gp: [N,k,chi] = [3042,2,Mod(1,3042)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3042.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [3,-3,0,3,1,0,1,-3,0,-1,9,0,0,-1,0,3,14]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
+ 1 +1 + 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 3042 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(3042)) S 2 n e w ( Γ 0 ( 3 0 4 2 ) ) :
T 5 3 − T 5 2 − 2 T 5 + 1 T_{5}^{3} - T_{5}^{2} - 2T_{5} + 1 T 5 3 − T 5 2 − 2 T 5 + 1
T5^3 - T5^2 - 2*T5 + 1
T 7 3 − T 7 2 − 16 T 7 − 13 T_{7}^{3} - T_{7}^{2} - 16T_{7} - 13 T 7 3 − T 7 2 − 1 6 T 7 − 1 3
T7^3 - T7^2 - 16*T7 - 13
T 11 3 − 9 T 11 2 + 20 T 11 − 13 T_{11}^{3} - 9T_{11}^{2} + 20T_{11} - 13 T 1 1 3 − 9 T 1 1 2 + 2 0 T 1 1 − 1 3
T11^3 - 9*T11^2 + 20*T11 - 13
T 17 3 − 14 T 17 2 + 56 T 17 − 56 T_{17}^{3} - 14T_{17}^{2} + 56T_{17} - 56 T 1 7 3 − 1 4 T 1 7 2 + 5 6 T 1 7 − 5 6
T17^3 - 14*T17^2 + 56*T17 - 56
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T + 1 ) 3 (T + 1)^{3} ( T + 1 ) 3
(T + 1)^3
3 3 3
T 3 T^{3} T 3
T^3
5 5 5
T 3 − T 2 − 2 T + 1 T^{3} - T^{2} - 2T + 1 T 3 − T 2 − 2 T + 1
T^3 - T^2 - 2*T + 1
7 7 7
T 3 − T 2 + ⋯ − 13 T^{3} - T^{2} + \cdots - 13 T 3 − T 2 + ⋯ − 1 3
T^3 - T^2 - 16*T - 13
11 11 1 1
T 3 − 9 T 2 + ⋯ − 13 T^{3} - 9 T^{2} + \cdots - 13 T 3 − 9 T 2 + ⋯ − 1 3
T^3 - 9*T^2 + 20*T - 13
13 13 1 3
T 3 T^{3} T 3
T^3
17 17 1 7
T 3 − 14 T 2 + ⋯ − 56 T^{3} - 14 T^{2} + \cdots - 56 T 3 − 1 4 T 2 + ⋯ − 5 6
T^3 - 14*T^2 + 56*T - 56
19 19 1 9
T 3 + 4 T 2 + ⋯ − 8 T^{3} + 4 T^{2} + \cdots - 8 T 3 + 4 T 2 + ⋯ − 8
T^3 + 4*T^2 - 4*T - 8
23 23 2 3
T 3 − 12 T 2 + ⋯ + 104 T^{3} - 12 T^{2} + \cdots + 104 T 3 − 1 2 T 2 + ⋯ + 1 0 4
T^3 - 12*T^2 + 20*T + 104
29 29 2 9
T 3 − 11 T 2 + ⋯ − 41 T^{3} - 11 T^{2} + \cdots - 41 T 3 − 1 1 T 2 + ⋯ − 4 1
T^3 - 11*T^2 + 38*T - 41
31 31 3 1
T 3 − T 2 + ⋯ + 127 T^{3} - T^{2} + \cdots + 127 T 3 − T 2 + ⋯ + 1 2 7
T^3 - T^2 - 44*T + 127
37 37 3 7
T 3 + 10 T 2 + ⋯ − 104 T^{3} + 10 T^{2} + \cdots - 104 T 3 + 1 0 T 2 + ⋯ − 1 0 4
T^3 + 10*T^2 - 4*T - 104
41 41 4 1
T 3 + 10 T 2 + ⋯ − 328 T^{3} + 10 T^{2} + \cdots - 328 T 3 + 1 0 T 2 + ⋯ − 3 2 8
T^3 + 10*T^2 - 32*T - 328
43 43 4 3
T 3 + 10 T 2 + ⋯ − 104 T^{3} + 10 T^{2} + \cdots - 104 T 3 + 1 0 T 2 + ⋯ − 1 0 4
T^3 + 10*T^2 - 4*T - 104
47 47 4 7
T 3 + 4 T 2 + ⋯ − 232 T^{3} + 4 T^{2} + \cdots - 232 T 3 + 4 T 2 + ⋯ − 2 3 2
T^3 + 4*T^2 - 60*T - 232
53 53 5 3
T 3 − 15 T 2 + ⋯ + 211 T^{3} - 15 T^{2} + \cdots + 211 T 3 − 1 5 T 2 + ⋯ + 2 1 1
T^3 - 15*T^2 + 26*T + 211
59 59 5 9
T 3 + 9 T 2 + ⋯ − 1051 T^{3} + 9 T^{2} + \cdots - 1051 T 3 + 9 T 2 + ⋯ − 1 0 5 1
T^3 + 9*T^2 - 120*T - 1051
61 61 6 1
T 3 − 2 T 2 + ⋯ + 8 T^{3} - 2 T^{2} + \cdots + 8 T 3 − 2 T 2 + ⋯ + 8
T^3 - 2*T^2 - 36*T + 8
67 67 6 7
T 3 + 6 T 2 + ⋯ − 104 T^{3} + 6 T^{2} + \cdots - 104 T 3 + 6 T 2 + ⋯ − 1 0 4
T^3 + 6*T^2 - 72*T - 104
71 71 7 1
T 3 + 6 T 2 + ⋯ − 1112 T^{3} + 6 T^{2} + \cdots - 1112 T 3 + 6 T 2 + ⋯ − 1 1 1 2
T^3 + 6*T^2 - 184*T - 1112
73 73 7 3
T 3 + 7 T 2 + ⋯ − 7 T^{3} + 7 T^{2} + \cdots - 7 T 3 + 7 T 2 + ⋯ − 7
T^3 + 7*T^2 - 14*T - 7
79 79 7 9
T 3 − 9 T 2 + ⋯ + 911 T^{3} - 9 T^{2} + \cdots + 911 T 3 − 9 T 2 + ⋯ + 9 1 1
T^3 - 9*T^2 - 120*T + 911
83 83 8 3
T 3 − 13 T 2 + ⋯ + 167 T^{3} - 13 T^{2} + \cdots + 167 T 3 − 1 3 T 2 + ⋯ + 1 6 7
T^3 - 13*T^2 - 16*T + 167
89 89 8 9
T 3 + 4 T 2 + ⋯ − 904 T^{3} + 4 T^{2} + \cdots - 904 T 3 + 4 T 2 + ⋯ − 9 0 4
T^3 + 4*T^2 - 284*T - 904
97 97 9 7
T 3 − 19 T 2 + ⋯ + 83 T^{3} - 19 T^{2} + \cdots + 83 T 3 − 1 9 T 2 + ⋯ + 8 3
T^3 - 19*T^2 + 62*T + 83
show more
show less