Properties

Label 304.8.a.j
Level 304304
Weight 88
Character orbit 304.a
Self dual yes
Analytic conductor 94.96594.965
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,8,Mod(1,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 304=2419 304 = 2^{4} \cdot 19
Weight: k k == 8 8
Character orbit: [χ][\chi] == 304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 94.965047747294.9650477472
Analytic rank: 11
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x56373x412403x3+11165936x2+51537728x4683020288 x^{6} - x^{5} - 6373x^{4} - 12403x^{3} + 11165936x^{2} + 51537728x - 4683020288 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2103 2^{10}\cdot 3
Twist minimal: no (minimal twist has level 152)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β15)q3+(β2β17)q5+(β54β1+152)q7+(β5β4+β3+38)q9+(3β5β4+652)q11++(4717β52113β4++493568)q99+O(q100) q + (\beta_1 - 5) q^{3} + ( - \beta_{2} - \beta_1 - 7) q^{5} + (\beta_{5} - 4 \beta_1 + 152) q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots - 38) q^{9} + ( - 3 \beta_{5} - \beta_{4} + \cdots - 652) q^{11}+ \cdots + (4717 \beta_{5} - 2113 \beta_{4} + \cdots + 493568) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q29q343q5+908q7235q93935q11+6449q138422q156920q17+41154q1954471q21+43633q2348003q258705q27134097q29+95448q31++2897895q99+O(q100) 6 q - 29 q^{3} - 43 q^{5} + 908 q^{7} - 235 q^{9} - 3935 q^{11} + 6449 q^{13} - 8422 q^{15} - 6920 q^{17} + 41154 q^{19} - 54471 q^{21} + 43633 q^{23} - 48003 q^{25} - 8705 q^{27} - 134097 q^{29} + 95448 q^{31}+ \cdots + 2897895 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x56373x412403x3+11165936x2+51537728x4683020288 x^{6} - x^{5} - 6373x^{4} - 12403x^{3} + 11165936x^{2} + 51537728x - 4683020288 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (11ν5355ν447023ν3+1765319ν2+31097480ν1668447712)/1844640 ( 11\nu^{5} - 355\nu^{4} - 47023\nu^{3} + 1765319\nu^{2} + 31097480\nu - 1668447712 ) / 1844640 Copy content Toggle raw display
β3\beta_{3}== (149ν5+515ν4752737ν3+711641ν2+741593960ν4789303168)/7378560 ( 149\nu^{5} + 515\nu^{4} - 752737\nu^{3} + 711641\nu^{2} + 741593960\nu - 4789303168 ) / 7378560 Copy content Toggle raw display
β4\beta_{4}== (37ν5+2525ν4+206081ν312045433ν2247787800ν+10034105984)/1844640 ( -37\nu^{5} + 2525\nu^{4} + 206081\nu^{3} - 12045433\nu^{2} - 247787800\nu + 10034105984 ) / 1844640 Copy content Toggle raw display
β5\beta_{5}== (11ν5+355ν4+55807ν31589639ν257669080ν+1217178496)/210816 ( -11\nu^{5} + 355\nu^{4} + 55807\nu^{3} - 1589639\nu^{2} - 57669080\nu + 1217178496 ) / 210816 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5β4+β3+2β2+5β1+2124 \beta_{5} - \beta_{4} + \beta_{3} + 2\beta_{2} + 5\beta _1 + 2124 Copy content Toggle raw display
ν3\nu^{3}== 4β5+20β420β3+170β2+2925β1+8894 4\beta_{5} + 20\beta_{4} - 20\beta_{3} + 170\beta_{2} + 2925\beta _1 + 8894 Copy content Toggle raw display
ν4\nu^{4}== 4445β53923β4+5309β3+7720β2+25231β1+6104270 4445\beta_{5} - 3923\beta_{4} + 5309\beta_{3} + 7720\beta_{2} + 25231\beta _1 + 6104270 Copy content Toggle raw display
ν5\nu^{5}== 68β5+119374β474644β3+822592β2+9688655β1+45831688 68\beta_{5} + 119374\beta_{4} - 74644\beta_{3} + 822592\beta_{2} + 9688655\beta _1 + 45831688 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−60.0909
−37.3527
−33.1137
20.8260
49.0444
61.6869
0 −65.0909 0 165.215 0 774.961 0 2049.82 0
1.2 0 −42.3527 0 −290.965 0 −951.495 0 −393.248 0
1.3 0 −38.1137 0 −17.3107 0 1338.47 0 −734.347 0
1.4 0 15.8260 0 353.595 0 −621.598 0 −1936.54 0
1.5 0 44.0444 0 148.297 0 341.431 0 −247.091 0
1.6 0 56.6869 0 −401.832 0 26.2293 0 1026.40 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 304.8.a.j 6
4.b odd 2 1 152.8.a.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.8.a.a 6 4.b odd 2 1
304.8.a.j 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T36+29T356023T34137613T33+10032066T32+159095988T34151704248 T_{3}^{6} + 29T_{3}^{5} - 6023T_{3}^{4} - 137613T_{3}^{3} + 10032066T_{3}^{2} + 159095988T_{3} - 4151704248 acting on S8new(Γ0(304))S_{8}^{\mathrm{new}}(\Gamma_0(304)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6+4151704248 T^{6} + \cdots - 4151704248 Copy content Toggle raw display
55 T6+17534371424000 T^{6} + \cdots - 17534371424000 Copy content Toggle raw display
77 T6++54 ⁣ ⁣39 T^{6} + \cdots + 54\!\cdots\!39 Copy content Toggle raw display
1111 T6+96 ⁣ ⁣96 T^{6} + \cdots - 96\!\cdots\!96 Copy content Toggle raw display
1313 T6++66 ⁣ ⁣40 T^{6} + \cdots + 66\!\cdots\!40 Copy content Toggle raw display
1717 T6+15 ⁣ ⁣05 T^{6} + \cdots - 15\!\cdots\!05 Copy content Toggle raw display
1919 (T6859)6 (T - 6859)^{6} Copy content Toggle raw display
2323 T6+20 ⁣ ⁣80 T^{6} + \cdots - 20\!\cdots\!80 Copy content Toggle raw display
2929 T6++25 ⁣ ⁣44 T^{6} + \cdots + 25\!\cdots\!44 Copy content Toggle raw display
3131 T6+50 ⁣ ⁣84 T^{6} + \cdots - 50\!\cdots\!84 Copy content Toggle raw display
3737 T6++63 ⁣ ⁣00 T^{6} + \cdots + 63\!\cdots\!00 Copy content Toggle raw display
4141 T6++39 ⁣ ⁣00 T^{6} + \cdots + 39\!\cdots\!00 Copy content Toggle raw display
4343 T6+97 ⁣ ⁣60 T^{6} + \cdots - 97\!\cdots\!60 Copy content Toggle raw display
4747 T6++15 ⁣ ⁣44 T^{6} + \cdots + 15\!\cdots\!44 Copy content Toggle raw display
5353 T6++79 ⁣ ⁣60 T^{6} + \cdots + 79\!\cdots\!60 Copy content Toggle raw display
5959 T6++31 ⁣ ⁣84 T^{6} + \cdots + 31\!\cdots\!84 Copy content Toggle raw display
6161 T6++22 ⁣ ⁣60 T^{6} + \cdots + 22\!\cdots\!60 Copy content Toggle raw display
6767 T6+34 ⁣ ⁣00 T^{6} + \cdots - 34\!\cdots\!00 Copy content Toggle raw display
7171 T6++13 ⁣ ⁣12 T^{6} + \cdots + 13\!\cdots\!12 Copy content Toggle raw display
7373 T6++10 ⁣ ⁣85 T^{6} + \cdots + 10\!\cdots\!85 Copy content Toggle raw display
7979 T6+36 ⁣ ⁣16 T^{6} + \cdots - 36\!\cdots\!16 Copy content Toggle raw display
8383 T6+10 ⁣ ⁣80 T^{6} + \cdots - 10\!\cdots\!80 Copy content Toggle raw display
8989 T6++22 ⁣ ⁣00 T^{6} + \cdots + 22\!\cdots\!00 Copy content Toggle raw display
9797 T6++17 ⁣ ⁣32 T^{6} + \cdots + 17\!\cdots\!32 Copy content Toggle raw display
show more
show less