(817\) 7.19086e6 + 2.17292e7i 0.376900 + 1.13891i
\(818\) 0 0
\(819\) 1.36755e7 2.36866e7i 0.712413 1.23394i
\(820\) 0 0
\(821\) 2.86812e6 + 4.96773e6i 0.148504 + 0.257217i 0.930675 0.365847i \(-0.119221\pi\)
−0.782170 + 0.623065i \(0.785887\pi\)
\(822\) 0 0
\(823\) 1.08809e7 + 1.88463e7i 0.559972 + 0.969900i 0.997498 + 0.0706943i \(0.0225215\pi\)
−0.437526 + 0.899206i \(0.644145\pi\)
\(824\) 0 0
\(825\) 52583.4 0.00268976
\(826\) 0 0
\(827\) −1.33891e7 2.31907e7i −0.680751 1.17910i −0.974752 0.223291i \(-0.928320\pi\)
0.294000 0.955805i \(-0.405013\pi\)
\(828\) 0 0
\(829\) 310674. 0.0157007 0.00785035 0.999969i \(-0.497501\pi\)
0.00785035 + 0.999969i \(0.497501\pi\)
\(830\) 0 0
\(831\) −232548. + 402785.i −0.0116818 + 0.0202335i
\(832\) 0 0
\(833\) −6.90691e6 + 1.19631e7i −0.344883 + 0.597354i
\(834\) 0 0
\(835\) 912195. 0.0452763
\(836\) 0 0
\(837\) 1.42934e7 0.705217
\(838\) 0 0
\(839\) 4.18809e6 7.25399e6i 0.205405 0.355772i −0.744857 0.667225i \(-0.767482\pi\)
0.950262 + 0.311452i \(0.100815\pi\)
\(840\) 0 0
\(841\) 1.52512e6 2.64159e6i 0.0743558 0.128788i
\(842\) 0 0
\(843\) −1.38599e7 −0.671722
\(844\) 0 0
\(845\) −1.60100e7 2.77302e7i −0.771349 1.33602i
\(846\) 0 0
\(847\) 2.86295e7 1.37121
\(848\) 0 0
\(849\) 8.47140e6 + 1.46729e7i 0.403353 + 0.698629i
\(850\) 0 0
\(851\) −1.40273e7 2.42960e7i −0.663972 1.15003i
\(852\) 0 0
\(853\) 1.80296e7 3.12283e7i 0.848427 1.46952i −0.0341843 0.999416i \(-0.510883\pi\)
0.882611 0.470103i \(-0.155783\pi\)
\(854\) 0 0
\(855\) 7.21770e6 8.10410e6i 0.337663 0.379131i
\(856\) 0 0
\(857\) −1.53061e7 + 2.65109e7i −0.711889 + 1.23303i 0.252258 + 0.967660i \(0.418827\pi\)
−0.964147 + 0.265368i \(0.914507\pi\)
\(858\) 0 0
\(859\) −1.53666e7 2.66158e7i −0.710551 1.23071i −0.964651 0.263532i \(-0.915112\pi\)
0.254100 0.967178i \(-0.418221\pi\)
\(860\) 0 0
\(861\) −4.30189e6 7.45109e6i −0.197766 0.342540i
\(862\) 0 0
\(863\) −3.77643e7 −1.72605 −0.863026 0.505159i \(-0.831434\pi\)
−0.863026 + 0.505159i \(0.831434\pi\)
\(864\) 0 0
\(865\) −1.67173e7 2.89553e7i −0.759673 1.31579i
\(866\) 0 0
\(867\) −5.32210e6 −0.240456
\(868\) 0 0
\(869\) 238229. 412626.i 0.0107015 0.0185356i
\(870\) 0 0
\(871\) −1.17446e7 + 2.03422e7i −0.524555 + 0.908556i
\(872\) 0 0
\(873\) −665131. −0.0295373
\(874\) 0 0
\(875\) 3.38055e7 1.49268
\(876\) 0 0
\(877\) 4.12280e6 7.14090e6i 0.181006 0.313512i −0.761217 0.648497i \(-0.775398\pi\)
0.942223 + 0.334985i \(0.108731\pi\)
\(878\) 0 0
\(879\) 1.24529e7 2.15690e7i 0.543623 0.941583i
\(880\) 0 0
\(881\) 1.71534e7 0.744579 0.372289 0.928117i \(-0.378573\pi\)
0.372289 + 0.928117i \(0.378573\pi\)
\(882\) 0 0
\(883\) −8.33139e6 1.44304e7i −0.359597 0.622839i 0.628297 0.777974i \(-0.283752\pi\)
−0.987893 + 0.155134i \(0.950419\pi\)
\(884\) 0 0
\(885\) −5.48297e6 −0.235319
\(886\) 0 0
\(887\) 1.47463e7 + 2.55413e7i 0.629322 + 1.09002i 0.987688 + 0.156436i \(0.0500005\pi\)
−0.358366 + 0.933581i \(0.616666\pi\)
\(888\) 0 0
\(889\) −1.34201e7 2.32443e7i −0.569510 0.986421i
\(890\) 0 0
\(891\) −1542.66 + 2671.97i −6.50993e−5 + 0.000112755i
\(892\) 0 0
\(893\) −2.36663e7 4.89631e6i −0.993120 0.205466i
\(894\) 0 0
\(895\) 1.27904e7 2.21537e7i 0.533738 0.924461i
\(896\) 0 0
\(897\) −1.76913e7 3.06423e7i −0.734141 1.27157i
\(898\) 0 0
\(899\) 7.86082e6 + 1.36153e7i 0.324391 + 0.561862i
\(900\) 0 0
\(901\) −1.91940e7 −0.787685
\(902\) 0 0
\(903\) −1.25271e7 2.16975e7i −0.511245 0.885503i
\(904\) 0 0
\(905\) −3.07583e7 −1.24836
\(906\) 0 0
\(907\) −3.47306e6 + 6.01551e6i −0.140182 + 0.242803i −0.927565 0.373661i \(-0.878102\pi\)
0.787383 + 0.616464i \(0.211436\pi\)
\(908\) 0 0
\(909\) 6.57164e6 1.13824e7i 0.263794 0.456904i
\(910\) 0 0
\(911\) −1.26026e7 −0.503113 −0.251556 0.967843i \(-0.580942\pi\)
−0.251556 + 0.967843i \(0.580942\pi\)
\(912\) 0 0
\(913\) 162073. 0.00643478
\(914\) 0 0
\(915\) −4.07506e6 + 7.05821e6i −0.160909 + 0.278703i
\(916\) 0 0
\(917\) 7.59717e6 1.31587e7i 0.298352 0.516760i
\(918\) 0 0
\(919\) −2.84869e7 −1.11264 −0.556321 0.830967i \(-0.687788\pi\)
−0.556321 + 0.830967i \(0.687788\pi\)
\(920\) 0 0
\(921\) −4.39138e6 7.60609e6i −0.170589 0.295469i
\(922\) 0 0
\(923\) 6.96976e7 2.69286
\(924\) 0 0
\(925\) −3.90913e6 6.77080e6i −0.150219 0.260187i
\(926\) 0 0
\(927\) −3.77359e6 6.53604e6i −0.144230 0.249813i
\(928\) 0 0
\(929\) −1.50033e7 + 2.59864e7i −0.570357 + 0.987888i 0.426172 + 0.904642i \(0.359862\pi\)
−0.996529 + 0.0832453i \(0.973471\pi\)
\(930\) 0 0
\(931\) −1.54951e7 + 1.73980e7i −0.585895 + 0.657848i
\(932\) 0 0
\(933\) −6.58622e6 + 1.14077e7i −0.247704 + 0.429035i
\(934\) 0 0
\(935\) 118644. + 205498.i 0.00443832 + 0.00768739i
\(936\) 0 0
\(937\) 1.83152e7 + 3.17229e7i 0.681495 + 1.18038i 0.974525 + 0.224281i \(0.0720034\pi\)
−0.293029 + 0.956103i \(0.594663\pi\)
\(938\) 0 0
\(939\) 2.13920e7 0.791748
\(940\) 0 0
\(941\) −1.98334e7 3.43524e7i −0.730167 1.26469i −0.956811 0.290709i \(-0.906109\pi\)
0.226644 0.973978i \(-0.427225\pi\)
\(942\) 0 0
\(943\) 1.76881e7 0.647742
\(944\) 0 0
\(945\) −1.56168e7 + 2.70491e7i −0.568870 + 0.985311i
\(946\) 0 0
\(947\) −1.96508e7 + 3.40362e7i −0.712041 + 1.23329i 0.252049 + 0.967714i \(0.418896\pi\)
−0.964090 + 0.265576i \(0.914438\pi\)
\(948\) 0 0
\(949\) 8.34682e7 3.00854
\(950\) 0 0
\(951\) −9.97215e6 −0.357551
\(952\) 0 0
\(953\) 3.63675e6 6.29904e6i 0.129712 0.224669i −0.793853 0.608110i \(-0.791928\pi\)
0.923565 + 0.383442i \(0.125261\pi\)
\(954\) 0 0
\(955\) −3.33537e6 + 5.77703e6i −0.118341 + 0.204973i
\(956\) 0 0
\(957\) −222654. −0.00785871
\(958\) 0 0
\(959\) 2.71250e7 + 4.69819e7i 0.952408 + 1.64962i
\(960\) 0 0
\(961\) −1.44735e7 −0.505552
\(962\) 0 0
\(963\) −4.74112e6 8.21186e6i −0.164746 0.285349i
\(964\) 0 0
\(965\) 1.66615e7 + 2.88586e7i 0.575966 + 0.997602i
\(966\) 0 0
\(967\) 2.26883e7 3.92972e7i 0.780253 1.35144i −0.151542 0.988451i \(-0.548424\pi\)
0.931794 0.362986i \(-0.118243\pi\)
\(968\) 0 0
\(969\) 1.39279e7 + 2.88155e6i 0.476516 + 0.0985862i
\(970\) 0 0
\(971\) −4.87437e6 + 8.44266e6i −0.165909 + 0.287363i −0.936978 0.349389i \(-0.886389\pi\)
0.771069 + 0.636752i \(0.219723\pi\)
\(972\) 0 0
\(973\) −2.67362e7 4.63085e7i −0.905353 1.56812i
\(974\) 0 0
\(975\) −4.93022e6 8.53939e6i −0.166094 0.287684i
\(976\) 0 0
\(977\) 1.80142e7 0.603779 0.301890 0.953343i \(-0.402383\pi\)
0.301890 + 0.953343i \(0.402383\pi\)
\(978\) 0 0
\(979\) 126753. + 219543.i 0.00422671 + 0.00732088i
\(980\) 0 0
\(981\) 4.71178e6 0.156319
\(982\) 0 0
\(983\) 1.74891e7 3.02920e7i 0.577277 0.999872i −0.418514 0.908211i \(-0.637449\pi\)
0.995790 0.0916618i \(-0.0292179\pi\)
\(984\) 0 0
\(985\) −2.31777e7 + 4.01449e7i −0.761166 + 1.31838i
\(986\) 0 0
\(987\) 2.64546e7 0.864386
\(988\) 0 0
\(989\) 5.15076e7 1.67448
\(990\) 0 0
\(991\) 1.59799e6 2.76780e6i 0.0516880 0.0895262i −0.839024 0.544095i \(-0.816873\pi\)
0.890712 + 0.454569i \(0.150207\pi\)
\(992\) 0 0
\(993\) 6.35893e6 1.10140e7i 0.204650 0.354464i
\(994\) 0 0
\(995\) −2.94198e7 −0.942068
\(996\) 0 0
\(997\) −2.30696e7 3.99577e7i −0.735025 1.27310i −0.954712 0.297530i \(-0.903837\pi\)
0.219687 0.975570i \(-0.429496\pi\)
\(998\) 0 0
\(999\) 3.00975e7 0.954150
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.6.i.b.49.1 8
4.3 odd 2 38.6.c.b.11.4 yes 8
12.11 even 2 342.6.g.d.163.3 8
19.7 even 3 inner 304.6.i.b.273.1 8
76.7 odd 6 38.6.c.b.7.4 8
76.11 odd 6 722.6.a.j.1.1 4
76.27 even 6 722.6.a.g.1.4 4
228.83 even 6 342.6.g.d.235.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.6.c.b.7.4 8 76.7 odd 6
38.6.c.b.11.4 yes 8 4.3 odd 2
304.6.i.b.49.1 8 1.1 even 1 trivial
304.6.i.b.273.1 8 19.7 even 3 inner
342.6.g.d.163.3 8 12.11 even 2
342.6.g.d.235.3 8 228.83 even 6
722.6.a.g.1.4 4 76.27 even 6
722.6.a.j.1.1 4 76.11 odd 6