Properties

Label 304.8.a.j
Level $304$
Weight $8$
Character orbit 304.a
Self dual yes
Analytic conductor $94.965$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,8,Mod(1,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.9650477472\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6373x^{4} - 12403x^{3} + 11165936x^{2} + 51537728x - 4683020288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 5) q^{3} + ( - \beta_{2} - \beta_1 - 7) q^{5} + (\beta_{5} - 4 \beta_1 + 152) q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots - 38) q^{9} + ( - 3 \beta_{5} - \beta_{4} + \cdots - 652) q^{11}+ \cdots + (4717 \beta_{5} - 2113 \beta_{4} + \cdots + 493568) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 29 q^{3} - 43 q^{5} + 908 q^{7} - 235 q^{9} - 3935 q^{11} + 6449 q^{13} - 8422 q^{15} - 6920 q^{17} + 41154 q^{19} - 54471 q^{21} + 43633 q^{23} - 48003 q^{25} - 8705 q^{27} - 134097 q^{29} + 95448 q^{31}+ \cdots + 2897895 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 6373x^{4} - 12403x^{3} + 11165936x^{2} + 51537728x - 4683020288 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 11\nu^{5} - 355\nu^{4} - 47023\nu^{3} + 1765319\nu^{2} + 31097480\nu - 1668447712 ) / 1844640 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 149\nu^{5} + 515\nu^{4} - 752737\nu^{3} + 711641\nu^{2} + 741593960\nu - 4789303168 ) / 7378560 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -37\nu^{5} + 2525\nu^{4} + 206081\nu^{3} - 12045433\nu^{2} - 247787800\nu + 10034105984 ) / 1844640 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -11\nu^{5} + 355\nu^{4} + 55807\nu^{3} - 1589639\nu^{2} - 57669080\nu + 1217178496 ) / 210816 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{3} + 2\beta_{2} + 5\beta _1 + 2124 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{5} + 20\beta_{4} - 20\beta_{3} + 170\beta_{2} + 2925\beta _1 + 8894 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4445\beta_{5} - 3923\beta_{4} + 5309\beta_{3} + 7720\beta_{2} + 25231\beta _1 + 6104270 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 68\beta_{5} + 119374\beta_{4} - 74644\beta_{3} + 822592\beta_{2} + 9688655\beta _1 + 45831688 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−60.0909
−37.3527
−33.1137
20.8260
49.0444
61.6869
0 −65.0909 0 165.215 0 774.961 0 2049.82 0
1.2 0 −42.3527 0 −290.965 0 −951.495 0 −393.248 0
1.3 0 −38.1137 0 −17.3107 0 1338.47 0 −734.347 0
1.4 0 15.8260 0 353.595 0 −621.598 0 −1936.54 0
1.5 0 44.0444 0 148.297 0 341.431 0 −247.091 0
1.6 0 56.6869 0 −401.832 0 26.2293 0 1026.40 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 304.8.a.j 6
4.b odd 2 1 152.8.a.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.8.a.a 6 4.b odd 2 1
304.8.a.j 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 29T_{3}^{5} - 6023T_{3}^{4} - 137613T_{3}^{3} + 10032066T_{3}^{2} + 159095988T_{3} - 4151704248 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(304))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 4151704248 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 17534371424000 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 54\!\cdots\!39 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 96\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 66\!\cdots\!40 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 15\!\cdots\!05 \) Copy content Toggle raw display
$19$ \( (T - 6859)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 20\!\cdots\!80 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 25\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 50\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 63\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 97\!\cdots\!60 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 15\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 79\!\cdots\!60 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 31\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 22\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 34\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 13\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 10\!\cdots\!85 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 36\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 10\!\cdots\!80 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 17\!\cdots\!32 \) Copy content Toggle raw display
show more
show less