Properties

Label 306.2.g.c
Level 306306
Weight 22
Character orbit 306.g
Analytic conductor 2.4432.443
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,2,Mod(55,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 306=23217 306 = 2 \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 306.g (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.443422301852.44342230185
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq2q4+(2i2)q5+(i+1)q7iq8+(2i+2)q10+(2i+2)q11+6q13+(i+1)q14+q16+(4i1)q174iq19+(2i+2)q20+5q98+O(q100) q + i q^{2} - q^{4} + ( - 2 i - 2) q^{5} + ( - i + 1) q^{7} - i q^{8} + ( - 2 i + 2) q^{10} + ( - 2 i + 2) q^{11} + 6 q^{13} + (i + 1) q^{14} + q^{16} + ( - 4 i - 1) q^{17} - 4 i q^{19} + (2 i + 2) q^{20} + \cdots - 5 q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q44q5+2q7+4q10+4q11+12q13+2q14+2q162q17+4q20+4q226q232q28+4q296q31+8q348q3512q37+8q38+10q98+O(q100) 2 q - 2 q^{4} - 4 q^{5} + 2 q^{7} + 4 q^{10} + 4 q^{11} + 12 q^{13} + 2 q^{14} + 2 q^{16} - 2 q^{17} + 4 q^{20} + 4 q^{22} - 6 q^{23} - 2 q^{28} + 4 q^{29} - 6 q^{31} + 8 q^{34} - 8 q^{35} - 12 q^{37} + 8 q^{38}+ \cdots - 10 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/306Z)×\left(\mathbb{Z}/306\mathbb{Z}\right)^\times.

nn 3737 137137
χ(n)\chi(n) ii 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
1.00000i
1.00000i
1.00000i 0 −1.00000 −2.00000 + 2.00000i 0 1.00000 + 1.00000i 1.00000i 0 2.00000 + 2.00000i
217.1 1.00000i 0 −1.00000 −2.00000 2.00000i 0 1.00000 1.00000i 1.00000i 0 2.00000 2.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.2.g.c 2
3.b odd 2 1 306.2.g.f yes 2
4.b odd 2 1 2448.2.be.b 2
12.b even 2 1 2448.2.be.l 2
17.c even 4 1 inner 306.2.g.c 2
17.d even 8 2 5202.2.a.r 2
51.f odd 4 1 306.2.g.f yes 2
51.g odd 8 2 5202.2.a.ba 2
68.f odd 4 1 2448.2.be.b 2
204.l even 4 1 2448.2.be.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.2.g.c 2 1.a even 1 1 trivial
306.2.g.c 2 17.c even 4 1 inner
306.2.g.f yes 2 3.b odd 2 1
306.2.g.f yes 2 51.f odd 4 1
2448.2.be.b 2 4.b odd 2 1
2448.2.be.b 2 68.f odd 4 1
2448.2.be.l 2 12.b even 2 1
2448.2.be.l 2 204.l even 4 1
5202.2.a.r 2 17.d even 8 2
5202.2.a.ba 2 51.g odd 8 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(306,[χ])S_{2}^{\mathrm{new}}(306, [\chi]):

T52+4T5+8 T_{5}^{2} + 4T_{5} + 8 Copy content Toggle raw display
T722T7+2 T_{7}^{2} - 2T_{7} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
77 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1111 T24T+8 T^{2} - 4T + 8 Copy content Toggle raw display
1313 (T6)2 (T - 6)^{2} Copy content Toggle raw display
1717 T2+2T+17 T^{2} + 2T + 17 Copy content Toggle raw display
1919 T2+16 T^{2} + 16 Copy content Toggle raw display
2323 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
2929 T24T+8 T^{2} - 4T + 8 Copy content Toggle raw display
3131 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
3737 T2+12T+72 T^{2} + 12T + 72 Copy content Toggle raw display
4141 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
4343 T2+144 T^{2} + 144 Copy content Toggle raw display
4747 (T10)2 (T - 10)^{2} Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T24T+8 T^{2} - 4T + 8 Copy content Toggle raw display
6767 (T4)2 (T - 4)^{2} Copy content Toggle raw display
7171 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
7373 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
7979 T2+10T+50 T^{2} + 10T + 50 Copy content Toggle raw display
8383 T2+256 T^{2} + 256 Copy content Toggle raw display
8989 (T12)2 (T - 12)^{2} Copy content Toggle raw display
9797 T2+22T+242 T^{2} + 22T + 242 Copy content Toggle raw display
show more
show less