Defining parameters
Level: | \( N \) | = | \( 306 = 2 \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(20736\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(306))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8032 | 2038 | 5994 |
Cusp forms | 7520 | 2038 | 5482 |
Eisenstein series | 512 | 0 | 512 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(306))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
306.4.a | \(\chi_{306}(1, \cdot)\) | 306.4.a.a | 1 | 1 |
306.4.a.b | 1 | |||
306.4.a.c | 1 | |||
306.4.a.d | 1 | |||
306.4.a.e | 1 | |||
306.4.a.f | 1 | |||
306.4.a.g | 1 | |||
306.4.a.h | 1 | |||
306.4.a.i | 2 | |||
306.4.a.j | 2 | |||
306.4.a.k | 2 | |||
306.4.a.l | 3 | |||
306.4.a.m | 3 | |||
306.4.b | \(\chi_{306}(271, \cdot)\) | 306.4.b.a | 2 | 1 |
306.4.b.b | 2 | |||
306.4.b.c | 4 | |||
306.4.b.d | 4 | |||
306.4.b.e | 4 | |||
306.4.b.f | 6 | |||
306.4.e | \(\chi_{306}(103, \cdot)\) | 306.4.e.a | 4 | 2 |
306.4.e.b | 18 | |||
306.4.e.c | 22 | |||
306.4.e.d | 26 | |||
306.4.e.e | 26 | |||
306.4.g | \(\chi_{306}(55, \cdot)\) | 306.4.g.a | 2 | 2 |
306.4.g.b | 4 | |||
306.4.g.c | 4 | |||
306.4.g.d | 6 | |||
306.4.g.e | 8 | |||
306.4.g.f | 8 | |||
306.4.g.g | 12 | |||
306.4.j | \(\chi_{306}(67, \cdot)\) | n/a | 108 | 2 |
306.4.l | \(\chi_{306}(19, \cdot)\) | 306.4.l.a | 8 | 4 |
306.4.l.b | 12 | |||
306.4.l.c | 16 | |||
306.4.l.d | 16 | |||
306.4.l.e | 20 | |||
306.4.l.f | 20 | |||
306.4.n | \(\chi_{306}(13, \cdot)\) | n/a | 216 | 4 |
306.4.o | \(\chi_{306}(71, \cdot)\) | n/a | 144 | 8 |
306.4.r | \(\chi_{306}(25, \cdot)\) | n/a | 432 | 8 |
306.4.s | \(\chi_{306}(5, \cdot)\) | n/a | 864 | 16 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(306))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(306)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(153))\)\(^{\oplus 2}\)