Properties

Label 3040.1.dv.b.1999.1
Level 30403040
Weight 11
Character 3040.1999
Analytic conductor 1.5171.517
Analytic rank 00
Dimension 66
Projective image D9D_{9}
CM discriminant -40
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,1,Mod(719,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 9, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.719");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3040=25519 3040 = 2^{5} \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3040.dv (of order 1818, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.517157638401.51715763840
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ18)\Q(\zeta_{18})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 760)
Projective image: D9D_{9}
Projective field: Galois closure of 9.1.43477921384960000.1

Embedding invariants

Embedding label 1999.1
Root 0.939693+0.342020i0.939693 + 0.342020i of defining polynomial
Character χ\chi == 3040.1999
Dual form 3040.1.dv.b.879.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.7660440.642788i)q5+(0.7660441.32683i)q7+(0.939693+0.342020i)q9+(0.9396931.62760i)q11+(0.173648+0.984808i)q13+(0.939693+0.342020i)q19+(0.2660440.223238i)q23+(0.1736480.984808i)q25+(0.2660441.50881i)q35+0.347296q37+(0.3263521.85083i)q41+(0.500000+0.866025i)q45+(0.939693+0.342020i)q47+(0.6736481.16679i)q49+(1.17365+0.984808i)q53+(1.766040.642788i)q55+(0.9396930.342020i)q59+(0.266044+1.50881i)q63+(0.500000+0.866025i)q652.87939q77+(0.7660440.642788i)q81+(0.06030740.342020i)q89+(1.17365+0.984808i)q91+(0.9396930.342020i)q95+(1.43969+1.20805i)q99+O(q100)q+(0.766044 - 0.642788i) q^{5} +(0.766044 - 1.32683i) q^{7} +(-0.939693 + 0.342020i) q^{9} +(-0.939693 - 1.62760i) q^{11} +(-0.173648 + 0.984808i) q^{13} +(0.939693 + 0.342020i) q^{19} +(-0.266044 - 0.223238i) q^{23} +(0.173648 - 0.984808i) q^{25} +(-0.266044 - 1.50881i) q^{35} +0.347296 q^{37} +(-0.326352 - 1.85083i) q^{41} +(-0.500000 + 0.866025i) q^{45} +(-0.939693 + 0.342020i) q^{47} +(-0.673648 - 1.16679i) q^{49} +(1.17365 + 0.984808i) q^{53} +(-1.76604 - 0.642788i) q^{55} +(-0.939693 - 0.342020i) q^{59} +(-0.266044 + 1.50881i) q^{63} +(0.500000 + 0.866025i) q^{65} -2.87939 q^{77} +(0.766044 - 0.642788i) q^{81} +(0.0603074 - 0.342020i) q^{89} +(1.17365 + 0.984808i) q^{91} +(0.939693 - 0.342020i) q^{95} +(1.43969 + 1.20805i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q23+3q353q413q453q49+6q536q55+3q63+3q656q77+6q89+6q91+3q99+O(q100) 6 q + 3 q^{23} + 3 q^{35} - 3 q^{41} - 3 q^{45} - 3 q^{49} + 6 q^{53} - 6 q^{55} + 3 q^{63} + 3 q^{65} - 6 q^{77} + 6 q^{89} + 6 q^{91} + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3040Z)×\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times.

nn 191191 12171217 19211921 26612661
χ(n)\chi(n) 1-1 1-1 e(19)e\left(\frac{1}{9}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
44 0 0
55 0.766044 0.642788i 0.766044 0.642788i
66 0 0
77 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
88 0 0
99 −0.939693 + 0.342020i −0.939693 + 0.342020i
1010 0 0
1111 −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
1212 0 0
1313 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1414 0 0
1515 0 0
1616 0 0
1717 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
1818 0 0
1919 0.939693 + 0.342020i 0.939693 + 0.342020i
2020 0 0
2121 0 0
2222 0 0
2323 −0.266044 0.223238i −0.266044 0.223238i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
2424 0 0
2525 0.173648 0.984808i 0.173648 0.984808i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0 0
3333 0 0
3434 0 0
3535 −0.266044 1.50881i −0.266044 1.50881i
3636 0 0
3737 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
3838 0 0
3939 0 0
4040 0 0
4141 −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i 0.666667π-0.666667\pi
0.173648 0.984808i 0.444444π-0.444444\pi
4242 0 0
4343 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
4444 0 0
4545 −0.500000 + 0.866025i −0.500000 + 0.866025i
4646 0 0
4747 −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
4848 0 0
4949 −0.673648 1.16679i −0.673648 1.16679i
5050 0 0
5151 0 0
5252 0 0
5353 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 00
0.173648 + 0.984808i 0.444444π0.444444\pi
5454 0 0
5555 −1.76604 0.642788i −1.76604 0.642788i
5656 0 0
5757 0 0
5858 0 0
5959 −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
6060 0 0
6161 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
6262 0 0
6363 −0.266044 + 1.50881i −0.266044 + 1.50881i
6464 0 0
6565 0.500000 + 0.866025i 0.500000 + 0.866025i
6666 0 0
6767 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
7272 0 0
7373 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
7474 0 0
7575 0 0
7676 0 0
7777 −2.87939 −2.87939
7878 0 0
7979 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
8080 0 0
8181 0.766044 0.642788i 0.766044 0.642788i
8282 0 0
8383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i 0.888889π-0.888889\pi
1.00000 00
9090 0 0
9191 1.17365 + 0.984808i 1.17365 + 0.984808i
9292 0 0
9393 0 0
9494 0 0
9595 0.939693 0.342020i 0.939693 0.342020i
9696 0 0
9797 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
9898 0 0
9999 1.43969 + 1.20805i 1.43969 + 1.20805i
100100 0 0
101101 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
102102 0 0
103103 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
108108 0 0
109109 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 −0.347296 −0.347296
116116 0 0
117117 −0.173648 0.984808i −0.173648 0.984808i
118118 0 0
119119 0 0
120120 0 0
121121 −1.26604 + 2.19285i −1.26604 + 2.19285i
122122 0 0
123123 0 0
124124 0 0
125125 −0.500000 0.866025i −0.500000 0.866025i
126126 0 0
127127 −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i 0.111111π0.111111\pi
−1.00000 π\pi
128128 0 0
129129 0 0
130130 0 0
131131 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
132132 0 0
133133 1.17365 0.984808i 1.17365 0.984808i
134134 0 0
135135 0 0
136136 0 0
137137 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
138138 0 0
139139 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 0.342020i 0.111111π-0.111111\pi
140140 0 0
141141 0 0
142142 0 0
143143 1.76604 0.642788i 1.76604 0.642788i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i 0.666667π-0.666667\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
158158 0 0
159159 0 0
160160 0 0
161161 −0.500000 + 0.181985i −0.500000 + 0.181985i
162162 0 0
163163 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i 0.111111π0.111111\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 0 0
169169 0 0
170170 0 0
171171 −1.00000 −1.00000
172172 0 0
173173 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 00
0.766044 + 0.642788i 0.222222π0.222222\pi
174174 0 0
175175 −1.17365 0.984808i −1.17365 0.984808i
176176 0 0
177177 0 0
178178 0 0
179179 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i 0.111111π-0.111111\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
180180 0 0
181181 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
182182 0 0
183183 0 0
184184 0 0
185185 0.266044 0.223238i 0.266044 0.223238i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
194194 0 0
195195 0 0
196196 0 0
197197 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 0.642788i 0.222222π-0.222222\pi
198198 0 0
199199 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −1.43969 1.20805i −1.43969 1.20805i
206206 0 0
207207 0.326352 + 0.118782i 0.326352 + 0.118782i
208208 0 0
209209 −0.326352 1.85083i −0.326352 1.85083i
210210 0 0
211211 −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i 0.777778π-0.777778\pi
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i 0.333333π-0.333333\pi
0.939693 0.342020i 0.111111π-0.111111\pi
224224 0 0
225225 0.173648 + 0.984808i 0.173648 + 0.984808i
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
234234 0 0
235235 −0.500000 + 0.866025i −0.500000 + 0.866025i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
240240 0 0
241241 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
242242 0 0
243243 0 0
244244 0 0
245245 −1.26604 0.460802i −1.26604 0.460802i
246246 0 0
247247 −0.500000 + 0.866025i −0.500000 + 0.866025i
248248 0 0
249249 0 0
250250 0 0
251251 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i 0.111111π-0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
252252 0 0
253253 −0.113341 + 0.642788i −0.113341 + 0.642788i
254254 0 0
255255 0 0
256256 0 0
257257 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
258258 0 0
259259 0.266044 0.460802i 0.266044 0.460802i
260260 0 0
261261 0 0
262262 0 0
263263 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
264264 0 0
265265 1.53209 1.53209
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
270270 0 0
271271 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
272272 0 0
273273 0 0
274274 0 0
275275 −1.76604 + 0.642788i −1.76604 + 0.642788i
276276 0 0
277277 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 0 0
279279 0 0
280280 0 0
281281 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 00
0.173648 + 0.984808i 0.444444π0.444444\pi
282282 0 0
283283 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
284284 0 0
285285 0 0
286286 0 0
287287 −2.70574 0.984808i −2.70574 0.984808i
288288 0 0
289289 0.766044 + 0.642788i 0.766044 + 0.642788i
290290 0 0
291291 0 0
292292 0 0
293293 −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 0.984808i 0.444444π-0.444444\pi
294294 0 0
295295 −0.939693 + 0.342020i −0.939693 + 0.342020i
296296 0 0
297297 0 0
298298 0 0
299299 0.266044 0.223238i 0.266044 0.223238i
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
314314 0 0
315315 0.766044 + 1.32683i 0.766044 + 1.32683i
316316 0 0
317317 −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0.939693 + 0.342020i 0.939693 + 0.342020i
326326 0 0
327327 0 0
328328 0 0
329329 −0.266044 + 1.50881i −0.266044 + 1.50881i
330330 0 0
331331 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
332332 0 0
333333 −0.326352 + 0.118782i −0.326352 + 0.118782i
334334 0 0
335335 0 0
336336 0 0
337337 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −0.532089 −0.532089
344344 0 0
345345 0 0
346346 0 0
347347 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
348348 0 0
349349 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
360360 0 0
361361 0.766044 + 0.642788i 0.766044 + 0.642788i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 0.342020i 0.111111π-0.111111\pi
368368 0 0
369369 0.939693 + 1.62760i 0.939693 + 1.62760i
370370 0 0
371371 2.20574 0.802823i 2.20574 0.802823i
372372 0 0
373373 −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
384384 0 0
385385 −2.20574 + 1.85083i −2.20574 + 1.85083i
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 00
0.766044 + 0.642788i 0.222222π0.222222\pi
398398 0 0
399399 0 0
400400 0 0
401401 −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 0.342020i 0.888889π-0.888889\pi
402402 0 0
403403 0 0
404404 0 0
405405 0.173648 0.984808i 0.173648 0.984808i
406406 0 0
407407 −0.326352 0.565258i −0.326352 0.565258i
408408 0 0
409409 −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 0 0
412412 0 0
413413 −1.17365 + 0.984808i −1.17365 + 0.984808i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
420420 0 0
421421 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
422422 0 0
423423 0.766044 0.642788i 0.766044 0.642788i
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
432432 0 0
433433 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
434434 0 0
435435 0 0
436436 0 0
437437 −0.173648 0.300767i −0.173648 0.300767i
438438 0 0
439439 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
440440 0 0
441441 1.03209 + 0.866025i 1.03209 + 0.866025i
442442 0 0
443443 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
444444 0 0
445445 −0.173648 0.300767i −0.173648 0.300767i
446446 0 0
447447 0 0
448448 0 0
449449 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 0.642788i 0.222222π-0.222222\pi
450450 0 0
451451 −2.70574 + 2.27038i −2.70574 + 2.27038i
452452 0 0
453453 0 0
454454 0 0
455455 1.53209 1.53209
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
462462 0 0
463463 −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i 0.555556π0.555556\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0.500000 0.866025i 0.500000 0.866025i
476476 0 0
477477 −1.43969 0.524005i −1.43969 0.524005i
478478 0 0
479479 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
480480 0 0
481481 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
488488 0 0
489489 0 0
490490 0 0
491491 −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i 0.111111π-0.111111\pi
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 1.87939 1.87939
496496 0 0
497497 0 0
498498 0 0
499499 −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i 0.555556π0.555556\pi
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i 0.777778π0.777778\pi
−1.00000 1.00000π1.00000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 1.43969 + 0.524005i 1.43969 + 0.524005i
516516 0 0
517517 1.43969 + 1.20805i 1.43969 + 1.20805i
518518 0 0
519519 0 0
520520 0 0
521521 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
522522 0 0
523523 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.152704 0.866025i −0.152704 0.866025i
530530 0 0
531531 1.00000 1.00000
532532 0 0
533533 1.87939 1.87939
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −1.26604 + 2.19285i −1.26604 + 2.19285i
540540 0 0
541541 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i 0.666667π-0.666667\pi
0.766044 0.642788i 0.222222π-0.222222\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 0 0
566566 0 0
567567 −0.266044 1.50881i −0.266044 1.50881i
568568 0 0
569569 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
570570 0 0
571571 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.266044 + 0.223238i −0.266044 + 0.223238i
576576 0 0
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0.500000 2.83564i 0.500000 2.83564i
584584 0 0
585585 −0.766044 0.642788i −0.766044 0.642788i
586586 0 0
587587 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
600600 0 0
601601 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 0.642788i 0.222222π-0.222222\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.439693 + 2.49362i 0.439693 + 2.49362i
606606 0 0
607607 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
608608 0 0
609609 0 0
610610 0 0
611611 −0.173648 0.984808i −0.173648 0.984808i
612612 0 0
613613 −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
618618 0 0
619619 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
620620 0 0
621621 0 0
622622 0 0
623623 −0.407604 0.342020i −0.407604 0.342020i
624624 0 0
625625 −0.939693 0.342020i −0.939693 0.342020i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
632632 0 0
633633 0 0
634634 0 0
635635 0.173648 + 0.300767i 0.173648 + 0.300767i
636636 0 0
637637 1.26604 0.460802i 1.26604 0.460802i
638638 0 0
639639 0 0
640640 0 0
641641 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
642642 0 0
643643 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
644644 0 0
645645 0 0
646646 0 0
647647 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
648648 0 0
649649 0.326352 + 1.85083i 0.326352 + 1.85083i
650650 0 0
651651 0 0
652652 0 0
653653 −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
654654 0 0
655655 0.326352 0.118782i 0.326352 0.118782i
656656 0 0
657657 0 0
658658 0 0
659659 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i 0.555556π-0.555556\pi
0.500000 0.866025i 0.333333π-0.333333\pi
660660 0 0
661661 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
662662 0 0
663663 0 0
664664 0 0
665665 0.266044 1.50881i 0.266044 1.50881i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
674674 0 0
675675 0 0
676676 0 0
677677 −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −1.17365 + 0.984808i −1.17365 + 0.984808i
690690 0 0
691691 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
692692 0 0
693693 2.70574 0.984808i 2.70574 0.984808i
694694 0 0
695695 −0.500000 0.866025i −0.500000 0.866025i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
702702 0 0
703703 0.326352 + 0.118782i 0.326352 + 0.118782i
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0.939693 1.62760i 0.939693 1.62760i
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
720720 0 0
721721 2.34730 2.34730
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.53209 + 1.28558i −1.53209 + 1.28558i −0.766044 + 0.642788i 0.777778π0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
728728 0 0
729729 −0.500000 + 0.866025i −0.500000 + 0.866025i
730730 0 0
731731 0 0
732732 0 0
733733 −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 0.984808i 0.444444π-0.444444\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i 0.111111π-0.111111\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i 0.666667π-0.666667\pi
0.173648 0.984808i 0.444444π-0.444444\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0.500000 0.866025i 0.500000 0.866025i
768768 0 0
769769 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i 0.888889π-0.888889\pi
1.00000 00
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0.326352 1.85083i 0.326352 1.85083i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0.0603074 0.342020i 0.0603074 0.342020i
786786 0 0
787787 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.0603074 + 0.342020i 0.0603074 + 0.342020i
802802 0 0
803803 0 0
804804 0 0
805805 −0.266044 + 0.460802i −0.266044 + 0.460802i
806806 0 0
807807 0 0
808808 0 0
809809 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 −1.43969 0.524005i −1.43969 0.524005i
820820 0 0
821821 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
822822 0 0
823823 −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i 0.111111π0.111111\pi
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
828828 0 0
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 1.87939 1.87939
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
840840 0 0
841841 0.766044 0.642788i 0.766044 0.642788i
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 1.93969 + 3.35965i 1.93969 + 3.35965i
848848 0 0
849849 0 0
850850 0 0
851851 −0.0923963 0.0775297i −0.0923963 0.0775297i
852852 0 0
853853 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
854854 0 0
855855 −0.766044 + 0.642788i −0.766044 + 0.642788i
856856 0 0
857857 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
858858 0 0
859859 −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i 0.555556π-0.555556\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
864864 0 0
865865 1.76604 0.642788i 1.76604 0.642788i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −1.53209 −1.53209
876876 0 0
877877 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
882882 0 0
883883 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
884884 0 0
885885 0 0
886886 0 0
887887 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 0.342020i 0.111111π-0.111111\pi
888888 0 0
889889 0.407604 + 0.342020i 0.407604 + 0.342020i
890890 0 0
891891 −1.76604 0.642788i −1.76604 0.642788i
892892 0 0
893893 −1.00000 −1.00000
894894 0 0
895895 0.326352 + 0.118782i 0.326352 + 0.118782i
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0.407604 0.342020i 0.407604 0.342020i
918918 0 0
919919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0.0603074 0.342020i 0.0603074 0.342020i
926926 0 0
927927 −1.17365 0.984808i −1.17365 0.984808i
928928 0 0
929929 −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
930930 0 0
931931 −0.233956 1.32683i −0.233956 1.32683i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
942942 0 0
943943 −0.326352 + 0.565258i −0.326352 + 0.565258i
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 1.87939 + 0.684040i 1.87939 + 0.684040i 0.939693 + 0.342020i 0.111111π0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
968968 0 0
969969 0 0
970970 0 0
971971 −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
972972 0 0
973973 −1.17365 0.984808i −1.17365 0.984808i
974974 0 0
975975 0 0
976976 0 0
977977 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
978978 0 0
979979 −0.613341 + 0.223238i −0.613341 + 0.223238i
980980 0 0
981981 0 0
982982 0 0
983983 −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i 0.777778π-0.777778\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 −0.326352 1.85083i −0.326352 1.85083i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i 0.666667π-0.666667\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.1.dv.b.1999.1 6
4.3 odd 2 760.1.bz.a.99.1 6
5.4 even 2 3040.1.dv.a.1999.1 6
8.3 odd 2 3040.1.dv.a.1999.1 6
8.5 even 2 760.1.bz.b.99.1 yes 6
19.5 even 9 inner 3040.1.dv.b.879.1 6
20.3 even 4 3800.1.cv.f.251.1 12
20.7 even 4 3800.1.cv.f.251.2 12
20.19 odd 2 760.1.bz.b.99.1 yes 6
40.13 odd 4 3800.1.cv.f.251.2 12
40.19 odd 2 CM 3040.1.dv.b.1999.1 6
40.29 even 2 760.1.bz.a.99.1 6
40.37 odd 4 3800.1.cv.f.251.1 12
76.43 odd 18 760.1.bz.a.499.1 yes 6
95.24 even 18 3040.1.dv.a.879.1 6
152.5 even 18 760.1.bz.b.499.1 yes 6
152.43 odd 18 3040.1.dv.a.879.1 6
380.43 even 36 3800.1.cv.f.651.2 12
380.119 odd 18 760.1.bz.b.499.1 yes 6
380.347 even 36 3800.1.cv.f.651.1 12
760.157 odd 36 3800.1.cv.f.651.2 12
760.309 even 18 760.1.bz.a.499.1 yes 6
760.499 odd 18 inner 3040.1.dv.b.879.1 6
760.613 odd 36 3800.1.cv.f.651.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.1.bz.a.99.1 6 4.3 odd 2
760.1.bz.a.99.1 6 40.29 even 2
760.1.bz.a.499.1 yes 6 76.43 odd 18
760.1.bz.a.499.1 yes 6 760.309 even 18
760.1.bz.b.99.1 yes 6 8.5 even 2
760.1.bz.b.99.1 yes 6 20.19 odd 2
760.1.bz.b.499.1 yes 6 152.5 even 18
760.1.bz.b.499.1 yes 6 380.119 odd 18
3040.1.dv.a.879.1 6 95.24 even 18
3040.1.dv.a.879.1 6 152.43 odd 18
3040.1.dv.a.1999.1 6 5.4 even 2
3040.1.dv.a.1999.1 6 8.3 odd 2
3040.1.dv.b.879.1 6 19.5 even 9 inner
3040.1.dv.b.879.1 6 760.499 odd 18 inner
3040.1.dv.b.1999.1 6 1.1 even 1 trivial
3040.1.dv.b.1999.1 6 40.19 odd 2 CM
3800.1.cv.f.251.1 12 20.3 even 4
3800.1.cv.f.251.1 12 40.37 odd 4
3800.1.cv.f.251.2 12 20.7 even 4
3800.1.cv.f.251.2 12 40.13 odd 4
3800.1.cv.f.651.1 12 380.347 even 36
3800.1.cv.f.651.1 12 760.613 odd 36
3800.1.cv.f.651.2 12 380.43 even 36
3800.1.cv.f.651.2 12 760.157 odd 36