Properties

Label 306.4
Level 306
Weight 4
Dimension 2038
Nonzero newspaces 10
Sturm bound 20736
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(20736\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(306))\).

Total New Old
Modular forms 8032 2038 5994
Cusp forms 7520 2038 5482
Eisenstein series 512 0 512

Trace form

\( 2038 q - 8 q^{2} - 6 q^{3} + 16 q^{4} - 24 q^{5} + 36 q^{6} + 8 q^{7} + 16 q^{8} + 210 q^{9} + 128 q^{10} + 170 q^{11} - 48 q^{12} - 92 q^{13} - 296 q^{14} - 180 q^{15} - 304 q^{17} - 312 q^{18} - 620 q^{19}+ \cdots + 11376 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(306))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
306.4.a \(\chi_{306}(1, \cdot)\) 306.4.a.a 1 1
306.4.a.b 1
306.4.a.c 1
306.4.a.d 1
306.4.a.e 1
306.4.a.f 1
306.4.a.g 1
306.4.a.h 1
306.4.a.i 2
306.4.a.j 2
306.4.a.k 2
306.4.a.l 3
306.4.a.m 3
306.4.b \(\chi_{306}(271, \cdot)\) 306.4.b.a 2 1
306.4.b.b 2
306.4.b.c 4
306.4.b.d 4
306.4.b.e 4
306.4.b.f 6
306.4.e \(\chi_{306}(103, \cdot)\) 306.4.e.a 4 2
306.4.e.b 18
306.4.e.c 22
306.4.e.d 26
306.4.e.e 26
306.4.g \(\chi_{306}(55, \cdot)\) 306.4.g.a 2 2
306.4.g.b 4
306.4.g.c 4
306.4.g.d 6
306.4.g.e 8
306.4.g.f 8
306.4.g.g 12
306.4.j \(\chi_{306}(67, \cdot)\) n/a 108 2
306.4.l \(\chi_{306}(19, \cdot)\) 306.4.l.a 8 4
306.4.l.b 12
306.4.l.c 16
306.4.l.d 16
306.4.l.e 20
306.4.l.f 20
306.4.n \(\chi_{306}(13, \cdot)\) n/a 216 4
306.4.o \(\chi_{306}(71, \cdot)\) n/a 144 8
306.4.r \(\chi_{306}(25, \cdot)\) n/a 432 8
306.4.s \(\chi_{306}(5, \cdot)\) n/a 864 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(306))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(306)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(153))\)\(^{\oplus 2}\)