Properties

Label 306.2.l.a
Level $306$
Weight $2$
Character orbit 306.l
Analytic conductor $2.443$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,2,Mod(19,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.44342230185\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} + (\zeta_{8} - 1) q^{5} + ( - 2 \zeta_{8}^{2} - 2 \zeta_{8}) q^{7} - \zeta_{8} q^{8} + (\zeta_{8}^{3} + 1) q^{10} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}^{2} + \cdots + 2) q^{11} + \cdots + (4 \zeta_{8}^{3} + \zeta_{8}^{2} + 4 \zeta_{8}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 4 q^{10} + 8 q^{11} - 8 q^{14} - 4 q^{16} + 12 q^{17} + 8 q^{19} + 8 q^{22} - 8 q^{23} + 4 q^{25} - 4 q^{26} - 8 q^{28} + 8 q^{34} - 8 q^{37} + 8 q^{41} - 8 q^{44} - 16 q^{49} + 12 q^{50}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(\zeta_{8}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i 0 1.00000i −0.292893 0.707107i 0 −1.41421 + 3.41421i −0.707107 + 0.707107i 0 0.292893 0.707107i
127.1 −0.707107 + 0.707107i 0 1.00000i −1.70711 0.707107i 0 1.41421 0.585786i 0.707107 + 0.707107i 0 1.70711 0.707107i
145.1 0.707107 0.707107i 0 1.00000i −0.292893 + 0.707107i 0 −1.41421 3.41421i −0.707107 0.707107i 0 0.292893 + 0.707107i
253.1 −0.707107 0.707107i 0 1.00000i −1.70711 + 0.707107i 0 1.41421 + 0.585786i 0.707107 0.707107i 0 1.70711 + 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.2.l.a 4
3.b odd 2 1 306.2.l.b yes 4
17.d even 8 1 inner 306.2.l.a 4
17.e odd 16 2 5202.2.a.bv 4
51.g odd 8 1 306.2.l.b yes 4
51.i even 16 2 5202.2.a.bs 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.2.l.a 4 1.a even 1 1 trivial
306.2.l.a 4 17.d even 8 1 inner
306.2.l.b yes 4 3.b odd 2 1
306.2.l.b yes 4 51.g odd 8 1
5202.2.a.bs 4 51.i even 16 2
5202.2.a.bv 4 17.e odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 4T_{5}^{3} + 6T_{5}^{2} + 4T_{5} + 2 \) acting on \(S_{2}^{\mathrm{new}}(306, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$7$ \( T^{4} + 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$11$ \( T^{4} - 8 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$13$ \( T^{4} + 36T^{2} + 196 \) Copy content Toggle raw display
$17$ \( (T^{2} - 6 T + 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$29$ \( T^{4} + 50 T^{2} + \cdots + 1250 \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$41$ \( T^{4} - 8 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 48T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{4} - 4 T^{3} + \cdots + 3844 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$61$ \( T^{4} + 8 T^{3} + \cdots + 578 \) Copy content Toggle raw display
$67$ \( (T^{2} - 200)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots + 16928 \) Copy content Toggle raw display
$73$ \( T^{4} - 12 T^{3} + \cdots + 21218 \) Copy content Toggle raw display
$79$ \( T^{4} + 8 T^{3} + \cdots + 1568 \) Copy content Toggle raw display
$83$ \( T^{4} - 24 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$89$ \( T^{4} + 228T^{2} + 6724 \) Copy content Toggle raw display
$97$ \( T^{4} + 162 T^{2} + \cdots + 13122 \) Copy content Toggle raw display
show more
show less