Properties

Label 3040.1.dv.b.2479.1
Level $3040$
Weight $1$
Character 3040.2479
Analytic conductor $1.517$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,1,Mod(719,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 9, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.719");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3040.dv (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.51715763840\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.43477921384960000.1

Embedding invariants

Embedding label 2479.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 3040.2479
Dual form 3040.1.dv.b.2639.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 - 0.342020i) q^{5} +(-0.939693 + 1.62760i) q^{7} +(0.173648 - 0.984808i) q^{9} +(0.173648 + 0.300767i) q^{11} +(-0.766044 - 0.642788i) q^{13} +(-0.173648 - 0.984808i) q^{19} +(1.43969 - 0.524005i) q^{23} +(0.766044 + 0.642788i) q^{25} +(1.43969 - 1.20805i) q^{35} +1.53209 q^{37} +(0.266044 - 0.223238i) q^{41} +(-0.500000 + 0.866025i) q^{45} +(0.173648 - 0.984808i) q^{47} +(-1.26604 - 2.19285i) q^{49} +(1.76604 - 0.642788i) q^{53} +(-0.0603074 - 0.342020i) q^{55} +(0.173648 + 0.984808i) q^{59} +(1.43969 + 1.20805i) q^{63} +(0.500000 + 0.866025i) q^{65} -0.652704 q^{77} +(-0.939693 - 0.342020i) q^{81} +(1.17365 + 0.984808i) q^{89} +(1.76604 - 0.642788i) q^{91} +(-0.173648 + 0.984808i) q^{95} +(0.326352 - 0.118782i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{23} + 3 q^{35} - 3 q^{41} - 3 q^{45} - 3 q^{49} + 6 q^{53} - 6 q^{55} + 3 q^{63} + 3 q^{65} - 6 q^{77} + 6 q^{89} + 6 q^{91} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{4}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(4\) 0 0
\(5\) −0.939693 0.342020i −0.939693 0.342020i
\(6\) 0 0
\(7\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(8\) 0 0
\(9\) 0.173648 0.984808i 0.173648 0.984808i
\(10\) 0 0
\(11\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(12\) 0 0
\(13\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(18\) 0 0
\(19\) −0.173648 0.984808i −0.173648 0.984808i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(24\) 0 0
\(25\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.43969 1.20805i 1.43969 1.20805i
\(36\) 0 0
\(37\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(42\) 0 0
\(43\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(44\) 0 0
\(45\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(46\) 0 0
\(47\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(48\) 0 0
\(49\) −1.26604 2.19285i −1.26604 2.19285i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(54\) 0 0
\(55\) −0.0603074 0.342020i −0.0603074 0.342020i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(60\) 0 0
\(61\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(62\) 0 0
\(63\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(64\) 0 0
\(65\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(66\) 0 0
\(67\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(72\) 0 0
\(73\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.652704 −0.652704
\(78\) 0 0
\(79\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(80\) 0 0
\(81\) −0.939693 0.342020i −0.939693 0.342020i
\(82\) 0 0
\(83\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(90\) 0 0
\(91\) 1.76604 0.642788i 1.76604 0.642788i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(96\) 0 0
\(97\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(98\) 0 0
\(99\) 0.326352 0.118782i 0.326352 0.118782i
\(100\) 0 0
\(101\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(102\) 0 0
\(103\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −1.53209 −1.53209
\(116\) 0 0
\(117\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.439693 0.761570i 0.439693 0.761570i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.500000 0.866025i −0.500000 0.866025i
\(126\) 0 0
\(127\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(132\) 0 0
\(133\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(138\) 0 0
\(139\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.0603074 0.342020i 0.0603074 0.342020i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(162\) 0 0
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −1.00000 −1.00000
\(172\) 0 0
\(173\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(174\) 0 0
\(175\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(180\) 0 0
\(181\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.43969 0.524005i −1.43969 0.524005i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(198\) 0 0
\(199\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(206\) 0 0
\(207\) −0.266044 1.50881i −0.266044 1.50881i
\(208\) 0 0
\(209\) 0.266044 0.223238i 0.266044 0.223238i
\(210\) 0 0
\(211\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(224\) 0 0
\(225\) 0.766044 0.642788i 0.766044 0.642788i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(234\) 0 0
\(235\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0 0
\(241\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.439693 + 2.49362i 0.439693 + 2.49362i
\(246\) 0 0
\(247\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(252\) 0 0
\(253\) 0.407604 + 0.342020i 0.407604 + 0.342020i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(258\) 0 0
\(259\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) −1.87939 −1.87939
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(270\) 0 0
\(271\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(276\) 0 0
\(277\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(282\) 0 0
\(283\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.113341 + 0.642788i 0.113341 + 0.642788i
\(288\) 0 0
\(289\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(294\) 0 0
\(295\) 0.173648 0.984808i 0.173648 0.984808i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.43969 0.524005i −1.43969 0.524005i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(314\) 0 0
\(315\) −0.939693 1.62760i −0.939693 1.62760i
\(316\) 0 0
\(317\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.173648 0.984808i −0.173648 0.984808i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(330\) 0 0
\(331\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(332\) 0 0
\(333\) 0.266044 1.50881i 0.266044 1.50881i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2.87939 2.87939
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(360\) 0 0
\(361\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(368\) 0 0
\(369\) −0.173648 0.300767i −0.173648 0.300767i
\(370\) 0 0
\(371\) −0.613341 + 3.47843i −0.613341 + 3.47843i
\(372\) 0 0
\(373\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(384\) 0 0
\(385\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(406\) 0 0
\(407\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(408\) 0 0
\(409\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.76604 0.642788i −1.76604 0.642788i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(420\) 0 0
\(421\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(422\) 0 0
\(423\) −0.939693 0.342020i −0.939693 0.342020i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(432\) 0 0
\(433\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.766044 1.32683i −0.766044 1.32683i
\(438\) 0 0
\(439\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(440\) 0 0
\(441\) −2.37939 + 0.866025i −2.37939 + 0.866025i
\(442\) 0 0
\(443\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(444\) 0 0
\(445\) −0.766044 1.32683i −0.766044 1.32683i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(450\) 0 0
\(451\) 0.113341 + 0.0412527i 0.113341 + 0.0412527i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.87939 −1.87939
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(462\) 0 0
\(463\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.500000 0.866025i 0.500000 0.866025i
\(476\) 0 0
\(477\) −0.326352 1.85083i −0.326352 1.85083i
\(478\) 0 0
\(479\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(480\) 0 0
\(481\) −1.17365 0.984808i −1.17365 0.984808i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.347296 −0.347296
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i \(0.111111\pi\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(516\) 0 0
\(517\) 0.326352 0.118782i 0.326352 0.118782i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(522\) 0 0
\(523\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.03209 0.866025i 1.03209 0.866025i
\(530\) 0 0
\(531\) 1.00000 1.00000
\(532\) 0 0
\(533\) −0.347296 −0.347296
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.439693 0.761570i 0.439693 0.761570i
\(540\) 0 0
\(541\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.43969 1.20805i 1.43969 1.20805i
\(568\) 0 0
\(569\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(570\) 0 0
\(571\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(576\) 0 0
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0.500000 + 0.419550i 0.500000 + 0.419550i
\(584\) 0 0
\(585\) 0.939693 0.342020i 0.939693 0.342020i
\(586\) 0 0
\(587\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(600\) 0 0
\(601\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.673648 + 0.565258i −0.673648 + 0.565258i
\(606\) 0 0
\(607\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(612\) 0 0
\(613\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(618\) 0 0
\(619\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.70574 + 0.984808i −2.70574 + 0.984808i
\(624\) 0 0
\(625\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(636\) 0 0
\(637\) −0.439693 + 2.49362i −0.439693 + 2.49362i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(642\) 0 0
\(643\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(648\) 0 0
\(649\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(654\) 0 0
\(655\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.266044 0.223238i −0.266044 0.223238i 0.500000 0.866025i \(-0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(660\) 0 0
\(661\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.43969 1.20805i −1.43969 1.20805i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.76604 0.642788i −1.76604 0.642788i
\(690\) 0 0
\(691\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(692\) 0 0
\(693\) −0.113341 + 0.642788i −0.113341 + 0.642788i
\(694\) 0 0
\(695\) −0.500000 0.866025i −0.500000 0.866025i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(702\) 0 0
\(703\) −0.266044 1.50881i −0.266044 1.50881i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(720\) 0 0
\(721\) 3.53209 3.53209
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.87939 + 0.684040i 1.87939 + 0.684040i 0.939693 + 0.342020i \(0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(728\) 0 0
\(729\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.500000 0.866025i 0.500000 0.866025i
\(768\) 0 0
\(769\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.266044 0.223238i −0.266044 0.223238i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 1.17365 0.984808i 1.17365 0.984808i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1.43969 2.49362i 1.43969 2.49362i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −0.326352 1.85083i −0.326352 1.85083i
\(820\) 0 0
\(821\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(822\) 0 0
\(823\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.347296 −0.347296
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(840\) 0 0
\(841\) −0.939693 0.342020i −0.939693 0.342020i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0.826352 + 1.43128i 0.826352 + 1.43128i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.20574 0.802823i 2.20574 0.802823i
\(852\) 0 0
\(853\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(854\) 0 0
\(855\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(856\) 0 0
\(857\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(858\) 0 0
\(859\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(864\) 0 0
\(865\) 0.0603074 0.342020i 0.0603074 0.342020i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.87939 1.87939
\(876\) 0 0
\(877\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(882\) 0 0
\(883\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(888\) 0 0
\(889\) 2.70574 0.984808i 2.70574 0.984808i
\(890\) 0 0
\(891\) −0.0603074 0.342020i −0.0603074 0.342020i
\(892\) 0 0
\(893\) −1.00000 −1.00000
\(894\) 0 0
\(895\) −0.266044 1.50881i −0.266044 1.50881i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.70574 + 0.984808i 2.70574 + 0.984808i
\(918\) 0 0
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(926\) 0 0
\(927\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(928\) 0 0
\(929\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(930\) 0 0
\(931\) −1.93969 + 1.62760i −1.93969 + 1.62760i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(942\) 0 0
\(943\) 0.266044 0.460802i 0.266044 0.460802i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.347296 1.96962i −0.347296 1.96962i −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(972\) 0 0
\(973\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) 0 0
\(979\) −0.0923963 + 0.524005i −0.0923963 + 0.524005i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) 0 0
\(985\) 0.266044 0.223238i 0.266044 0.223238i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.1.dv.b.2479.1 6
4.3 odd 2 760.1.bz.a.579.1 6
5.4 even 2 3040.1.dv.a.2479.1 6
8.3 odd 2 3040.1.dv.a.2479.1 6
8.5 even 2 760.1.bz.b.579.1 yes 6
19.17 even 9 inner 3040.1.dv.b.2639.1 6
20.3 even 4 3800.1.cv.f.2251.2 12
20.7 even 4 3800.1.cv.f.2251.1 12
20.19 odd 2 760.1.bz.b.579.1 yes 6
40.13 odd 4 3800.1.cv.f.2251.1 12
40.19 odd 2 CM 3040.1.dv.b.2479.1 6
40.29 even 2 760.1.bz.a.579.1 6
40.37 odd 4 3800.1.cv.f.2251.2 12
76.55 odd 18 760.1.bz.a.739.1 yes 6
95.74 even 18 3040.1.dv.a.2639.1 6
152.93 even 18 760.1.bz.b.739.1 yes 6
152.131 odd 18 3040.1.dv.a.2639.1 6
380.207 even 36 3800.1.cv.f.1651.2 12
380.283 even 36 3800.1.cv.f.1651.1 12
380.359 odd 18 760.1.bz.b.739.1 yes 6
760.93 odd 36 3800.1.cv.f.1651.2 12
760.397 odd 36 3800.1.cv.f.1651.1 12
760.549 even 18 760.1.bz.a.739.1 yes 6
760.739 odd 18 inner 3040.1.dv.b.2639.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.1.bz.a.579.1 6 4.3 odd 2
760.1.bz.a.579.1 6 40.29 even 2
760.1.bz.a.739.1 yes 6 76.55 odd 18
760.1.bz.a.739.1 yes 6 760.549 even 18
760.1.bz.b.579.1 yes 6 8.5 even 2
760.1.bz.b.579.1 yes 6 20.19 odd 2
760.1.bz.b.739.1 yes 6 152.93 even 18
760.1.bz.b.739.1 yes 6 380.359 odd 18
3040.1.dv.a.2479.1 6 5.4 even 2
3040.1.dv.a.2479.1 6 8.3 odd 2
3040.1.dv.a.2639.1 6 95.74 even 18
3040.1.dv.a.2639.1 6 152.131 odd 18
3040.1.dv.b.2479.1 6 1.1 even 1 trivial
3040.1.dv.b.2479.1 6 40.19 odd 2 CM
3040.1.dv.b.2639.1 6 19.17 even 9 inner
3040.1.dv.b.2639.1 6 760.739 odd 18 inner
3800.1.cv.f.1651.1 12 380.283 even 36
3800.1.cv.f.1651.1 12 760.397 odd 36
3800.1.cv.f.1651.2 12 380.207 even 36
3800.1.cv.f.1651.2 12 760.93 odd 36
3800.1.cv.f.2251.1 12 20.7 even 4
3800.1.cv.f.2251.1 12 40.13 odd 4
3800.1.cv.f.2251.2 12 20.3 even 4
3800.1.cv.f.2251.2 12 40.37 odd 4