Properties

Label 306.4.a
Level $306$
Weight $4$
Character orbit 306.a
Rep. character $\chi_{306}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $13$
Sturm bound $216$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 306.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(216\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(306))\).

Total New Old
Modular forms 170 20 150
Cusp forms 154 20 134
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(13\)
Minus space\(-\)\(7\)

Trace form

\( 20 q + 80 q^{4} + 6 q^{5} + 40 q^{7} + 44 q^{10} + 6 q^{11} - 44 q^{13} + 24 q^{14} + 320 q^{16} - 34 q^{17} - 232 q^{19} + 24 q^{20} + 212 q^{22} + 588 q^{23} + 928 q^{25} - 72 q^{26} + 160 q^{28} - 354 q^{29}+ \cdots + 2016 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(306))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 17
306.4.a.a 306.a 1.a $1$ $18.055$ \(\Q\) None 102.4.a.d \(-2\) \(0\) \(-5\) \(12\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-5q^{5}+12q^{7}-8q^{8}+\cdots\)
306.4.a.b 306.a 1.a $1$ $18.055$ \(\Q\) None 306.4.a.b \(-2\) \(0\) \(9\) \(-10\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+9q^{5}-10q^{7}-8q^{8}+\cdots\)
306.4.a.c 306.a 1.a $1$ $18.055$ \(\Q\) None 102.4.a.c \(-2\) \(0\) \(12\) \(-22\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+12q^{5}-22q^{7}-8q^{8}+\cdots\)
306.4.a.d 306.a 1.a $1$ $18.055$ \(\Q\) None 34.4.a.b \(2\) \(0\) \(-16\) \(24\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-2^{4}q^{5}+24q^{7}+8q^{8}+\cdots\)
306.4.a.e 306.a 1.a $1$ $18.055$ \(\Q\) None 306.4.a.b \(2\) \(0\) \(-9\) \(-10\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-9q^{5}-10q^{7}+8q^{8}+\cdots\)
306.4.a.f 306.a 1.a $1$ $18.055$ \(\Q\) None 102.4.a.a \(2\) \(0\) \(3\) \(20\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+3q^{5}+20q^{7}+8q^{8}+\cdots\)
306.4.a.g 306.a 1.a $1$ $18.055$ \(\Q\) None 102.4.a.b \(2\) \(0\) \(5\) \(-32\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+5q^{5}-2^{5}q^{7}+8q^{8}+\cdots\)
306.4.a.h 306.a 1.a $1$ $18.055$ \(\Q\) None 34.4.a.a \(2\) \(0\) \(18\) \(-10\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+18q^{5}-10q^{7}+8q^{8}+\cdots\)
306.4.a.i 306.a 1.a $2$ $18.055$ \(\Q(\sqrt{393}) \) None 102.4.a.f \(-4\) \(0\) \(-3\) \(22\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-1-\beta )q^{5}+(12-2\beta )q^{7}+\cdots\)
306.4.a.j 306.a 1.a $2$ $18.055$ \(\Q(\sqrt{13}) \) None 34.4.a.c \(-4\) \(0\) \(4\) \(-6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(2+4\beta )q^{5}+(-3-\beta )q^{7}+\cdots\)
306.4.a.k 306.a 1.a $2$ $18.055$ \(\Q(\sqrt{15}) \) None 102.4.a.e \(4\) \(0\) \(-12\) \(16\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-6+\beta )q^{5}+(8+\beta )q^{7}+\cdots\)
306.4.a.l 306.a 1.a $3$ $18.055$ 3.3.2747992.1 None 306.4.a.l \(-6\) \(0\) \(-25\) \(18\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-8-\beta _{1})q^{5}+(6+\beta _{2})q^{7}+\cdots\)
306.4.a.m 306.a 1.a $3$ $18.055$ 3.3.2747992.1 None 306.4.a.l \(6\) \(0\) \(25\) \(18\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(8+\beta _{1})q^{5}+(6+\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(306))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(306)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 2}\)