[N,k,chi] = [304,8,Mod(1,304)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(304, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("304.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
19 19 1 9
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 6 + 40 T 3 5 − 7711 T 3 4 − 93190 T 3 3 + 16686996 T 3 2 − 43655400 T 3 − 7412317344 T_{3}^{6} + 40T_{3}^{5} - 7711T_{3}^{4} - 93190T_{3}^{3} + 16686996T_{3}^{2} - 43655400T_{3} - 7412317344 T 3 6 + 4 0 T 3 5 − 7 7 1 1 T 3 4 − 9 3 1 9 0 T 3 3 + 1 6 6 8 6 9 9 6 T 3 2 − 4 3 6 5 5 4 0 0 T 3 − 7 4 1 2 3 1 7 3 4 4
T3^6 + 40*T3^5 - 7711*T3^4 - 93190*T3^3 + 16686996*T3^2 - 43655400*T3 - 7412317344
acting on S 8 n e w ( Γ 0 ( 304 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(304)) S 8 n e w ( Γ 0 ( 3 0 4 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
T 6 + ⋯ − 7412317344 T^{6} + \cdots - 7412317344 T 6 + ⋯ − 7 4 1 2 3 1 7 3 4 4
T^6 + 40*T^5 - 7711*T^4 - 93190*T^3 + 16686996*T^2 - 43655400*T - 7412317344
5 5 5
T 6 + ⋯ + 174360864384000 T^{6} + \cdots + 174360864384000 T 6 + ⋯ + 1 7 4 3 6 0 8 6 4 3 8 4 0 0 0
T^6 - 279*T^5 - 382107*T^4 + 89339211*T^3 + 31455689670*T^2 - 5181395099400*T + 174360864384000
7 7 7
T 6 + ⋯ + 15 ⋯ 84 T^{6} + \cdots + 15\!\cdots\!84 T 6 + ⋯ + 1 5 ⋯ 8 4
T^6 - 1565*T^5 - 2268958*T^4 + 3630360070*T^3 + 1278964317269*T^2 - 2093958739148105*T + 15086336025908584
11 11 1 1
T 6 + ⋯ − 47 ⋯ 56 T^{6} + \cdots - 47\!\cdots\!56 T 6 + ⋯ − 4 7 ⋯ 5 6
T^6 + 7983*T^5 - 37767781*T^4 - 432916267239*T^3 - 880155543756408*T^2 - 385525041126730164*T - 47929083669332301456
13 13 1 3
T 6 + ⋯ − 15 ⋯ 56 T^{6} + \cdots - 15\!\cdots\!56 T 6 + ⋯ − 1 5 ⋯ 5 6
T^6 - 1250*T^5 - 122286729*T^4 - 6544577750*T^3 + 3312548747774008*T^2 + 589363572143005920*T - 15319634805440895689856
17 17 1 7
T 6 + ⋯ + 81 ⋯ 86 T^{6} + \cdots + 81\!\cdots\!86 T 6 + ⋯ + 8 1 ⋯ 8 6
T^6 - 21735*T^5 - 1164308584*T^4 + 36745972939470*T^3 - 231907545730575987*T^2 - 858871018484235580455*T + 8152361263409668732149786
19 19 1 9
( T + 6859 ) 6 (T + 6859)^{6} ( T + 6 8 5 9 ) 6
(T + 6859)^6
23 23 2 3
T 6 + ⋯ − 10 ⋯ 64 T^{6} + \cdots - 10\!\cdots\!64 T 6 + ⋯ − 1 0 ⋯ 6 4
T^6 + 100920*T^5 - 284311201*T^4 - 151244309224680*T^3 + 1502913205656366528*T^2 + 7015145233308404129280*T - 10131803990133889037451264
29 29 2 9
T 6 + ⋯ − 19 ⋯ 56 T^{6} + \cdots - 19\!\cdots\!56 T 6 + ⋯ − 1 9 ⋯ 5 6
T^6 + 58656*T^5 - 95711902329*T^4 - 4494973587859440*T^3 + 2578255904089960750008*T^2 + 76523107161988774318618944*T - 19309171134099958491730368909456
31 31 3 1
T 6 + ⋯ − 59 ⋯ 24 T^{6} + \cdots - 59\!\cdots\!24 T 6 + ⋯ − 5 9 ⋯ 2 4
T^6 + 403808*T^5 + 18356065296*T^4 - 4120055684069632*T^3 - 319372289042744119808*T^2 - 7665008493910929005383680*T - 59469561500940745594498842624
37 37 3 7
T 6 + ⋯ + 12 ⋯ 96 T^{6} + \cdots + 12\!\cdots\!96 T 6 + ⋯ + 1 2 ⋯ 9 6
T^6 - 808780*T^5 + 176256645884*T^4 - 9069720444468640*T^3 - 347190860463975948304*T^2 + 5191054539189353523141440*T + 124536595731119467187730296896
41 41 4 1
T 6 + ⋯ + 23 ⋯ 84 T^{6} + \cdots + 23\!\cdots\!84 T 6 + ⋯ + 2 3 ⋯ 8 4
T^6 - 556944*T^5 - 326056713208*T^4 + 174434267004322080*T^3 + 2157162144421067749584*T^2 - 1067514808032839309216904576*T + 23338992175248254326181410627584
43 43 4 3
T 6 + ⋯ − 15 ⋯ 44 T^{6} + \cdots - 15\!\cdots\!44 T 6 + ⋯ − 1 5 ⋯ 4 4
T^6 + 1220735*T^5 + 158935767027*T^4 - 142748983288435795*T^3 - 46051523057753836668440*T^2 - 4661658345451186652836838160*T - 154097329310339035579788080098944
47 47 4 7
T 6 + ⋯ + 10 ⋯ 56 T^{6} + \cdots + 10\!\cdots\!56 T 6 + ⋯ + 1 0 ⋯ 5 6
T^6 + 1915305*T^5 - 384082342837*T^4 - 2150474405962335525*T^3 - 661005833538587861055696*T^2 + 324720105707311102197786553920*T + 104713598761424722953743469567814656
53 53 5 3
T 6 + ⋯ − 69 ⋯ 76 T^{6} + \cdots - 69\!\cdots\!76 T 6 + ⋯ − 6 9 ⋯ 7 6
T^6 - 511650*T^5 - 3740637014161*T^4 + 1036250365853981250*T^3 + 3965837149172783092356840*T^2 - 189404486376422674701976467840*T - 695595985358363257740317072458258176
59 59 5 9
T 6 + ⋯ − 86 ⋯ 56 T^{6} + \cdots - 86\!\cdots\!56 T 6 + ⋯ − 8 6 ⋯ 5 6
T^6 + 1300572*T^5 - 1547972074327*T^4 - 1965619922082623202*T^3 + 574513744255956073498212*T^2 + 619638885049121808670044671976*T - 86009270406166492856689005529297056
61 61 6 1
T 6 + ⋯ − 23 ⋯ 64 T^{6} + \cdots - 23\!\cdots\!64 T 6 + ⋯ − 2 3 ⋯ 6 4
T^6 - 565335*T^5 - 8735718697011*T^4 + 3565037032223823767*T^3 + 12147376867741010024327214*T^2 - 3269585231287627013776097234316*T - 2301352032237925633469153645158227464
67 67 6 7
T 6 + ⋯ − 13 ⋯ 76 T^{6} + \cdots - 13\!\cdots\!76 T 6 + ⋯ − 1 3 ⋯ 7 6
T^6 - 45010*T^5 - 16470947063367*T^4 - 1501881992060699320*T^3 + 85557155517434897219425360*T^2 + 12206470804539541818915606522240*T - 132726823572930625244662477069019198976
71 71 7 1
T 6 + ⋯ + 13 ⋯ 04 T^{6} + \cdots + 13\!\cdots\!04 T 6 + ⋯ + 1 3 ⋯ 0 4
T^6 - 1424106*T^5 - 14152150868392*T^4 + 18728657102643413232*T^3 + 41117713101441495009540432*T^2 - 50907169907215768219104435032352*T + 13535981091827314004436212385699151104
73 73 7 3
T 6 + ⋯ + 96 ⋯ 26 T^{6} + \cdots + 96\!\cdots\!26 T 6 + ⋯ + 9 6 ⋯ 2 6
T^6 + 11153825*T^5 + 46136474610476*T^4 + 92710992204432255410*T^3 + 96226770293526768419688329*T^2 + 49054691402281892204791620009725*T + 9624457063719626672182251795785919226
79 79 7 9
T 6 + ⋯ + 29 ⋯ 76 T^{6} + \cdots + 29\!\cdots\!76 T 6 + ⋯ + 2 9 ⋯ 7 6
T^6 - 6392144*T^5 + 2824710229340*T^4 + 43513478257211180320*T^3 - 79446304014369974498532160*T^2 + 35993795123493685348231918829056*T + 2956440985861855561798670399576498176
83 83 8 3
T 6 + ⋯ − 65 ⋯ 64 T^{6} + \cdots - 65\!\cdots\!64 T 6 + ⋯ − 6 5 ⋯ 6 4
T^6 - 3164160*T^5 - 103202687694196*T^4 + 121042182434330223840*T^3 + 2896490929079852479940429568*T^2 + 1700840388442765245769356686922240*T - 6545218979767270128105855563739588824064
89 89 8 9
T 6 + ⋯ + 18 ⋯ 76 T^{6} + \cdots + 18\!\cdots\!76 T 6 + ⋯ + 1 8 ⋯ 7 6
T^6 + 14502678*T^5 - 112082030411632*T^4 - 2225414419024761179040*T^3 - 1452412221116096437145650176*T^2 + 69701367951459345963376571477455872*T + 188797913343229671059662130763365927755776
97 97 9 7
T 6 + ⋯ + 48 ⋯ 44 T^{6} + \cdots + 48\!\cdots\!44 T 6 + ⋯ + 4 8 ⋯ 4 4
T^6 + 21377010*T^5 - 45190604396916*T^4 - 2330897223876266942920*T^3 - 1588463970838532305718360640*T^2 + 28421264378688452504439526273536000*T + 48176140375807984342995060572820534943744
show more
show less