Properties

Label 306.2.l.a
Level 306306
Weight 22
Character orbit 306.l
Analytic conductor 2.4432.443
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,2,Mod(19,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 306=23217 306 = 2 \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 306.l (of order 88, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.443422301852.44342230185
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C8]\mathrm{SU}(2)[C_{8}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ83q2ζ82q4+(ζ81)q5+(2ζ822ζ8)q7ζ8q8+(ζ83+1)q10+(2ζ832ζ82++2)q11++(4ζ83+ζ82+4ζ8)q98+O(q100) q - \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} + (\zeta_{8} - 1) q^{5} + ( - 2 \zeta_{8}^{2} - 2 \zeta_{8}) q^{7} - \zeta_{8} q^{8} + (\zeta_{8}^{3} + 1) q^{10} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}^{2} + \cdots + 2) q^{11} + \cdots + (4 \zeta_{8}^{3} + \zeta_{8}^{2} + 4 \zeta_{8}) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q5+4q10+8q118q144q16+12q17+8q19+8q228q23+4q254q268q28+8q348q37+8q418q4416q49+12q50+24q95+O(q100) 4 q - 4 q^{5} + 4 q^{10} + 8 q^{11} - 8 q^{14} - 4 q^{16} + 12 q^{17} + 8 q^{19} + 8 q^{22} - 8 q^{23} + 4 q^{25} - 4 q^{26} - 8 q^{28} + 8 q^{34} - 8 q^{37} + 8 q^{41} - 8 q^{44} - 16 q^{49} + 12 q^{50}+ \cdots - 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/306Z)×\left(\mathbb{Z}/306\mathbb{Z}\right)^\times.

nn 3737 137137
χ(n)\chi(n) ζ8\zeta_{8} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i 0 1.00000i −0.292893 0.707107i 0 −1.41421 + 3.41421i −0.707107 + 0.707107i 0 0.292893 0.707107i
127.1 −0.707107 + 0.707107i 0 1.00000i −1.70711 0.707107i 0 1.41421 0.585786i 0.707107 + 0.707107i 0 1.70711 0.707107i
145.1 0.707107 0.707107i 0 1.00000i −0.292893 + 0.707107i 0 −1.41421 3.41421i −0.707107 0.707107i 0 0.292893 + 0.707107i
253.1 −0.707107 0.707107i 0 1.00000i −1.70711 + 0.707107i 0 1.41421 + 0.585786i 0.707107 0.707107i 0 1.70711 + 0.707107i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.2.l.a 4
3.b odd 2 1 306.2.l.b yes 4
17.d even 8 1 inner 306.2.l.a 4
17.e odd 16 2 5202.2.a.bv 4
51.g odd 8 1 306.2.l.b yes 4
51.i even 16 2 5202.2.a.bs 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.2.l.a 4 1.a even 1 1 trivial
306.2.l.a 4 17.d even 8 1 inner
306.2.l.b yes 4 3.b odd 2 1
306.2.l.b yes 4 51.g odd 8 1
5202.2.a.bs 4 51.i even 16 2
5202.2.a.bv 4 17.e odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+4T53+6T52+4T5+2 T_{5}^{4} + 4T_{5}^{3} + 6T_{5}^{2} + 4T_{5} + 2 acting on S2new(306,[χ])S_{2}^{\mathrm{new}}(306, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+1 T^{4} + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+4T3++2 T^{4} + 4 T^{3} + \cdots + 2 Copy content Toggle raw display
77 T4+8T2++32 T^{4} + 8 T^{2} + \cdots + 32 Copy content Toggle raw display
1111 T48T3++128 T^{4} - 8 T^{3} + \cdots + 128 Copy content Toggle raw display
1313 T4+36T2+196 T^{4} + 36T^{2} + 196 Copy content Toggle raw display
1717 (T26T+17)2 (T^{2} - 6 T + 17)^{2} Copy content Toggle raw display
1919 T48T3++64 T^{4} - 8 T^{3} + \cdots + 64 Copy content Toggle raw display
2323 T4+8T3++32 T^{4} + 8 T^{3} + \cdots + 32 Copy content Toggle raw display
2929 T4+50T2++1250 T^{4} + 50 T^{2} + \cdots + 1250 Copy content Toggle raw display
3131 T4+8T2++32 T^{4} + 8 T^{2} + \cdots + 32 Copy content Toggle raw display
3737 T4+8T3++98 T^{4} + 8 T^{3} + \cdots + 98 Copy content Toggle raw display
4141 T48T3++2 T^{4} - 8 T^{3} + \cdots + 2 Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4+48T2+64 T^{4} + 48T^{2} + 64 Copy content Toggle raw display
5353 T44T3++3844 T^{4} - 4 T^{3} + \cdots + 3844 Copy content Toggle raw display
5959 T4+8T3++3136 T^{4} + 8 T^{3} + \cdots + 3136 Copy content Toggle raw display
6161 T4+8T3++578 T^{4} + 8 T^{3} + \cdots + 578 Copy content Toggle raw display
6767 (T2200)2 (T^{2} - 200)^{2} Copy content Toggle raw display
7171 T48T3++16928 T^{4} - 8 T^{3} + \cdots + 16928 Copy content Toggle raw display
7373 T412T3++21218 T^{4} - 12 T^{3} + \cdots + 21218 Copy content Toggle raw display
7979 T4+8T3++1568 T^{4} + 8 T^{3} + \cdots + 1568 Copy content Toggle raw display
8383 T424T3++64 T^{4} - 24 T^{3} + \cdots + 64 Copy content Toggle raw display
8989 T4+228T2+6724 T^{4} + 228T^{2} + 6724 Copy content Toggle raw display
9797 T4+162T2++13122 T^{4} + 162 T^{2} + \cdots + 13122 Copy content Toggle raw display
show more
show less