Properties

Label 304.8.a.i
Level 304304
Weight 88
Character orbit 304.a
Self dual yes
Analytic conductor 94.96594.965
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,8,Mod(1,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 304=2419 304 = 2^{4} \cdot 19
Weight: k k == 8 8
Character orbit: [χ][\chi] == 304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 94.965047747294.9650477472
Analytic rank: 11
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x58376x4+135458x3+16275767x2280013424x6276171312 x^{6} - 2x^{5} - 8376x^{4} + 135458x^{3} + 16275767x^{2} - 280013424x - 6276171312 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 76)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β17)q3+(β2β1+47)q5+(β4+β25β1+262)q7+(β5+β4β3++662)q9+(2β52β4+1346)q11++(7190β56832β4+4064986)q99+O(q100) q + (\beta_1 - 7) q^{3} + ( - \beta_{2} - \beta_1 + 47) q^{5} + (\beta_{4} + \beta_{2} - 5 \beta_1 + 262) q^{7} + ( - \beta_{5} + \beta_{4} - \beta_{3} + \cdots + 662) q^{9} + ( - 2 \beta_{5} - 2 \beta_{4} + \cdots - 1346) q^{11}+ \cdots + (7190 \beta_{5} - 6832 \beta_{4} + \cdots - 4064986) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q40q3+279q5+1565q7+3900q97983q11+1250q1326790q15+21735q1741154q1986346q21100920q23+373305q25534790q2758656q29+24032935q99+O(q100) 6 q - 40 q^{3} + 279 q^{5} + 1565 q^{7} + 3900 q^{9} - 7983 q^{11} + 1250 q^{13} - 26790 q^{15} + 21735 q^{17} - 41154 q^{19} - 86346 q^{21} - 100920 q^{23} + 373305 q^{25} - 534790 q^{27} - 58656 q^{29}+ \cdots - 24032935 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x58376x4+135458x3+16275767x2280013424x6276171312 x^{6} - 2x^{5} - 8376x^{4} + 135458x^{3} + 16275767x^{2} - 280013424x - 6276171312 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (23ν5+1337ν4+331031ν33798869ν2655626372ν394340616)/12622824 ( -23\nu^{5} + 1337\nu^{4} + 331031\nu^{3} - 3798869\nu^{2} - 655626372\nu - 394340616 ) / 12622824 Copy content Toggle raw display
β3\beta_{3}== (51ν5+2117ν4357983ν39662021ν2+548036696ν+11111121348)/2103804 ( 51\nu^{5} + 2117\nu^{4} - 357983\nu^{3} - 9662021\nu^{2} + 548036696\nu + 11111121348 ) / 2103804 Copy content Toggle raw display
β4\beta_{4}== (269ν512312ν4+1628074ν3+41365824ν22202338405ν33289998684)/2103804 ( -269\nu^{5} - 12312\nu^{4} + 1628074\nu^{3} + 41365824\nu^{2} - 2202338405\nu - 33289998684 ) / 2103804 Copy content Toggle raw display
β5\beta_{5}== (617ν530195ν4+3641083ν3+101646951ν24929275990ν76626597048)/4207608 ( -617\nu^{5} - 30195\nu^{4} + 3641083\nu^{3} + 101646951\nu^{2} - 4929275990\nu - 76626597048 ) / 4207608 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β4β33β220β1+2800 -\beta_{5} + \beta_{4} - \beta_{3} - 3\beta_{2} - 20\beta _1 + 2800 Copy content Toggle raw display
ν3\nu^{3}== 78β590β4+12β3+198β2+4321β160834 78\beta_{5} - 90\beta_{4} + 12\beta_{3} + 198\beta_{2} + 4321\beta _1 - 60834 Copy content Toggle raw display
ν4\nu^{4}== 9331β5+10219β44033β319821β2212696β1+12452470 -9331\beta_{5} + 10219\beta_{4} - 4033\beta_{3} - 19821\beta_{2} - 212696\beta _1 + 12452470 Copy content Toggle raw display
ν5\nu^{5}== 745380β5866472β4+103440β3+1644228β2+24624409β1631311360 745380\beta_{5} - 866472\beta_{4} + 103440\beta_{3} + 1644228\beta_{2} + 24624409\beta _1 - 631311360 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−84.8914
−46.2258
−13.7370
44.4724
49.5941
52.7878
0 −91.8914 0 432.300 0 1482.77 0 6257.03 0
1.2 0 −53.2258 0 88.7692 0 −1094.09 0 645.987 0
1.3 0 −20.7370 0 −501.411 0 1008.02 0 −1756.98 0
1.4 0 37.4724 0 534.866 0 −1051.36 0 −782.818 0
1.5 0 42.5941 0 51.7645 0 1212.43 0 −372.745 0
1.6 0 45.7878 0 −327.289 0 7.23734 0 −90.4805 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 304.8.a.i 6
4.b odd 2 1 76.8.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.8.a.b 6 4.b odd 2 1
304.8.a.i 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T36+40T357711T3493190T33+16686996T3243655400T37412317344 T_{3}^{6} + 40T_{3}^{5} - 7711T_{3}^{4} - 93190T_{3}^{3} + 16686996T_{3}^{2} - 43655400T_{3} - 7412317344 acting on S8new(Γ0(304))S_{8}^{\mathrm{new}}(\Gamma_0(304)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6+7412317344 T^{6} + \cdots - 7412317344 Copy content Toggle raw display
55 T6++174360864384000 T^{6} + \cdots + 174360864384000 Copy content Toggle raw display
77 T6++15 ⁣ ⁣84 T^{6} + \cdots + 15\!\cdots\!84 Copy content Toggle raw display
1111 T6+47 ⁣ ⁣56 T^{6} + \cdots - 47\!\cdots\!56 Copy content Toggle raw display
1313 T6+15 ⁣ ⁣56 T^{6} + \cdots - 15\!\cdots\!56 Copy content Toggle raw display
1717 T6++81 ⁣ ⁣86 T^{6} + \cdots + 81\!\cdots\!86 Copy content Toggle raw display
1919 (T+6859)6 (T + 6859)^{6} Copy content Toggle raw display
2323 T6+10 ⁣ ⁣64 T^{6} + \cdots - 10\!\cdots\!64 Copy content Toggle raw display
2929 T6+19 ⁣ ⁣56 T^{6} + \cdots - 19\!\cdots\!56 Copy content Toggle raw display
3131 T6+59 ⁣ ⁣24 T^{6} + \cdots - 59\!\cdots\!24 Copy content Toggle raw display
3737 T6++12 ⁣ ⁣96 T^{6} + \cdots + 12\!\cdots\!96 Copy content Toggle raw display
4141 T6++23 ⁣ ⁣84 T^{6} + \cdots + 23\!\cdots\!84 Copy content Toggle raw display
4343 T6+15 ⁣ ⁣44 T^{6} + \cdots - 15\!\cdots\!44 Copy content Toggle raw display
4747 T6++10 ⁣ ⁣56 T^{6} + \cdots + 10\!\cdots\!56 Copy content Toggle raw display
5353 T6+69 ⁣ ⁣76 T^{6} + \cdots - 69\!\cdots\!76 Copy content Toggle raw display
5959 T6+86 ⁣ ⁣56 T^{6} + \cdots - 86\!\cdots\!56 Copy content Toggle raw display
6161 T6+23 ⁣ ⁣64 T^{6} + \cdots - 23\!\cdots\!64 Copy content Toggle raw display
6767 T6+13 ⁣ ⁣76 T^{6} + \cdots - 13\!\cdots\!76 Copy content Toggle raw display
7171 T6++13 ⁣ ⁣04 T^{6} + \cdots + 13\!\cdots\!04 Copy content Toggle raw display
7373 T6++96 ⁣ ⁣26 T^{6} + \cdots + 96\!\cdots\!26 Copy content Toggle raw display
7979 T6++29 ⁣ ⁣76 T^{6} + \cdots + 29\!\cdots\!76 Copy content Toggle raw display
8383 T6+65 ⁣ ⁣64 T^{6} + \cdots - 65\!\cdots\!64 Copy content Toggle raw display
8989 T6++18 ⁣ ⁣76 T^{6} + \cdots + 18\!\cdots\!76 Copy content Toggle raw display
9797 T6++48 ⁣ ⁣44 T^{6} + \cdots + 48\!\cdots\!44 Copy content Toggle raw display
show more
show less