Properties

Label 3042.2.a.y.1.2
Level $3042$
Weight $2$
Character 3042.1
Self dual yes
Analytic conductor $24.290$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3042.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +3.73205 q^{5} +2.73205 q^{7} +1.00000 q^{8} +3.73205 q^{10} +1.26795 q^{11} +2.73205 q^{14} +1.00000 q^{16} +5.73205 q^{17} -4.73205 q^{19} +3.73205 q^{20} +1.26795 q^{22} -4.19615 q^{23} +8.92820 q^{25} +2.73205 q^{28} +4.46410 q^{29} -1.46410 q^{31} +1.00000 q^{32} +5.73205 q^{34} +10.1962 q^{35} -3.53590 q^{37} -4.73205 q^{38} +3.73205 q^{40} -9.39230 q^{41} -9.66025 q^{43} +1.26795 q^{44} -4.19615 q^{46} +2.19615 q^{47} +0.464102 q^{49} +8.92820 q^{50} +6.46410 q^{53} +4.73205 q^{55} +2.73205 q^{56} +4.46410 q^{58} +8.00000 q^{59} -9.19615 q^{61} -1.46410 q^{62} +1.00000 q^{64} -13.1244 q^{67} +5.73205 q^{68} +10.1962 q^{70} +4.73205 q^{71} +6.26795 q^{73} -3.53590 q^{74} -4.73205 q^{76} +3.46410 q^{77} -2.53590 q^{79} +3.73205 q^{80} -9.39230 q^{82} -0.196152 q^{83} +21.3923 q^{85} -9.66025 q^{86} +1.26795 q^{88} -9.46410 q^{89} -4.19615 q^{92} +2.19615 q^{94} -17.6603 q^{95} +6.00000 q^{97} +0.464102 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 4 q^{5} + 2 q^{7} + 2 q^{8} + 4 q^{10} + 6 q^{11} + 2 q^{14} + 2 q^{16} + 8 q^{17} - 6 q^{19} + 4 q^{20} + 6 q^{22} + 2 q^{23} + 4 q^{25} + 2 q^{28} + 2 q^{29} + 4 q^{31} + 2 q^{32}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.73205 1.66902 0.834512 0.550990i \(-0.185750\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) 0 0
\(7\) 2.73205 1.03262 0.516309 0.856402i \(-0.327306\pi\)
0.516309 + 0.856402i \(0.327306\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.73205 1.18018
\(11\) 1.26795 0.382301 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 2.73205 0.730171
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.73205 1.39023 0.695113 0.718900i \(-0.255354\pi\)
0.695113 + 0.718900i \(0.255354\pi\)
\(18\) 0 0
\(19\) −4.73205 −1.08561 −0.542803 0.839860i \(-0.682637\pi\)
−0.542803 + 0.839860i \(0.682637\pi\)
\(20\) 3.73205 0.834512
\(21\) 0 0
\(22\) 1.26795 0.270328
\(23\) −4.19615 −0.874958 −0.437479 0.899229i \(-0.644129\pi\)
−0.437479 + 0.899229i \(0.644129\pi\)
\(24\) 0 0
\(25\) 8.92820 1.78564
\(26\) 0 0
\(27\) 0 0
\(28\) 2.73205 0.516309
\(29\) 4.46410 0.828963 0.414481 0.910058i \(-0.363963\pi\)
0.414481 + 0.910058i \(0.363963\pi\)
\(30\) 0 0
\(31\) −1.46410 −0.262960 −0.131480 0.991319i \(-0.541973\pi\)
−0.131480 + 0.991319i \(0.541973\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 5.73205 0.983039
\(35\) 10.1962 1.72346
\(36\) 0 0
\(37\) −3.53590 −0.581298 −0.290649 0.956830i \(-0.593871\pi\)
−0.290649 + 0.956830i \(0.593871\pi\)
\(38\) −4.73205 −0.767640
\(39\) 0 0
\(40\) 3.73205 0.590089
\(41\) −9.39230 −1.46683 −0.733416 0.679780i \(-0.762075\pi\)
−0.733416 + 0.679780i \(0.762075\pi\)
\(42\) 0 0
\(43\) −9.66025 −1.47317 −0.736587 0.676342i \(-0.763564\pi\)
−0.736587 + 0.676342i \(0.763564\pi\)
\(44\) 1.26795 0.191151
\(45\) 0 0
\(46\) −4.19615 −0.618689
\(47\) 2.19615 0.320342 0.160171 0.987089i \(-0.448795\pi\)
0.160171 + 0.987089i \(0.448795\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 8.92820 1.26264
\(51\) 0 0
\(52\) 0 0
\(53\) 6.46410 0.887913 0.443956 0.896048i \(-0.353575\pi\)
0.443956 + 0.896048i \(0.353575\pi\)
\(54\) 0 0
\(55\) 4.73205 0.638070
\(56\) 2.73205 0.365086
\(57\) 0 0
\(58\) 4.46410 0.586165
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −9.19615 −1.17745 −0.588723 0.808335i \(-0.700369\pi\)
−0.588723 + 0.808335i \(0.700369\pi\)
\(62\) −1.46410 −0.185941
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −13.1244 −1.60340 −0.801698 0.597730i \(-0.796070\pi\)
−0.801698 + 0.597730i \(0.796070\pi\)
\(68\) 5.73205 0.695113
\(69\) 0 0
\(70\) 10.1962 1.21867
\(71\) 4.73205 0.561591 0.280796 0.959768i \(-0.409402\pi\)
0.280796 + 0.959768i \(0.409402\pi\)
\(72\) 0 0
\(73\) 6.26795 0.733608 0.366804 0.930298i \(-0.380452\pi\)
0.366804 + 0.930298i \(0.380452\pi\)
\(74\) −3.53590 −0.411040
\(75\) 0 0
\(76\) −4.73205 −0.542803
\(77\) 3.46410 0.394771
\(78\) 0 0
\(79\) −2.53590 −0.285311 −0.142655 0.989772i \(-0.545564\pi\)
−0.142655 + 0.989772i \(0.545564\pi\)
\(80\) 3.73205 0.417256
\(81\) 0 0
\(82\) −9.39230 −1.03721
\(83\) −0.196152 −0.0215305 −0.0107653 0.999942i \(-0.503427\pi\)
−0.0107653 + 0.999942i \(0.503427\pi\)
\(84\) 0 0
\(85\) 21.3923 2.32032
\(86\) −9.66025 −1.04169
\(87\) 0 0
\(88\) 1.26795 0.135164
\(89\) −9.46410 −1.00319 −0.501596 0.865102i \(-0.667254\pi\)
−0.501596 + 0.865102i \(0.667254\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.19615 −0.437479
\(93\) 0 0
\(94\) 2.19615 0.226516
\(95\) −17.6603 −1.81190
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0.464102 0.0468813
\(99\) 0 0
\(100\) 8.92820 0.892820
\(101\) −1.92820 −0.191863 −0.0959317 0.995388i \(-0.530583\pi\)
−0.0959317 + 0.995388i \(0.530583\pi\)
\(102\) 0 0
\(103\) −15.2679 −1.50440 −0.752198 0.658937i \(-0.771006\pi\)
−0.752198 + 0.658937i \(0.771006\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 6.46410 0.627849
\(107\) −10.1962 −0.985699 −0.492850 0.870114i \(-0.664045\pi\)
−0.492850 + 0.870114i \(0.664045\pi\)
\(108\) 0 0
\(109\) −1.46410 −0.140236 −0.0701178 0.997539i \(-0.522338\pi\)
−0.0701178 + 0.997539i \(0.522338\pi\)
\(110\) 4.73205 0.451183
\(111\) 0 0
\(112\) 2.73205 0.258155
\(113\) 1.33975 0.126033 0.0630163 0.998012i \(-0.479928\pi\)
0.0630163 + 0.998012i \(0.479928\pi\)
\(114\) 0 0
\(115\) −15.6603 −1.46033
\(116\) 4.46410 0.414481
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) 15.6603 1.43557
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) −9.19615 −0.832581
\(123\) 0 0
\(124\) −1.46410 −0.131480
\(125\) 14.6603 1.31125
\(126\) 0 0
\(127\) −9.85641 −0.874615 −0.437307 0.899312i \(-0.644068\pi\)
−0.437307 + 0.899312i \(0.644068\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −6.53590 −0.571044 −0.285522 0.958372i \(-0.592167\pi\)
−0.285522 + 0.958372i \(0.592167\pi\)
\(132\) 0 0
\(133\) −12.9282 −1.12102
\(134\) −13.1244 −1.13377
\(135\) 0 0
\(136\) 5.73205 0.491519
\(137\) 11.9282 1.01910 0.509548 0.860442i \(-0.329813\pi\)
0.509548 + 0.860442i \(0.329813\pi\)
\(138\) 0 0
\(139\) 17.8564 1.51456 0.757280 0.653090i \(-0.226528\pi\)
0.757280 + 0.653090i \(0.226528\pi\)
\(140\) 10.1962 0.861732
\(141\) 0 0
\(142\) 4.73205 0.397105
\(143\) 0 0
\(144\) 0 0
\(145\) 16.6603 1.38356
\(146\) 6.26795 0.518739
\(147\) 0 0
\(148\) −3.53590 −0.290649
\(149\) 13.1962 1.08107 0.540535 0.841321i \(-0.318222\pi\)
0.540535 + 0.841321i \(0.318222\pi\)
\(150\) 0 0
\(151\) −6.73205 −0.547847 −0.273923 0.961752i \(-0.588321\pi\)
−0.273923 + 0.961752i \(0.588321\pi\)
\(152\) −4.73205 −0.383820
\(153\) 0 0
\(154\) 3.46410 0.279145
\(155\) −5.46410 −0.438887
\(156\) 0 0
\(157\) 7.58846 0.605625 0.302812 0.953050i \(-0.402074\pi\)
0.302812 + 0.953050i \(0.402074\pi\)
\(158\) −2.53590 −0.201745
\(159\) 0 0
\(160\) 3.73205 0.295045
\(161\) −11.4641 −0.903498
\(162\) 0 0
\(163\) 13.4641 1.05459 0.527295 0.849682i \(-0.323206\pi\)
0.527295 + 0.849682i \(0.323206\pi\)
\(164\) −9.39230 −0.733416
\(165\) 0 0
\(166\) −0.196152 −0.0152244
\(167\) −9.46410 −0.732354 −0.366177 0.930545i \(-0.619334\pi\)
−0.366177 + 0.930545i \(0.619334\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 21.3923 1.64071
\(171\) 0 0
\(172\) −9.66025 −0.736587
\(173\) −4.39230 −0.333941 −0.166970 0.985962i \(-0.553398\pi\)
−0.166970 + 0.985962i \(0.553398\pi\)
\(174\) 0 0
\(175\) 24.3923 1.84388
\(176\) 1.26795 0.0955753
\(177\) 0 0
\(178\) −9.46410 −0.709364
\(179\) 16.0526 1.19982 0.599912 0.800066i \(-0.295202\pi\)
0.599912 + 0.800066i \(0.295202\pi\)
\(180\) 0 0
\(181\) 19.1962 1.42684 0.713419 0.700737i \(-0.247145\pi\)
0.713419 + 0.700737i \(0.247145\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.19615 −0.309344
\(185\) −13.1962 −0.970200
\(186\) 0 0
\(187\) 7.26795 0.531485
\(188\) 2.19615 0.160171
\(189\) 0 0
\(190\) −17.6603 −1.28121
\(191\) 6.92820 0.501307 0.250654 0.968077i \(-0.419354\pi\)
0.250654 + 0.968077i \(0.419354\pi\)
\(192\) 0 0
\(193\) 11.7321 0.844491 0.422246 0.906481i \(-0.361242\pi\)
0.422246 + 0.906481i \(0.361242\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) 0.464102 0.0331501
\(197\) −17.8564 −1.27222 −0.636108 0.771600i \(-0.719457\pi\)
−0.636108 + 0.771600i \(0.719457\pi\)
\(198\) 0 0
\(199\) −14.1962 −1.00634 −0.503169 0.864188i \(-0.667833\pi\)
−0.503169 + 0.864188i \(0.667833\pi\)
\(200\) 8.92820 0.631319
\(201\) 0 0
\(202\) −1.92820 −0.135668
\(203\) 12.1962 0.856002
\(204\) 0 0
\(205\) −35.0526 −2.44818
\(206\) −15.2679 −1.06377
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 16.3923 1.12849 0.564246 0.825606i \(-0.309167\pi\)
0.564246 + 0.825606i \(0.309167\pi\)
\(212\) 6.46410 0.443956
\(213\) 0 0
\(214\) −10.1962 −0.696995
\(215\) −36.0526 −2.45876
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) −1.46410 −0.0991615
\(219\) 0 0
\(220\) 4.73205 0.319035
\(221\) 0 0
\(222\) 0 0
\(223\) 26.9282 1.80325 0.901623 0.432523i \(-0.142377\pi\)
0.901623 + 0.432523i \(0.142377\pi\)
\(224\) 2.73205 0.182543
\(225\) 0 0
\(226\) 1.33975 0.0891186
\(227\) −12.1962 −0.809487 −0.404744 0.914430i \(-0.632639\pi\)
−0.404744 + 0.914430i \(0.632639\pi\)
\(228\) 0 0
\(229\) 11.8564 0.783493 0.391747 0.920073i \(-0.371871\pi\)
0.391747 + 0.920073i \(0.371871\pi\)
\(230\) −15.6603 −1.03261
\(231\) 0 0
\(232\) 4.46410 0.293083
\(233\) 7.85641 0.514690 0.257345 0.966320i \(-0.417152\pi\)
0.257345 + 0.966320i \(0.417152\pi\)
\(234\) 0 0
\(235\) 8.19615 0.534658
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 15.6603 1.01510
\(239\) 7.66025 0.495501 0.247750 0.968824i \(-0.420309\pi\)
0.247750 + 0.968824i \(0.420309\pi\)
\(240\) 0 0
\(241\) −13.5885 −0.875309 −0.437655 0.899143i \(-0.644191\pi\)
−0.437655 + 0.899143i \(0.644191\pi\)
\(242\) −9.39230 −0.603760
\(243\) 0 0
\(244\) −9.19615 −0.588723
\(245\) 1.73205 0.110657
\(246\) 0 0
\(247\) 0 0
\(248\) −1.46410 −0.0929705
\(249\) 0 0
\(250\) 14.6603 0.927196
\(251\) −13.4641 −0.849847 −0.424923 0.905229i \(-0.639699\pi\)
−0.424923 + 0.905229i \(0.639699\pi\)
\(252\) 0 0
\(253\) −5.32051 −0.334497
\(254\) −9.85641 −0.618446
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −9.33975 −0.582597 −0.291299 0.956632i \(-0.594087\pi\)
−0.291299 + 0.956632i \(0.594087\pi\)
\(258\) 0 0
\(259\) −9.66025 −0.600259
\(260\) 0 0
\(261\) 0 0
\(262\) −6.53590 −0.403789
\(263\) 10.0526 0.619867 0.309934 0.950758i \(-0.399693\pi\)
0.309934 + 0.950758i \(0.399693\pi\)
\(264\) 0 0
\(265\) 24.1244 1.48195
\(266\) −12.9282 −0.792679
\(267\) 0 0
\(268\) −13.1244 −0.801698
\(269\) −5.46410 −0.333152 −0.166576 0.986029i \(-0.553271\pi\)
−0.166576 + 0.986029i \(0.553271\pi\)
\(270\) 0 0
\(271\) 21.8564 1.32768 0.663841 0.747874i \(-0.268925\pi\)
0.663841 + 0.747874i \(0.268925\pi\)
\(272\) 5.73205 0.347557
\(273\) 0 0
\(274\) 11.9282 0.720609
\(275\) 11.3205 0.682652
\(276\) 0 0
\(277\) −5.73205 −0.344406 −0.172203 0.985062i \(-0.555088\pi\)
−0.172203 + 0.985062i \(0.555088\pi\)
\(278\) 17.8564 1.07096
\(279\) 0 0
\(280\) 10.1962 0.609337
\(281\) 12.3205 0.734980 0.367490 0.930027i \(-0.380217\pi\)
0.367490 + 0.930027i \(0.380217\pi\)
\(282\) 0 0
\(283\) 25.6603 1.52534 0.762672 0.646786i \(-0.223887\pi\)
0.762672 + 0.646786i \(0.223887\pi\)
\(284\) 4.73205 0.280796
\(285\) 0 0
\(286\) 0 0
\(287\) −25.6603 −1.51468
\(288\) 0 0
\(289\) 15.8564 0.932730
\(290\) 16.6603 0.978324
\(291\) 0 0
\(292\) 6.26795 0.366804
\(293\) 30.5167 1.78280 0.891401 0.453215i \(-0.149723\pi\)
0.891401 + 0.453215i \(0.149723\pi\)
\(294\) 0 0
\(295\) 29.8564 1.73831
\(296\) −3.53590 −0.205520
\(297\) 0 0
\(298\) 13.1962 0.764433
\(299\) 0 0
\(300\) 0 0
\(301\) −26.3923 −1.52123
\(302\) −6.73205 −0.387386
\(303\) 0 0
\(304\) −4.73205 −0.271402
\(305\) −34.3205 −1.96519
\(306\) 0 0
\(307\) 22.5885 1.28919 0.644596 0.764524i \(-0.277026\pi\)
0.644596 + 0.764524i \(0.277026\pi\)
\(308\) 3.46410 0.197386
\(309\) 0 0
\(310\) −5.46410 −0.310340
\(311\) 1.66025 0.0941444 0.0470722 0.998891i \(-0.485011\pi\)
0.0470722 + 0.998891i \(0.485011\pi\)
\(312\) 0 0
\(313\) 6.53590 0.369431 0.184715 0.982792i \(-0.440864\pi\)
0.184715 + 0.982792i \(0.440864\pi\)
\(314\) 7.58846 0.428241
\(315\) 0 0
\(316\) −2.53590 −0.142655
\(317\) 20.6603 1.16040 0.580198 0.814476i \(-0.302975\pi\)
0.580198 + 0.814476i \(0.302975\pi\)
\(318\) 0 0
\(319\) 5.66025 0.316913
\(320\) 3.73205 0.208628
\(321\) 0 0
\(322\) −11.4641 −0.638869
\(323\) −27.1244 −1.50924
\(324\) 0 0
\(325\) 0 0
\(326\) 13.4641 0.745708
\(327\) 0 0
\(328\) −9.39230 −0.518603
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) −0.196152 −0.0107653
\(333\) 0 0
\(334\) −9.46410 −0.517853
\(335\) −48.9808 −2.67610
\(336\) 0 0
\(337\) −20.8564 −1.13612 −0.568060 0.822987i \(-0.692306\pi\)
−0.568060 + 0.822987i \(0.692306\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 21.3923 1.16016
\(341\) −1.85641 −0.100530
\(342\) 0 0
\(343\) −17.8564 −0.964155
\(344\) −9.66025 −0.520846
\(345\) 0 0
\(346\) −4.39230 −0.236132
\(347\) −33.1244 −1.77821 −0.889104 0.457705i \(-0.848672\pi\)
−0.889104 + 0.457705i \(0.848672\pi\)
\(348\) 0 0
\(349\) −15.3205 −0.820088 −0.410044 0.912066i \(-0.634487\pi\)
−0.410044 + 0.912066i \(0.634487\pi\)
\(350\) 24.3923 1.30382
\(351\) 0 0
\(352\) 1.26795 0.0675819
\(353\) −21.7846 −1.15948 −0.579739 0.814802i \(-0.696845\pi\)
−0.579739 + 0.814802i \(0.696845\pi\)
\(354\) 0 0
\(355\) 17.6603 0.937309
\(356\) −9.46410 −0.501596
\(357\) 0 0
\(358\) 16.0526 0.848404
\(359\) −1.12436 −0.0593412 −0.0296706 0.999560i \(-0.509446\pi\)
−0.0296706 + 0.999560i \(0.509446\pi\)
\(360\) 0 0
\(361\) 3.39230 0.178542
\(362\) 19.1962 1.00893
\(363\) 0 0
\(364\) 0 0
\(365\) 23.3923 1.22441
\(366\) 0 0
\(367\) −11.2679 −0.588182 −0.294091 0.955777i \(-0.595017\pi\)
−0.294091 + 0.955777i \(0.595017\pi\)
\(368\) −4.19615 −0.218740
\(369\) 0 0
\(370\) −13.1962 −0.686035
\(371\) 17.6603 0.916875
\(372\) 0 0
\(373\) −13.7321 −0.711019 −0.355509 0.934673i \(-0.615693\pi\)
−0.355509 + 0.934673i \(0.615693\pi\)
\(374\) 7.26795 0.375817
\(375\) 0 0
\(376\) 2.19615 0.113258
\(377\) 0 0
\(378\) 0 0
\(379\) 5.46410 0.280672 0.140336 0.990104i \(-0.455182\pi\)
0.140336 + 0.990104i \(0.455182\pi\)
\(380\) −17.6603 −0.905952
\(381\) 0 0
\(382\) 6.92820 0.354478
\(383\) −1.46410 −0.0748121 −0.0374060 0.999300i \(-0.511909\pi\)
−0.0374060 + 0.999300i \(0.511909\pi\)
\(384\) 0 0
\(385\) 12.9282 0.658882
\(386\) 11.7321 0.597146
\(387\) 0 0
\(388\) 6.00000 0.304604
\(389\) −11.7846 −0.597503 −0.298752 0.954331i \(-0.596570\pi\)
−0.298752 + 0.954331i \(0.596570\pi\)
\(390\) 0 0
\(391\) −24.0526 −1.21639
\(392\) 0.464102 0.0234407
\(393\) 0 0
\(394\) −17.8564 −0.899593
\(395\) −9.46410 −0.476191
\(396\) 0 0
\(397\) −20.3923 −1.02346 −0.511730 0.859146i \(-0.670995\pi\)
−0.511730 + 0.859146i \(0.670995\pi\)
\(398\) −14.1962 −0.711589
\(399\) 0 0
\(400\) 8.92820 0.446410
\(401\) 8.07180 0.403086 0.201543 0.979480i \(-0.435404\pi\)
0.201543 + 0.979480i \(0.435404\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.92820 −0.0959317
\(405\) 0 0
\(406\) 12.1962 0.605285
\(407\) −4.48334 −0.222231
\(408\) 0 0
\(409\) −17.7321 −0.876793 −0.438397 0.898782i \(-0.644454\pi\)
−0.438397 + 0.898782i \(0.644454\pi\)
\(410\) −35.0526 −1.73112
\(411\) 0 0
\(412\) −15.2679 −0.752198
\(413\) 21.8564 1.07548
\(414\) 0 0
\(415\) −0.732051 −0.0359350
\(416\) 0 0
\(417\) 0 0
\(418\) −6.00000 −0.293470
\(419\) 17.4641 0.853177 0.426589 0.904446i \(-0.359715\pi\)
0.426589 + 0.904446i \(0.359715\pi\)
\(420\) 0 0
\(421\) 22.7128 1.10695 0.553477 0.832864i \(-0.313301\pi\)
0.553477 + 0.832864i \(0.313301\pi\)
\(422\) 16.3923 0.797965
\(423\) 0 0
\(424\) 6.46410 0.313925
\(425\) 51.1769 2.48244
\(426\) 0 0
\(427\) −25.1244 −1.21585
\(428\) −10.1962 −0.492850
\(429\) 0 0
\(430\) −36.0526 −1.73861
\(431\) 13.1244 0.632178 0.316089 0.948730i \(-0.397630\pi\)
0.316089 + 0.948730i \(0.397630\pi\)
\(432\) 0 0
\(433\) 12.8564 0.617839 0.308920 0.951088i \(-0.400033\pi\)
0.308920 + 0.951088i \(0.400033\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −1.46410 −0.0701178
\(437\) 19.8564 0.949861
\(438\) 0 0
\(439\) −0.339746 −0.0162152 −0.00810760 0.999967i \(-0.502581\pi\)
−0.00810760 + 0.999967i \(0.502581\pi\)
\(440\) 4.73205 0.225592
\(441\) 0 0
\(442\) 0 0
\(443\) −15.6077 −0.741544 −0.370772 0.928724i \(-0.620907\pi\)
−0.370772 + 0.928724i \(0.620907\pi\)
\(444\) 0 0
\(445\) −35.3205 −1.67435
\(446\) 26.9282 1.27509
\(447\) 0 0
\(448\) 2.73205 0.129077
\(449\) 11.3205 0.534248 0.267124 0.963662i \(-0.413927\pi\)
0.267124 + 0.963662i \(0.413927\pi\)
\(450\) 0 0
\(451\) −11.9090 −0.560771
\(452\) 1.33975 0.0630163
\(453\) 0 0
\(454\) −12.1962 −0.572394
\(455\) 0 0
\(456\) 0 0
\(457\) −1.33975 −0.0626707 −0.0313353 0.999509i \(-0.509976\pi\)
−0.0313353 + 0.999509i \(0.509976\pi\)
\(458\) 11.8564 0.554013
\(459\) 0 0
\(460\) −15.6603 −0.730163
\(461\) 22.2679 1.03712 0.518561 0.855041i \(-0.326468\pi\)
0.518561 + 0.855041i \(0.326468\pi\)
\(462\) 0 0
\(463\) −10.0526 −0.467182 −0.233591 0.972335i \(-0.575048\pi\)
−0.233591 + 0.972335i \(0.575048\pi\)
\(464\) 4.46410 0.207241
\(465\) 0 0
\(466\) 7.85641 0.363941
\(467\) −18.5885 −0.860171 −0.430086 0.902788i \(-0.641517\pi\)
−0.430086 + 0.902788i \(0.641517\pi\)
\(468\) 0 0
\(469\) −35.8564 −1.65570
\(470\) 8.19615 0.378060
\(471\) 0 0
\(472\) 8.00000 0.368230
\(473\) −12.2487 −0.563196
\(474\) 0 0
\(475\) −42.2487 −1.93850
\(476\) 15.6603 0.717787
\(477\) 0 0
\(478\) 7.66025 0.350372
\(479\) 33.4641 1.52901 0.764507 0.644616i \(-0.222983\pi\)
0.764507 + 0.644616i \(0.222983\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −13.5885 −0.618937
\(483\) 0 0
\(484\) −9.39230 −0.426923
\(485\) 22.3923 1.01678
\(486\) 0 0
\(487\) 3.12436 0.141578 0.0707890 0.997491i \(-0.477448\pi\)
0.0707890 + 0.997491i \(0.477448\pi\)
\(488\) −9.19615 −0.416290
\(489\) 0 0
\(490\) 1.73205 0.0782461
\(491\) −8.73205 −0.394072 −0.197036 0.980396i \(-0.563132\pi\)
−0.197036 + 0.980396i \(0.563132\pi\)
\(492\) 0 0
\(493\) 25.5885 1.15245
\(494\) 0 0
\(495\) 0 0
\(496\) −1.46410 −0.0657401
\(497\) 12.9282 0.579909
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 14.6603 0.655626
\(501\) 0 0
\(502\) −13.4641 −0.600932
\(503\) −40.9808 −1.82724 −0.913621 0.406567i \(-0.866726\pi\)
−0.913621 + 0.406567i \(0.866726\pi\)
\(504\) 0 0
\(505\) −7.19615 −0.320225
\(506\) −5.32051 −0.236525
\(507\) 0 0
\(508\) −9.85641 −0.437307
\(509\) 13.7321 0.608662 0.304331 0.952566i \(-0.401567\pi\)
0.304331 + 0.952566i \(0.401567\pi\)
\(510\) 0 0
\(511\) 17.1244 0.757537
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −9.33975 −0.411959
\(515\) −56.9808 −2.51087
\(516\) 0 0
\(517\) 2.78461 0.122467
\(518\) −9.66025 −0.424447
\(519\) 0 0
\(520\) 0 0
\(521\) −41.4449 −1.81573 −0.907866 0.419260i \(-0.862290\pi\)
−0.907866 + 0.419260i \(0.862290\pi\)
\(522\) 0 0
\(523\) −22.4449 −0.981445 −0.490723 0.871316i \(-0.663267\pi\)
−0.490723 + 0.871316i \(0.663267\pi\)
\(524\) −6.53590 −0.285522
\(525\) 0 0
\(526\) 10.0526 0.438312
\(527\) −8.39230 −0.365575
\(528\) 0 0
\(529\) −5.39230 −0.234448
\(530\) 24.1244 1.04790
\(531\) 0 0
\(532\) −12.9282 −0.560509
\(533\) 0 0
\(534\) 0 0
\(535\) −38.0526 −1.64516
\(536\) −13.1244 −0.566886
\(537\) 0 0
\(538\) −5.46410 −0.235574
\(539\) 0.588457 0.0253466
\(540\) 0 0
\(541\) −5.67949 −0.244180 −0.122090 0.992519i \(-0.538960\pi\)
−0.122090 + 0.992519i \(0.538960\pi\)
\(542\) 21.8564 0.938813
\(543\) 0 0
\(544\) 5.73205 0.245760
\(545\) −5.46410 −0.234056
\(546\) 0 0
\(547\) −4.19615 −0.179415 −0.0897073 0.995968i \(-0.528593\pi\)
−0.0897073 + 0.995968i \(0.528593\pi\)
\(548\) 11.9282 0.509548
\(549\) 0 0
\(550\) 11.3205 0.482708
\(551\) −21.1244 −0.899928
\(552\) 0 0
\(553\) −6.92820 −0.294617
\(554\) −5.73205 −0.243532
\(555\) 0 0
\(556\) 17.8564 0.757280
\(557\) 42.3731 1.79540 0.897702 0.440603i \(-0.145235\pi\)
0.897702 + 0.440603i \(0.145235\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 10.1962 0.430866
\(561\) 0 0
\(562\) 12.3205 0.519709
\(563\) −34.9282 −1.47205 −0.736024 0.676955i \(-0.763299\pi\)
−0.736024 + 0.676955i \(0.763299\pi\)
\(564\) 0 0
\(565\) 5.00000 0.210352
\(566\) 25.6603 1.07858
\(567\) 0 0
\(568\) 4.73205 0.198552
\(569\) −30.6410 −1.28454 −0.642269 0.766479i \(-0.722007\pi\)
−0.642269 + 0.766479i \(0.722007\pi\)
\(570\) 0 0
\(571\) 14.0526 0.588081 0.294041 0.955793i \(-0.405000\pi\)
0.294041 + 0.955793i \(0.405000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −25.6603 −1.07104
\(575\) −37.4641 −1.56236
\(576\) 0 0
\(577\) −3.73205 −0.155367 −0.0776837 0.996978i \(-0.524752\pi\)
−0.0776837 + 0.996978i \(0.524752\pi\)
\(578\) 15.8564 0.659540
\(579\) 0 0
\(580\) 16.6603 0.691779
\(581\) −0.535898 −0.0222328
\(582\) 0 0
\(583\) 8.19615 0.339450
\(584\) 6.26795 0.259370
\(585\) 0 0
\(586\) 30.5167 1.26063
\(587\) 16.0000 0.660391 0.330195 0.943913i \(-0.392885\pi\)
0.330195 + 0.943913i \(0.392885\pi\)
\(588\) 0 0
\(589\) 6.92820 0.285472
\(590\) 29.8564 1.22917
\(591\) 0 0
\(592\) −3.53590 −0.145325
\(593\) −9.14359 −0.375482 −0.187741 0.982219i \(-0.560117\pi\)
−0.187741 + 0.982219i \(0.560117\pi\)
\(594\) 0 0
\(595\) 58.4449 2.39601
\(596\) 13.1962 0.540535
\(597\) 0 0
\(598\) 0 0
\(599\) 2.53590 0.103614 0.0518070 0.998657i \(-0.483502\pi\)
0.0518070 + 0.998657i \(0.483502\pi\)
\(600\) 0 0
\(601\) 7.92820 0.323398 0.161699 0.986840i \(-0.448303\pi\)
0.161699 + 0.986840i \(0.448303\pi\)
\(602\) −26.3923 −1.07567
\(603\) 0 0
\(604\) −6.73205 −0.273923
\(605\) −35.0526 −1.42509
\(606\) 0 0
\(607\) −40.7846 −1.65540 −0.827698 0.561174i \(-0.810350\pi\)
−0.827698 + 0.561174i \(0.810350\pi\)
\(608\) −4.73205 −0.191910
\(609\) 0 0
\(610\) −34.3205 −1.38960
\(611\) 0 0
\(612\) 0 0
\(613\) 9.39230 0.379352 0.189676 0.981847i \(-0.439256\pi\)
0.189676 + 0.981847i \(0.439256\pi\)
\(614\) 22.5885 0.911596
\(615\) 0 0
\(616\) 3.46410 0.139573
\(617\) −13.2487 −0.533373 −0.266687 0.963783i \(-0.585929\pi\)
−0.266687 + 0.963783i \(0.585929\pi\)
\(618\) 0 0
\(619\) −17.4641 −0.701942 −0.350971 0.936386i \(-0.614148\pi\)
−0.350971 + 0.936386i \(0.614148\pi\)
\(620\) −5.46410 −0.219444
\(621\) 0 0
\(622\) 1.66025 0.0665701
\(623\) −25.8564 −1.03592
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) 6.53590 0.261227
\(627\) 0 0
\(628\) 7.58846 0.302812
\(629\) −20.2679 −0.808136
\(630\) 0 0
\(631\) 7.71281 0.307042 0.153521 0.988145i \(-0.450939\pi\)
0.153521 + 0.988145i \(0.450939\pi\)
\(632\) −2.53590 −0.100873
\(633\) 0 0
\(634\) 20.6603 0.820524
\(635\) −36.7846 −1.45975
\(636\) 0 0
\(637\) 0 0
\(638\) 5.66025 0.224092
\(639\) 0 0
\(640\) 3.73205 0.147522
\(641\) 25.9808 1.02618 0.513089 0.858335i \(-0.328501\pi\)
0.513089 + 0.858335i \(0.328501\pi\)
\(642\) 0 0
\(643\) 13.8564 0.546443 0.273222 0.961951i \(-0.411911\pi\)
0.273222 + 0.961951i \(0.411911\pi\)
\(644\) −11.4641 −0.451749
\(645\) 0 0
\(646\) −27.1244 −1.06719
\(647\) 22.2487 0.874687 0.437344 0.899295i \(-0.355919\pi\)
0.437344 + 0.899295i \(0.355919\pi\)
\(648\) 0 0
\(649\) 10.1436 0.398171
\(650\) 0 0
\(651\) 0 0
\(652\) 13.4641 0.527295
\(653\) 17.4641 0.683423 0.341712 0.939805i \(-0.388993\pi\)
0.341712 + 0.939805i \(0.388993\pi\)
\(654\) 0 0
\(655\) −24.3923 −0.953086
\(656\) −9.39230 −0.366708
\(657\) 0 0
\(658\) 6.00000 0.233904
\(659\) 10.2487 0.399233 0.199617 0.979874i \(-0.436030\pi\)
0.199617 + 0.979874i \(0.436030\pi\)
\(660\) 0 0
\(661\) −11.3923 −0.443109 −0.221555 0.975148i \(-0.571113\pi\)
−0.221555 + 0.975148i \(0.571113\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) −0.196152 −0.00761219
\(665\) −48.2487 −1.87100
\(666\) 0 0
\(667\) −18.7321 −0.725308
\(668\) −9.46410 −0.366177
\(669\) 0 0
\(670\) −48.9808 −1.89229
\(671\) −11.6603 −0.450139
\(672\) 0 0
\(673\) 27.9282 1.07655 0.538277 0.842768i \(-0.319076\pi\)
0.538277 + 0.842768i \(0.319076\pi\)
\(674\) −20.8564 −0.803359
\(675\) 0 0
\(676\) 0 0
\(677\) 45.4641 1.74733 0.873664 0.486530i \(-0.161738\pi\)
0.873664 + 0.486530i \(0.161738\pi\)
\(678\) 0 0
\(679\) 16.3923 0.629079
\(680\) 21.3923 0.820357
\(681\) 0 0
\(682\) −1.85641 −0.0710855
\(683\) −10.1436 −0.388134 −0.194067 0.980988i \(-0.562168\pi\)
−0.194067 + 0.980988i \(0.562168\pi\)
\(684\) 0 0
\(685\) 44.5167 1.70089
\(686\) −17.8564 −0.681761
\(687\) 0 0
\(688\) −9.66025 −0.368294
\(689\) 0 0
\(690\) 0 0
\(691\) −43.6603 −1.66091 −0.830457 0.557082i \(-0.811921\pi\)
−0.830457 + 0.557082i \(0.811921\pi\)
\(692\) −4.39230 −0.166970
\(693\) 0 0
\(694\) −33.1244 −1.25738
\(695\) 66.6410 2.52784
\(696\) 0 0
\(697\) −53.8372 −2.03923
\(698\) −15.3205 −0.579890
\(699\) 0 0
\(700\) 24.3923 0.921942
\(701\) 3.32051 0.125414 0.0627069 0.998032i \(-0.480027\pi\)
0.0627069 + 0.998032i \(0.480027\pi\)
\(702\) 0 0
\(703\) 16.7321 0.631061
\(704\) 1.26795 0.0477876
\(705\) 0 0
\(706\) −21.7846 −0.819875
\(707\) −5.26795 −0.198122
\(708\) 0 0
\(709\) −13.1436 −0.493618 −0.246809 0.969064i \(-0.579382\pi\)
−0.246809 + 0.969064i \(0.579382\pi\)
\(710\) 17.6603 0.662778
\(711\) 0 0
\(712\) −9.46410 −0.354682
\(713\) 6.14359 0.230079
\(714\) 0 0
\(715\) 0 0
\(716\) 16.0526 0.599912
\(717\) 0 0
\(718\) −1.12436 −0.0419606
\(719\) 29.4641 1.09883 0.549413 0.835551i \(-0.314851\pi\)
0.549413 + 0.835551i \(0.314851\pi\)
\(720\) 0 0
\(721\) −41.7128 −1.55347
\(722\) 3.39230 0.126249
\(723\) 0 0
\(724\) 19.1962 0.713419
\(725\) 39.8564 1.48023
\(726\) 0 0
\(727\) −30.9808 −1.14901 −0.574506 0.818500i \(-0.694806\pi\)
−0.574506 + 0.818500i \(0.694806\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 23.3923 0.865788
\(731\) −55.3731 −2.04805
\(732\) 0 0
\(733\) −19.0000 −0.701781 −0.350891 0.936416i \(-0.614121\pi\)
−0.350891 + 0.936416i \(0.614121\pi\)
\(734\) −11.2679 −0.415908
\(735\) 0 0
\(736\) −4.19615 −0.154672
\(737\) −16.6410 −0.612980
\(738\) 0 0
\(739\) −2.92820 −0.107716 −0.0538578 0.998549i \(-0.517152\pi\)
−0.0538578 + 0.998549i \(0.517152\pi\)
\(740\) −13.1962 −0.485100
\(741\) 0 0
\(742\) 17.6603 0.648328
\(743\) −48.3923 −1.77534 −0.887671 0.460479i \(-0.847678\pi\)
−0.887671 + 0.460479i \(0.847678\pi\)
\(744\) 0 0
\(745\) 49.2487 1.80433
\(746\) −13.7321 −0.502766
\(747\) 0 0
\(748\) 7.26795 0.265743
\(749\) −27.8564 −1.01785
\(750\) 0 0
\(751\) −49.9090 −1.82120 −0.910602 0.413284i \(-0.864382\pi\)
−0.910602 + 0.413284i \(0.864382\pi\)
\(752\) 2.19615 0.0800854
\(753\) 0 0
\(754\) 0 0
\(755\) −25.1244 −0.914369
\(756\) 0 0
\(757\) 20.9282 0.760648 0.380324 0.924853i \(-0.375812\pi\)
0.380324 + 0.924853i \(0.375812\pi\)
\(758\) 5.46410 0.198465
\(759\) 0 0
\(760\) −17.6603 −0.640605
\(761\) 11.3205 0.410368 0.205184 0.978723i \(-0.434221\pi\)
0.205184 + 0.978723i \(0.434221\pi\)
\(762\) 0 0
\(763\) −4.00000 −0.144810
\(764\) 6.92820 0.250654
\(765\) 0 0
\(766\) −1.46410 −0.0529001
\(767\) 0 0
\(768\) 0 0
\(769\) 43.8564 1.58150 0.790751 0.612138i \(-0.209690\pi\)
0.790751 + 0.612138i \(0.209690\pi\)
\(770\) 12.9282 0.465900
\(771\) 0 0
\(772\) 11.7321 0.422246
\(773\) −48.9282 −1.75983 −0.879913 0.475136i \(-0.842399\pi\)
−0.879913 + 0.475136i \(0.842399\pi\)
\(774\) 0 0
\(775\) −13.0718 −0.469553
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) −11.7846 −0.422499
\(779\) 44.4449 1.59240
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) −24.0526 −0.860118
\(783\) 0 0
\(784\) 0.464102 0.0165751
\(785\) 28.3205 1.01080
\(786\) 0 0
\(787\) −4.67949 −0.166806 −0.0834029 0.996516i \(-0.526579\pi\)
−0.0834029 + 0.996516i \(0.526579\pi\)
\(788\) −17.8564 −0.636108
\(789\) 0 0
\(790\) −9.46410 −0.336718
\(791\) 3.66025 0.130144
\(792\) 0 0
\(793\) 0 0
\(794\) −20.3923 −0.723696
\(795\) 0 0
\(796\) −14.1962 −0.503169
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) 12.5885 0.445348
\(800\) 8.92820 0.315660
\(801\) 0 0
\(802\) 8.07180 0.285025
\(803\) 7.94744 0.280459
\(804\) 0 0
\(805\) −42.7846 −1.50796
\(806\) 0 0
\(807\) 0 0
\(808\) −1.92820 −0.0678340
\(809\) 53.5885 1.88407 0.942035 0.335515i \(-0.108910\pi\)
0.942035 + 0.335515i \(0.108910\pi\)
\(810\) 0 0
\(811\) −17.1769 −0.603163 −0.301582 0.953440i \(-0.597515\pi\)
−0.301582 + 0.953440i \(0.597515\pi\)
\(812\) 12.1962 0.428001
\(813\) 0 0
\(814\) −4.48334 −0.157141
\(815\) 50.2487 1.76014
\(816\) 0 0
\(817\) 45.7128 1.59929
\(818\) −17.7321 −0.619987
\(819\) 0 0
\(820\) −35.0526 −1.22409
\(821\) −0.928203 −0.0323945 −0.0161973 0.999869i \(-0.505156\pi\)
−0.0161973 + 0.999869i \(0.505156\pi\)
\(822\) 0 0
\(823\) 41.5692 1.44901 0.724506 0.689269i \(-0.242068\pi\)
0.724506 + 0.689269i \(0.242068\pi\)
\(824\) −15.2679 −0.531884
\(825\) 0 0
\(826\) 21.8564 0.760482
\(827\) 26.5359 0.922744 0.461372 0.887207i \(-0.347357\pi\)
0.461372 + 0.887207i \(0.347357\pi\)
\(828\) 0 0
\(829\) −12.1244 −0.421096 −0.210548 0.977583i \(-0.567525\pi\)
−0.210548 + 0.977583i \(0.567525\pi\)
\(830\) −0.732051 −0.0254099
\(831\) 0 0
\(832\) 0 0
\(833\) 2.66025 0.0921723
\(834\) 0 0
\(835\) −35.3205 −1.22232
\(836\) −6.00000 −0.207514
\(837\) 0 0
\(838\) 17.4641 0.603287
\(839\) 41.8564 1.44504 0.722522 0.691348i \(-0.242983\pi\)
0.722522 + 0.691348i \(0.242983\pi\)
\(840\) 0 0
\(841\) −9.07180 −0.312821
\(842\) 22.7128 0.782735
\(843\) 0 0
\(844\) 16.3923 0.564246
\(845\) 0 0
\(846\) 0 0
\(847\) −25.6603 −0.881697
\(848\) 6.46410 0.221978
\(849\) 0 0
\(850\) 51.1769 1.75535
\(851\) 14.8372 0.508612
\(852\) 0 0
\(853\) 54.1769 1.85498 0.927491 0.373845i \(-0.121961\pi\)
0.927491 + 0.373845i \(0.121961\pi\)
\(854\) −25.1244 −0.859738
\(855\) 0 0
\(856\) −10.1962 −0.348497
\(857\) −39.4449 −1.34741 −0.673705 0.739000i \(-0.735298\pi\)
−0.673705 + 0.739000i \(0.735298\pi\)
\(858\) 0 0
\(859\) −47.1244 −1.60786 −0.803931 0.594722i \(-0.797262\pi\)
−0.803931 + 0.594722i \(0.797262\pi\)
\(860\) −36.0526 −1.22938
\(861\) 0 0
\(862\) 13.1244 0.447017
\(863\) −17.1244 −0.582920 −0.291460 0.956583i \(-0.594141\pi\)
−0.291460 + 0.956583i \(0.594141\pi\)
\(864\) 0 0
\(865\) −16.3923 −0.557355
\(866\) 12.8564 0.436878
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) −3.21539 −0.109075
\(870\) 0 0
\(871\) 0 0
\(872\) −1.46410 −0.0495807
\(873\) 0 0
\(874\) 19.8564 0.671653
\(875\) 40.0526 1.35402
\(876\) 0 0
\(877\) −23.9282 −0.807998 −0.403999 0.914759i \(-0.632380\pi\)
−0.403999 + 0.914759i \(0.632380\pi\)
\(878\) −0.339746 −0.0114659
\(879\) 0 0
\(880\) 4.73205 0.159517
\(881\) 27.8372 0.937858 0.468929 0.883236i \(-0.344640\pi\)
0.468929 + 0.883236i \(0.344640\pi\)
\(882\) 0 0
\(883\) 42.9282 1.44465 0.722325 0.691554i \(-0.243074\pi\)
0.722325 + 0.691554i \(0.243074\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −15.6077 −0.524351
\(887\) −37.8564 −1.27109 −0.635547 0.772062i \(-0.719225\pi\)
−0.635547 + 0.772062i \(0.719225\pi\)
\(888\) 0 0
\(889\) −26.9282 −0.903143
\(890\) −35.3205 −1.18395
\(891\) 0 0
\(892\) 26.9282 0.901623
\(893\) −10.3923 −0.347765
\(894\) 0 0
\(895\) 59.9090 2.00254
\(896\) 2.73205 0.0912714
\(897\) 0 0
\(898\) 11.3205 0.377770
\(899\) −6.53590 −0.217984
\(900\) 0 0
\(901\) 37.0526 1.23440
\(902\) −11.9090 −0.396525
\(903\) 0 0
\(904\) 1.33975 0.0445593
\(905\) 71.6410 2.38143
\(906\) 0 0
\(907\) 36.3923 1.20839 0.604193 0.796838i \(-0.293495\pi\)
0.604193 + 0.796838i \(0.293495\pi\)
\(908\) −12.1962 −0.404744
\(909\) 0 0
\(910\) 0 0
\(911\) 2.53590 0.0840181 0.0420090 0.999117i \(-0.486624\pi\)
0.0420090 + 0.999117i \(0.486624\pi\)
\(912\) 0 0
\(913\) −0.248711 −0.00823114
\(914\) −1.33975 −0.0443149
\(915\) 0 0
\(916\) 11.8564 0.391747
\(917\) −17.8564 −0.589670
\(918\) 0 0
\(919\) 45.9615 1.51613 0.758065 0.652179i \(-0.226145\pi\)
0.758065 + 0.652179i \(0.226145\pi\)
\(920\) −15.6603 −0.516303
\(921\) 0 0
\(922\) 22.2679 0.733356
\(923\) 0 0
\(924\) 0 0
\(925\) −31.5692 −1.03799
\(926\) −10.0526 −0.330348
\(927\) 0 0
\(928\) 4.46410 0.146541
\(929\) −39.2487 −1.28771 −0.643854 0.765148i \(-0.722666\pi\)
−0.643854 + 0.765148i \(0.722666\pi\)
\(930\) 0 0
\(931\) −2.19615 −0.0719760
\(932\) 7.85641 0.257345
\(933\) 0 0
\(934\) −18.5885 −0.608233
\(935\) 27.1244 0.887061
\(936\) 0 0
\(937\) −5.24871 −0.171468 −0.0857340 0.996318i \(-0.527324\pi\)
−0.0857340 + 0.996318i \(0.527324\pi\)
\(938\) −35.8564 −1.17075
\(939\) 0 0
\(940\) 8.19615 0.267329
\(941\) 12.6410 0.412085 0.206043 0.978543i \(-0.433941\pi\)
0.206043 + 0.978543i \(0.433941\pi\)
\(942\) 0 0
\(943\) 39.4115 1.28342
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −12.2487 −0.398240
\(947\) 21.0718 0.684741 0.342371 0.939565i \(-0.388770\pi\)
0.342371 + 0.939565i \(0.388770\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −42.2487 −1.37073
\(951\) 0 0
\(952\) 15.6603 0.507552
\(953\) −41.5692 −1.34656 −0.673280 0.739388i \(-0.735115\pi\)
−0.673280 + 0.739388i \(0.735115\pi\)
\(954\) 0 0
\(955\) 25.8564 0.836694
\(956\) 7.66025 0.247750
\(957\) 0 0
\(958\) 33.4641 1.08118
\(959\) 32.5885 1.05234
\(960\) 0 0
\(961\) −28.8564 −0.930852
\(962\) 0 0
\(963\) 0 0
\(964\) −13.5885 −0.437655
\(965\) 43.7846 1.40948
\(966\) 0 0
\(967\) 43.1244 1.38679 0.693393 0.720560i \(-0.256115\pi\)
0.693393 + 0.720560i \(0.256115\pi\)
\(968\) −9.39230 −0.301880
\(969\) 0 0
\(970\) 22.3923 0.718974
\(971\) −30.2487 −0.970727 −0.485364 0.874312i \(-0.661313\pi\)
−0.485364 + 0.874312i \(0.661313\pi\)
\(972\) 0 0
\(973\) 48.7846 1.56396
\(974\) 3.12436 0.100111
\(975\) 0 0
\(976\) −9.19615 −0.294362
\(977\) 45.9282 1.46937 0.734687 0.678407i \(-0.237329\pi\)
0.734687 + 0.678407i \(0.237329\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 1.73205 0.0553283
\(981\) 0 0
\(982\) −8.73205 −0.278651
\(983\) 20.7846 0.662926 0.331463 0.943468i \(-0.392458\pi\)
0.331463 + 0.943468i \(0.392458\pi\)
\(984\) 0 0
\(985\) −66.6410 −2.12336
\(986\) 25.5885 0.814902
\(987\) 0 0
\(988\) 0 0
\(989\) 40.5359 1.28897
\(990\) 0 0
\(991\) 22.5885 0.717546 0.358773 0.933425i \(-0.383195\pi\)
0.358773 + 0.933425i \(0.383195\pi\)
\(992\) −1.46410 −0.0464853
\(993\) 0 0
\(994\) 12.9282 0.410058
\(995\) −52.9808 −1.67960
\(996\) 0 0
\(997\) 21.3397 0.675837 0.337918 0.941175i \(-0.390277\pi\)
0.337918 + 0.941175i \(0.390277\pi\)
\(998\) −32.0000 −1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.y.1.2 2
3.2 odd 2 1014.2.a.i.1.1 2
12.11 even 2 8112.2.a.bj.1.1 2
13.2 odd 12 234.2.l.c.199.2 4
13.5 odd 4 3042.2.b.i.1351.1 4
13.7 odd 12 234.2.l.c.127.2 4
13.8 odd 4 3042.2.b.i.1351.4 4
13.12 even 2 3042.2.a.p.1.1 2
39.2 even 12 78.2.i.a.43.1 4
39.5 even 4 1014.2.b.e.337.4 4
39.8 even 4 1014.2.b.e.337.1 4
39.11 even 12 1014.2.i.a.823.2 4
39.17 odd 6 1014.2.e.g.991.2 4
39.20 even 12 78.2.i.a.49.1 yes 4
39.23 odd 6 1014.2.e.g.529.2 4
39.29 odd 6 1014.2.e.i.529.1 4
39.32 even 12 1014.2.i.a.361.2 4
39.35 odd 6 1014.2.e.i.991.1 4
39.38 odd 2 1014.2.a.k.1.2 2
52.7 even 12 1872.2.by.h.1297.2 4
52.15 even 12 1872.2.by.h.433.1 4
156.59 odd 12 624.2.bv.e.49.1 4
156.119 odd 12 624.2.bv.e.433.2 4
156.155 even 2 8112.2.a.bp.1.2 2
195.2 odd 12 1950.2.y.g.199.2 4
195.59 even 12 1950.2.bc.d.751.2 4
195.98 odd 12 1950.2.y.g.49.2 4
195.119 even 12 1950.2.bc.d.901.2 4
195.137 odd 12 1950.2.y.b.49.1 4
195.158 odd 12 1950.2.y.b.199.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.i.a.43.1 4 39.2 even 12
78.2.i.a.49.1 yes 4 39.20 even 12
234.2.l.c.127.2 4 13.7 odd 12
234.2.l.c.199.2 4 13.2 odd 12
624.2.bv.e.49.1 4 156.59 odd 12
624.2.bv.e.433.2 4 156.119 odd 12
1014.2.a.i.1.1 2 3.2 odd 2
1014.2.a.k.1.2 2 39.38 odd 2
1014.2.b.e.337.1 4 39.8 even 4
1014.2.b.e.337.4 4 39.5 even 4
1014.2.e.g.529.2 4 39.23 odd 6
1014.2.e.g.991.2 4 39.17 odd 6
1014.2.e.i.529.1 4 39.29 odd 6
1014.2.e.i.991.1 4 39.35 odd 6
1014.2.i.a.361.2 4 39.32 even 12
1014.2.i.a.823.2 4 39.11 even 12
1872.2.by.h.433.1 4 52.15 even 12
1872.2.by.h.1297.2 4 52.7 even 12
1950.2.y.b.49.1 4 195.137 odd 12
1950.2.y.b.199.1 4 195.158 odd 12
1950.2.y.g.49.2 4 195.98 odd 12
1950.2.y.g.199.2 4 195.2 odd 12
1950.2.bc.d.751.2 4 195.59 even 12
1950.2.bc.d.901.2 4 195.119 even 12
3042.2.a.p.1.1 2 13.12 even 2
3042.2.a.y.1.2 2 1.1 even 1 trivial
3042.2.b.i.1351.1 4 13.5 odd 4
3042.2.b.i.1351.4 4 13.8 odd 4
8112.2.a.bj.1.1 2 12.11 even 2
8112.2.a.bp.1.2 2 156.155 even 2