[N,k,chi] = [304,8,Mod(1,304)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(304, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("304.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 6 + 29 T 3 5 − 6023 T 3 4 − 137613 T 3 3 + 10032066 T 3 2 + 159095988 T 3 − 4151704248 T_{3}^{6} + 29T_{3}^{5} - 6023T_{3}^{4} - 137613T_{3}^{3} + 10032066T_{3}^{2} + 159095988T_{3} - 4151704248 T 3 6 + 2 9 T 3 5 − 6 0 2 3 T 3 4 − 1 3 7 6 1 3 T 3 3 + 1 0 0 3 2 0 6 6 T 3 2 + 1 5 9 0 9 5 9 8 8 T 3 − 4 1 5 1 7 0 4 2 4 8
T3^6 + 29*T3^5 - 6023*T3^4 - 137613*T3^3 + 10032066*T3^2 + 159095988*T3 - 4151704248
acting on S 8 n e w ( Γ 0 ( 304 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(304)) S 8 n e w ( Γ 0 ( 3 0 4 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
T 6 + ⋯ − 4151704248 T^{6} + \cdots - 4151704248 T 6 + ⋯ − 4 1 5 1 7 0 4 2 4 8
T^6 + 29*T^5 - 6023*T^4 - 137613*T^3 + 10032066*T^2 + 159095988*T - 4151704248
5 5 5
T 6 + ⋯ − 17534371424000 T^{6} + \cdots - 17534371424000 T 6 + ⋯ − 1 7 5 3 4 3 7 1 4 2 4 0 0 0
T^6 + 43*T^5 - 209449*T^4 + 3480833*T^3 + 9947033620*T^2 - 842862313600*T - 17534371424000
7 7 7
T 6 + ⋯ + 54 ⋯ 39 T^{6} + \cdots + 54\!\cdots\!39 T 6 + ⋯ + 5 4 ⋯ 3 9
T^6 - 908*T^5 - 1488299*T^4 + 1000409840*T^3 + 457953167643*T^2 - 222136466647716*T + 5494086004338639
11 11 1 1
T 6 + ⋯ − 96 ⋯ 96 T^{6} + \cdots - 96\!\cdots\!96 T 6 + ⋯ − 9 6 ⋯ 9 6
T^6 + 3935*T^5 - 44477759*T^4 - 83497691207*T^3 + 528070257267762*T^2 + 224918987132640204*T - 968361891640477044696
13 13 1 3
T 6 + ⋯ + 66 ⋯ 40 T^{6} + \cdots + 66\!\cdots\!40 T 6 + ⋯ + 6 6 ⋯ 4 0
T^6 - 6449*T^5 - 199021829*T^4 + 593924159625*T^3 + 10390211237480764*T^2 + 17802845471734768432*T + 6610823130647883160640
17 17 1 7
T 6 + ⋯ − 15 ⋯ 05 T^{6} + \cdots - 15\!\cdots\!05 T 6 + ⋯ − 1 5 ⋯ 0 5
T^6 + 6920*T^5 - 996776019*T^4 - 7929778238224*T^3 + 260775675370872419*T^2 + 1763657199767012554248*T - 15108399774011124305791505
19 19 1 9
( T − 6859 ) 6 (T - 6859)^{6} ( T − 6 8 5 9 ) 6
(T - 6859)^6
23 23 2 3
T 6 + ⋯ − 20 ⋯ 80 T^{6} + \cdots - 20\!\cdots\!80 T 6 + ⋯ − 2 0 ⋯ 8 0
T^6 - 43633*T^5 - 1550497345*T^4 + 34827487927793*T^3 + 1117092000601178208*T^2 + 5283964347159411099648*T - 20821094355843278965140480
29 29 2 9
T 6 + ⋯ + 25 ⋯ 44 T^{6} + \cdots + 25\!\cdots\!44 T 6 + ⋯ + 2 5 ⋯ 4 4
T^6 + 134097*T^5 - 7847417047*T^4 - 982869049695013*T^3 + 8211850193258733342*T^2 + 1826107301902187733753812*T + 25739514676695002150438753944
31 31 3 1
T 6 + ⋯ − 50 ⋯ 84 T^{6} + \cdots - 50\!\cdots\!84 T 6 + ⋯ − 5 0 ⋯ 8 4
T^6 - 95448*T^5 - 76972000752*T^4 + 9031930810171520*T^3 + 1006363862907091519488*T^2 - 88204464493269586120230912*T - 5015737415291826378896428253184
37 37 3 7
T 6 + ⋯ + 63 ⋯ 00 T^{6} + \cdots + 63\!\cdots\!00 T 6 + ⋯ + 6 3 ⋯ 0 0
T^6 + 57516*T^5 - 575769953844*T^4 - 66314833694130144*T^3 + 81167495918310548318832*T^2 + 14574236647268117313936381120*T + 632676065017475526491176629320000
41 41 4 1
T 6 + ⋯ + 39 ⋯ 00 T^{6} + \cdots + 39\!\cdots\!00 T 6 + ⋯ + 3 9 ⋯ 0 0
T^6 + 399254*T^5 - 142488767300*T^4 - 47975352002492024*T^3 + 2146928754664332805824*T^2 + 1102066300918976991345907200*T + 39978649676611020188517541171200
43 43 4 3
T 6 + ⋯ − 97 ⋯ 60 T^{6} + \cdots - 97\!\cdots\!60 T 6 + ⋯ − 9 7 ⋯ 6 0
T^6 - 359107*T^5 - 849379341225*T^4 + 61900836055876551*T^3 + 118686719893007845486948*T^2 - 10468743197883306891669401088*T - 97955612370440120691941016616960
47 47 4 7
T 6 + ⋯ + 15 ⋯ 44 T^{6} + \cdots + 15\!\cdots\!44 T 6 + ⋯ + 1 5 ⋯ 4 4
T^6 - 590285*T^5 - 659030549253*T^4 + 421573786509362081*T^3 + 31135157812503821966040*T^2 - 30948779240483471067400740864*T + 1537701602313905723710663631161344
53 53 5 3
T 6 + ⋯ + 79 ⋯ 60 T^{6} + \cdots + 79\!\cdots\!60 T 6 + ⋯ + 7 9 ⋯ 6 0
T^6 + 2926531*T^5 + 1221553028431*T^4 - 1608507930480524651*T^3 - 805862513788375327610344*T^2 + 49777818206954266400762962112*T + 7940496211759301864660990015916160
59 59 5 9
T 6 + ⋯ + 31 ⋯ 84 T^{6} + \cdots + 31\!\cdots\!84 T 6 + ⋯ + 3 1 ⋯ 8 4
T^6 - 2933563*T^5 - 755403658919*T^4 + 5616313217779364571*T^3 - 283914843204794865185006*T^2 - 1896583332949048783991348082028*T + 314098845985864837597829674288104584
61 61 6 1
T 6 + ⋯ + 22 ⋯ 60 T^{6} + \cdots + 22\!\cdots\!60 T 6 + ⋯ + 2 2 ⋯ 6 0
T^6 + 4738005*T^5 + 4697134347149*T^4 - 4739746999815490637*T^3 - 7847165234790353810296602*T^2 - 2019374591490846459925902264956*T + 22312187545685108848586190340356760
67 67 6 7
T 6 + ⋯ − 34 ⋯ 00 T^{6} + \cdots - 34\!\cdots\!00 T 6 + ⋯ − 3 4 ⋯ 0 0
T^6 - 4389837*T^5 + 4652537880803*T^4 + 2998862383759426865*T^3 - 7151287890155899101987840*T^2 + 3310899082831474845762365111808*T - 343338008123842442194046838913238400
71 71 7 1
T 6 + ⋯ + 13 ⋯ 12 T^{6} + \cdots + 13\!\cdots\!12 T 6 + ⋯ + 1 3 ⋯ 1 2
T^6 - 751308*T^5 - 18630877286452*T^4 - 1655144815918108576*T^3 + 88701110463155871553217904*T^2 + 76440280690026871931366444706624*T + 13738078604730015907650939336396270912
73 73 7 3
T 6 + ⋯ + 10 ⋯ 85 T^{6} + \cdots + 10\!\cdots\!85 T 6 + ⋯ + 1 0 ⋯ 8 5
T^6 + 7310018*T^5 - 8278012810777*T^4 - 111051576732070592836*T^3 - 60445092449588608052912961*T^2 + 176512472747222992531271525805282*T + 108333242798246457285781522425240961785
79 79 7 9
T 6 + ⋯ − 36 ⋯ 16 T^{6} + \cdots - 36\!\cdots\!16 T 6 + ⋯ − 3 6 ⋯ 1 6
T^6 - 2495758*T^5 - 70161067813292*T^4 + 199695245026197736920*T^3 + 464411331123849566624471968*T^2 + 163756800381559547022802305322112*T - 36141620249431372835229565634365897216
83 83 8 3
T 6 + ⋯ − 10 ⋯ 80 T^{6} + \cdots - 10\!\cdots\!80 T 6 + ⋯ − 1 0 ⋯ 8 0
T^6 - 4583082*T^5 - 74386306437580*T^4 + 175578567369227736648*T^3 + 1883477193657937213439081376*T^2 - 507885140489341160797770359794816*T - 10675901812341350882202347314118065108480
89 89 8 9
T 6 + ⋯ + 22 ⋯ 00 T^{6} + \cdots + 22\!\cdots\!00 T 6 + ⋯ + 2 2 ⋯ 0 0
T^6 + 21914280*T^5 - 24773482622704*T^4 - 3543541558628815081600*T^3 - 23608873590304614219249060864*T^2 - 3177231739570116953764701745858560*T + 224669047583280126264384056796734541004800
97 97 9 7
T 6 + ⋯ + 17 ⋯ 32 T^{6} + \cdots + 17\!\cdots\!32 T 6 + ⋯ + 1 7 ⋯ 3 2
T^6 + 21931958*T^5 + 159978278995180*T^4 + 461941973165294798664*T^3 + 504997319699329652766153856*T^2 + 202043977320292488913258792687616*T + 17718638496621123311109491958540050432
show more
show less