Properties

Label 3060.2.be.b.1441.6
Level $3060$
Weight $2$
Character 3060.1441
Analytic conductor $24.434$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3060,2,Mod(361,3060)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3060, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3060.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.be (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1441.6
Root \(-0.411629 + 1.88205i\) of defining polynomial
Character \(\chi\) \(=\) 3060.1441
Dual form 3060.2.be.b.361.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(1.97356 - 1.97356i) q^{7} +(0.864802 - 0.864802i) q^{11} -3.40173 q^{13} +(-3.98802 + 1.04677i) q^{17} -3.42309i q^{19} +(-6.74584 + 6.74584i) q^{23} +1.00000i q^{25} +(-7.08106 - 7.08106i) q^{29} +(-5.64295 - 5.64295i) q^{31} +2.79103 q^{35} +(-4.04367 - 4.04367i) q^{37} +(8.23755 - 8.23755i) q^{41} +7.49527i q^{43} -8.61396 q^{47} -0.789873i q^{49} -3.58108i q^{53} +1.22301 q^{55} +4.23376i q^{59} +(-7.67312 + 7.67312i) q^{61} +(-2.40539 - 2.40539i) q^{65} +11.1125 q^{67} +(-0.266369 - 0.266369i) q^{71} +(6.97393 + 6.97393i) q^{73} -3.41348i q^{77} +(-10.2529 + 10.2529i) q^{79} +1.52005i q^{83} +(-3.56013 - 2.07978i) q^{85} -4.28461 q^{89} +(-6.71352 + 6.71352i) q^{91} +(2.42049 - 2.42049i) q^{95} +(-1.80991 - 1.80991i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{11} + 16 q^{13} + 4 q^{17} - 12 q^{23} - 4 q^{29} - 8 q^{31} + 8 q^{35} - 20 q^{37} - 8 q^{41} + 8 q^{47} + 16 q^{55} - 8 q^{61} - 4 q^{65} + 32 q^{67} - 28 q^{71} - 24 q^{79} - 4 q^{85} + 56 q^{89}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 1.97356 1.97356i 0.745935 0.745935i −0.227778 0.973713i \(-0.573146\pi\)
0.973713 + 0.227778i \(0.0731460\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.864802 0.864802i 0.260748 0.260748i −0.564610 0.825358i \(-0.690973\pi\)
0.825358 + 0.564610i \(0.190973\pi\)
\(12\) 0 0
\(13\) −3.40173 −0.943471 −0.471736 0.881740i \(-0.656372\pi\)
−0.471736 + 0.881740i \(0.656372\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.98802 + 1.04677i −0.967236 + 0.253879i
\(18\) 0 0
\(19\) 3.42309i 0.785311i −0.919686 0.392656i \(-0.871556\pi\)
0.919686 0.392656i \(-0.128444\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.74584 + 6.74584i −1.40660 + 1.40660i −0.630047 + 0.776557i \(0.716964\pi\)
−0.776557 + 0.630047i \(0.783036\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.08106 7.08106i −1.31492 1.31492i −0.917742 0.397178i \(-0.869990\pi\)
−0.397178 0.917742i \(-0.630010\pi\)
\(30\) 0 0
\(31\) −5.64295 5.64295i −1.01350 1.01350i −0.999908 0.0135959i \(-0.995672\pi\)
−0.0135959 0.999908i \(-0.504328\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.79103 0.471771
\(36\) 0 0
\(37\) −4.04367 4.04367i −0.664776 0.664776i 0.291726 0.956502i \(-0.405770\pi\)
−0.956502 + 0.291726i \(0.905770\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.23755 8.23755i 1.28649 1.28649i 0.349584 0.936905i \(-0.386323\pi\)
0.936905 0.349584i \(-0.113677\pi\)
\(42\) 0 0
\(43\) 7.49527i 1.14302i 0.820596 + 0.571509i \(0.193642\pi\)
−0.820596 + 0.571509i \(0.806358\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.61396 −1.25648 −0.628238 0.778021i \(-0.716223\pi\)
−0.628238 + 0.778021i \(0.716223\pi\)
\(48\) 0 0
\(49\) 0.789873i 0.112839i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.58108i 0.491899i −0.969283 0.245949i \(-0.920900\pi\)
0.969283 0.245949i \(-0.0790997\pi\)
\(54\) 0 0
\(55\) 1.22301 0.164911
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.23376i 0.551189i 0.961274 + 0.275594i \(0.0888747\pi\)
−0.961274 + 0.275594i \(0.911125\pi\)
\(60\) 0 0
\(61\) −7.67312 + 7.67312i −0.982443 + 0.982443i −0.999849 0.0174058i \(-0.994459\pi\)
0.0174058 + 0.999849i \(0.494459\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.40539 2.40539i −0.298352 0.298352i
\(66\) 0 0
\(67\) 11.1125 1.35760 0.678802 0.734322i \(-0.262500\pi\)
0.678802 + 0.734322i \(0.262500\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.266369 0.266369i −0.0316122 0.0316122i 0.691124 0.722736i \(-0.257116\pi\)
−0.722736 + 0.691124i \(0.757116\pi\)
\(72\) 0 0
\(73\) 6.97393 + 6.97393i 0.816237 + 0.816237i 0.985561 0.169324i \(-0.0541583\pi\)
−0.169324 + 0.985561i \(0.554158\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.41348i 0.389002i
\(78\) 0 0
\(79\) −10.2529 + 10.2529i −1.15355 + 1.15355i −0.167710 + 0.985836i \(0.553637\pi\)
−0.985836 + 0.167710i \(0.946363\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.52005i 0.166848i 0.996514 + 0.0834238i \(0.0265855\pi\)
−0.996514 + 0.0834238i \(0.973414\pi\)
\(84\) 0 0
\(85\) −3.56013 2.07978i −0.386150 0.225583i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.28461 −0.454168 −0.227084 0.973875i \(-0.572919\pi\)
−0.227084 + 0.973875i \(0.572919\pi\)
\(90\) 0 0
\(91\) −6.71352 + 6.71352i −0.703769 + 0.703769i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.42049 2.42049i 0.248337 0.248337i
\(96\) 0 0
\(97\) −1.80991 1.80991i −0.183769 0.183769i 0.609227 0.792996i \(-0.291480\pi\)
−0.792996 + 0.609227i \(0.791480\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.83260 −0.281855 −0.140927 0.990020i \(-0.545008\pi\)
−0.140927 + 0.990020i \(0.545008\pi\)
\(102\) 0 0
\(103\) 5.02114 0.494748 0.247374 0.968920i \(-0.420432\pi\)
0.247374 + 0.968920i \(0.420432\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.442925 0.442925i −0.0428192 0.0428192i 0.685373 0.728192i \(-0.259639\pi\)
−0.728192 + 0.685373i \(0.759639\pi\)
\(108\) 0 0
\(109\) 10.0151 10.0151i 0.959274 0.959274i −0.0399281 0.999203i \(-0.512713\pi\)
0.999203 + 0.0399281i \(0.0127129\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.12246 7.12246i 0.670024 0.670024i −0.287697 0.957721i \(-0.592890\pi\)
0.957721 + 0.287697i \(0.0928896\pi\)
\(114\) 0 0
\(115\) −9.54005 −0.889614
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.80473 + 9.93645i −0.532119 + 0.910873i
\(120\) 0 0
\(121\) 9.50424i 0.864021i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 15.7863i 1.40081i −0.713748 0.700403i \(-0.753004\pi\)
0.713748 0.700403i \(-0.246996\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.21894 8.21894i −0.718092 0.718092i 0.250122 0.968214i \(-0.419529\pi\)
−0.968214 + 0.250122i \(0.919529\pi\)
\(132\) 0 0
\(133\) −6.75568 6.75568i −0.585792 0.585792i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.40173 −0.290630 −0.145315 0.989385i \(-0.546420\pi\)
−0.145315 + 0.989385i \(0.546420\pi\)
\(138\) 0 0
\(139\) −5.46988 5.46988i −0.463950 0.463950i 0.435998 0.899948i \(-0.356395\pi\)
−0.899948 + 0.435998i \(0.856395\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.94183 + 2.94183i −0.246008 + 0.246008i
\(144\) 0 0
\(145\) 10.0141i 0.831628i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.56165 −0.373705 −0.186853 0.982388i \(-0.559829\pi\)
−0.186853 + 0.982388i \(0.559829\pi\)
\(150\) 0 0
\(151\) 12.7622i 1.03857i −0.854601 0.519285i \(-0.826198\pi\)
0.854601 0.519285i \(-0.173802\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.98033i 0.640996i
\(156\) 0 0
\(157\) 22.4488 1.79161 0.895803 0.444452i \(-0.146601\pi\)
0.895803 + 0.444452i \(0.146601\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 26.6266i 2.09847i
\(162\) 0 0
\(163\) 2.02135 2.02135i 0.158324 0.158324i −0.623499 0.781824i \(-0.714290\pi\)
0.781824 + 0.623499i \(0.214290\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.0463087 0.0463087i −0.00358347 0.00358347i 0.705313 0.708896i \(-0.250807\pi\)
−0.708896 + 0.705313i \(0.750807\pi\)
\(168\) 0 0
\(169\) −1.42820 −0.109862
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.2763 + 10.2763i 0.781294 + 0.781294i 0.980049 0.198755i \(-0.0636899\pi\)
−0.198755 + 0.980049i \(0.563690\pi\)
\(174\) 0 0
\(175\) 1.97356 + 1.97356i 0.149187 + 0.149187i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.5967i 1.61421i −0.590408 0.807105i \(-0.701033\pi\)
0.590408 0.807105i \(-0.298967\pi\)
\(180\) 0 0
\(181\) −2.58484 + 2.58484i −0.192130 + 0.192130i −0.796616 0.604486i \(-0.793379\pi\)
0.604486 + 0.796616i \(0.293379\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.71862i 0.420441i
\(186\) 0 0
\(187\) −2.54360 + 4.35409i −0.186006 + 0.318403i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.8681 −1.65468 −0.827340 0.561702i \(-0.810147\pi\)
−0.827340 + 0.561702i \(0.810147\pi\)
\(192\) 0 0
\(193\) −5.09713 + 5.09713i −0.366899 + 0.366899i −0.866345 0.499446i \(-0.833537\pi\)
0.499446 + 0.866345i \(0.333537\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.3698 + 11.3698i −0.810065 + 0.810065i −0.984643 0.174578i \(-0.944144\pi\)
0.174578 + 0.984643i \(0.444144\pi\)
\(198\) 0 0
\(199\) −7.48293 7.48293i −0.530451 0.530451i 0.390255 0.920707i \(-0.372387\pi\)
−0.920707 + 0.390255i \(0.872387\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −27.9498 −1.96169
\(204\) 0 0
\(205\) 11.6497 0.813647
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.96030 2.96030i −0.204768 0.204768i
\(210\) 0 0
\(211\) −3.45096 + 3.45096i −0.237574 + 0.237574i −0.815845 0.578271i \(-0.803728\pi\)
0.578271 + 0.815845i \(0.303728\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.29996 + 5.29996i −0.361454 + 0.361454i
\(216\) 0 0
\(217\) −22.2734 −1.51202
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.5662 3.56083i 0.912559 0.239527i
\(222\) 0 0
\(223\) 8.91984i 0.597317i −0.954360 0.298658i \(-0.903461\pi\)
0.954360 0.298658i \(-0.0965391\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.14513 9.14513i 0.606984 0.606984i −0.335173 0.942157i \(-0.608795\pi\)
0.942157 + 0.335173i \(0.108795\pi\)
\(228\) 0 0
\(229\) 13.9331i 0.920726i −0.887731 0.460363i \(-0.847719\pi\)
0.887731 0.460363i \(-0.152281\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0316 11.0316i −0.722702 0.722702i 0.246452 0.969155i \(-0.420735\pi\)
−0.969155 + 0.246452i \(0.920735\pi\)
\(234\) 0 0
\(235\) −6.09099 6.09099i −0.397332 0.397332i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.8296 −0.959246 −0.479623 0.877475i \(-0.659227\pi\)
−0.479623 + 0.877475i \(0.659227\pi\)
\(240\) 0 0
\(241\) 0.224326 + 0.224326i 0.0144501 + 0.0144501i 0.714295 0.699845i \(-0.246748\pi\)
−0.699845 + 0.714295i \(0.746748\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.558525 0.558525i 0.0356828 0.0356828i
\(246\) 0 0
\(247\) 11.6445i 0.740919i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.74154 0.425522 0.212761 0.977104i \(-0.431754\pi\)
0.212761 + 0.977104i \(0.431754\pi\)
\(252\) 0 0
\(253\) 11.6676i 0.733537i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.80913i 0.299985i −0.988687 0.149993i \(-0.952075\pi\)
0.988687 0.149993i \(-0.0479250\pi\)
\(258\) 0 0
\(259\) −15.9609 −0.991759
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.06324i 0.373876i −0.982372 0.186938i \(-0.940144\pi\)
0.982372 0.186938i \(-0.0598563\pi\)
\(264\) 0 0
\(265\) 2.53220 2.53220i 0.155552 0.155552i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.1126 + 12.1126i 0.738517 + 0.738517i 0.972291 0.233774i \(-0.0751076\pi\)
−0.233774 + 0.972291i \(0.575108\pi\)
\(270\) 0 0
\(271\) 26.0008 1.57944 0.789719 0.613468i \(-0.210226\pi\)
0.789719 + 0.613468i \(0.210226\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.864802 + 0.864802i 0.0521495 + 0.0521495i
\(276\) 0 0
\(277\) −4.51774 4.51774i −0.271445 0.271445i 0.558237 0.829682i \(-0.311478\pi\)
−0.829682 + 0.558237i \(0.811478\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.36275i 0.0812946i −0.999174 0.0406473i \(-0.987058\pi\)
0.999174 0.0406473i \(-0.0129420\pi\)
\(282\) 0 0
\(283\) −17.6020 + 17.6020i −1.04633 + 1.04633i −0.0474589 + 0.998873i \(0.515112\pi\)
−0.998873 + 0.0474589i \(0.984888\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.5146i 1.91928i
\(288\) 0 0
\(289\) 14.8086 8.34906i 0.871091 0.491121i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.2673 0.775081 0.387541 0.921853i \(-0.373325\pi\)
0.387541 + 0.921853i \(0.373325\pi\)
\(294\) 0 0
\(295\) −2.99372 + 2.99372i −0.174301 + 0.174301i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.9475 22.9475i 1.32709 1.32709i
\(300\) 0 0
\(301\) 14.7924 + 14.7924i 0.852618 + 0.852618i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.8514 −0.621351
\(306\) 0 0
\(307\) −20.9807 −1.19743 −0.598717 0.800960i \(-0.704323\pi\)
−0.598717 + 0.800960i \(0.704323\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.507265 + 0.507265i 0.0287644 + 0.0287644i 0.721343 0.692578i \(-0.243525\pi\)
−0.692578 + 0.721343i \(0.743525\pi\)
\(312\) 0 0
\(313\) 7.50076 7.50076i 0.423968 0.423968i −0.462599 0.886567i \(-0.653083\pi\)
0.886567 + 0.462599i \(0.153083\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.0951 15.0951i 0.847823 0.847823i −0.142038 0.989861i \(-0.545365\pi\)
0.989861 + 0.142038i \(0.0453655\pi\)
\(318\) 0 0
\(319\) −12.2474 −0.685724
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.58319 + 13.6514i 0.199374 + 0.759582i
\(324\) 0 0
\(325\) 3.40173i 0.188694i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −17.0002 + 17.0002i −0.937250 + 0.937250i
\(330\) 0 0
\(331\) 12.4420i 0.683872i 0.939723 + 0.341936i \(0.111083\pi\)
−0.939723 + 0.341936i \(0.888917\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.85770 + 7.85770i 0.429312 + 0.429312i
\(336\) 0 0
\(337\) 7.22692 + 7.22692i 0.393675 + 0.393675i 0.875995 0.482320i \(-0.160206\pi\)
−0.482320 + 0.875995i \(0.660206\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.76006 −0.528537
\(342\) 0 0
\(343\) 12.2561 + 12.2561i 0.661765 + 0.661765i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.3917 + 12.3917i −0.665223 + 0.665223i −0.956606 0.291383i \(-0.905885\pi\)
0.291383 + 0.956606i \(0.405885\pi\)
\(348\) 0 0
\(349\) 20.4572i 1.09505i 0.836789 + 0.547525i \(0.184430\pi\)
−0.836789 + 0.547525i \(0.815570\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.0292 1.06605 0.533023 0.846101i \(-0.321056\pi\)
0.533023 + 0.846101i \(0.321056\pi\)
\(354\) 0 0
\(355\) 0.376703i 0.0199933i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.4670i 1.02743i −0.857961 0.513715i \(-0.828269\pi\)
0.857961 0.513715i \(-0.171731\pi\)
\(360\) 0 0
\(361\) 7.28243 0.383286
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.86263i 0.516234i
\(366\) 0 0
\(367\) −16.4806 + 16.4806i −0.860278 + 0.860278i −0.991370 0.131092i \(-0.958152\pi\)
0.131092 + 0.991370i \(0.458152\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.06747 7.06747i −0.366925 0.366925i
\(372\) 0 0
\(373\) −15.4630 −0.800642 −0.400321 0.916375i \(-0.631101\pi\)
−0.400321 + 0.916375i \(0.631101\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0879 + 24.0879i 1.24059 + 1.24059i
\(378\) 0 0
\(379\) −5.34520 5.34520i −0.274564 0.274564i 0.556370 0.830935i \(-0.312194\pi\)
−0.830935 + 0.556370i \(0.812194\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.1244i 0.517333i 0.965967 + 0.258666i \(0.0832830\pi\)
−0.965967 + 0.258666i \(0.916717\pi\)
\(384\) 0 0
\(385\) 2.41369 2.41369i 0.123013 0.123013i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.6889i 0.643355i 0.946849 + 0.321677i \(0.104247\pi\)
−0.946849 + 0.321677i \(0.895753\pi\)
\(390\) 0 0
\(391\) 19.8412 33.9638i 1.00341 1.71762i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.4999 −0.729567
\(396\) 0 0
\(397\) −16.5441 + 16.5441i −0.830323 + 0.830323i −0.987561 0.157238i \(-0.949741\pi\)
0.157238 + 0.987561i \(0.449741\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.99397 + 7.99397i −0.399200 + 0.399200i −0.877951 0.478751i \(-0.841090\pi\)
0.478751 + 0.877951i \(0.341090\pi\)
\(402\) 0 0
\(403\) 19.1958 + 19.1958i 0.956211 + 0.956211i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.99395 −0.346677
\(408\) 0 0
\(409\) −21.1081 −1.04373 −0.521864 0.853029i \(-0.674763\pi\)
−0.521864 + 0.853029i \(0.674763\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.35558 + 8.35558i 0.411151 + 0.411151i
\(414\) 0 0
\(415\) −1.07484 + 1.07484i −0.0527619 + 0.0527619i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.2384 14.2384i 0.695589 0.695589i −0.267867 0.963456i \(-0.586319\pi\)
0.963456 + 0.267867i \(0.0863187\pi\)
\(420\) 0 0
\(421\) 11.6969 0.570072 0.285036 0.958517i \(-0.407995\pi\)
0.285036 + 0.958517i \(0.407995\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.04677 3.98802i −0.0507757 0.193447i
\(426\) 0 0
\(427\) 30.2867i 1.46568i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.04736 + 2.04736i −0.0986177 + 0.0986177i −0.754694 0.656077i \(-0.772215\pi\)
0.656077 + 0.754694i \(0.272215\pi\)
\(432\) 0 0
\(433\) 19.7898i 0.951038i −0.879705 0.475519i \(-0.842260\pi\)
0.879705 0.475519i \(-0.157740\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.0916 + 23.0916i 1.10462 + 1.10462i
\(438\) 0 0
\(439\) −25.0903 25.0903i −1.19749 1.19749i −0.974914 0.222580i \(-0.928552\pi\)
−0.222580 0.974914i \(-0.571448\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.7915 0.702763 0.351382 0.936232i \(-0.385712\pi\)
0.351382 + 0.936232i \(0.385712\pi\)
\(444\) 0 0
\(445\) −3.02968 3.02968i −0.143621 0.143621i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.2258 12.2258i 0.576973 0.576973i −0.357095 0.934068i \(-0.616233\pi\)
0.934068 + 0.357095i \(0.116233\pi\)
\(450\) 0 0
\(451\) 14.2477i 0.670898i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.49436 −0.445102
\(456\) 0 0
\(457\) 4.94745i 0.231432i −0.993282 0.115716i \(-0.963084\pi\)
0.993282 0.115716i \(-0.0369163\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.14971i 0.426145i 0.977036 + 0.213072i \(0.0683470\pi\)
−0.977036 + 0.213072i \(0.931653\pi\)
\(462\) 0 0
\(463\) 9.60773 0.446509 0.223255 0.974760i \(-0.428332\pi\)
0.223255 + 0.974760i \(0.428332\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.2164i 0.704132i 0.935975 + 0.352066i \(0.114521\pi\)
−0.935975 + 0.352066i \(0.885479\pi\)
\(468\) 0 0
\(469\) 21.9311 21.9311i 1.01268 1.01268i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.48192 + 6.48192i 0.298039 + 0.298039i
\(474\) 0 0
\(475\) 3.42309 0.157062
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.1721 11.1721i −0.510466 0.510466i 0.404203 0.914669i \(-0.367549\pi\)
−0.914669 + 0.404203i \(0.867549\pi\)
\(480\) 0 0
\(481\) 13.7555 + 13.7555i 0.627197 + 0.627197i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.55960i 0.116225i
\(486\) 0 0
\(487\) 8.29075 8.29075i 0.375690 0.375690i −0.493855 0.869545i \(-0.664412\pi\)
0.869545 + 0.493855i \(0.164412\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.73370i 0.303888i 0.988389 + 0.151944i \(0.0485533\pi\)
−0.988389 + 0.151944i \(0.951447\pi\)
\(492\) 0 0
\(493\) 35.6516 + 20.8271i 1.60567 + 0.938008i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.05139 −0.0471613
\(498\) 0 0
\(499\) 19.5901 19.5901i 0.876972 0.876972i −0.116248 0.993220i \(-0.537087\pi\)
0.993220 + 0.116248i \(0.0370868\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.00563 7.00563i 0.312366 0.312366i −0.533460 0.845825i \(-0.679108\pi\)
0.845825 + 0.533460i \(0.179108\pi\)
\(504\) 0 0
\(505\) −2.00295 2.00295i −0.0891303 0.0891303i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.2748 −0.455423 −0.227712 0.973729i \(-0.573124\pi\)
−0.227712 + 0.973729i \(0.573124\pi\)
\(510\) 0 0
\(511\) 27.5269 1.21772
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.55049 + 3.55049i 0.156453 + 0.156453i
\(516\) 0 0
\(517\) −7.44937 + 7.44937i −0.327623 + 0.327623i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.83069 6.83069i 0.299258 0.299258i −0.541465 0.840723i \(-0.682130\pi\)
0.840723 + 0.541465i \(0.182130\pi\)
\(522\) 0 0
\(523\) 8.21602 0.359262 0.179631 0.983734i \(-0.442510\pi\)
0.179631 + 0.983734i \(0.442510\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.4110 + 16.5973i 1.23760 + 0.722990i
\(528\) 0 0
\(529\) 68.0126i 2.95707i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −28.0220 + 28.0220i −1.21377 + 1.21377i
\(534\) 0 0
\(535\) 0.626391i 0.0270812i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.683084 0.683084i −0.0294225 0.0294225i
\(540\) 0 0
\(541\) −24.1876 24.1876i −1.03991 1.03991i −0.999170 0.0407372i \(-0.987029\pi\)
−0.0407372 0.999170i \(-0.512971\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.1635 0.606698
\(546\) 0 0
\(547\) 15.8269 + 15.8269i 0.676711 + 0.676711i 0.959254 0.282544i \(-0.0911782\pi\)
−0.282544 + 0.959254i \(0.591178\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −24.2391 + 24.2391i −1.03262 + 1.03262i
\(552\) 0 0
\(553\) 40.4696i 1.72094i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.3875 1.11807 0.559036 0.829143i \(-0.311171\pi\)
0.559036 + 0.829143i \(0.311171\pi\)
\(558\) 0 0
\(559\) 25.4969i 1.07840i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.35687i 0.141475i 0.997495 + 0.0707376i \(0.0225353\pi\)
−0.997495 + 0.0707376i \(0.977465\pi\)
\(564\) 0 0
\(565\) 10.0727 0.423761
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.4229i 1.77846i −0.457458 0.889231i \(-0.651240\pi\)
0.457458 0.889231i \(-0.348760\pi\)
\(570\) 0 0
\(571\) −9.57415 + 9.57415i −0.400666 + 0.400666i −0.878468 0.477802i \(-0.841434\pi\)
0.477802 + 0.878468i \(0.341434\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.74584 6.74584i −0.281321 0.281321i
\(576\) 0 0
\(577\) 20.7010 0.861792 0.430896 0.902402i \(-0.358198\pi\)
0.430896 + 0.902402i \(0.358198\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.99992 + 2.99992i 0.124458 + 0.124458i
\(582\) 0 0
\(583\) −3.09692 3.09692i −0.128261 0.128261i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 33.1051i 1.36639i 0.730235 + 0.683197i \(0.239411\pi\)
−0.730235 + 0.683197i \(0.760589\pi\)
\(588\) 0 0
\(589\) −19.3163 + 19.3163i −0.795916 + 0.795916i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.1110i 0.456276i −0.973629 0.228138i \(-0.926736\pi\)
0.973629 0.228138i \(-0.0732637\pi\)
\(594\) 0 0
\(595\) −11.1307 + 2.92157i −0.456314 + 0.119773i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 38.6224 1.57807 0.789034 0.614349i \(-0.210581\pi\)
0.789034 + 0.614349i \(0.210581\pi\)
\(600\) 0 0
\(601\) −10.5195 + 10.5195i −0.429099 + 0.429099i −0.888321 0.459223i \(-0.848128\pi\)
0.459223 + 0.888321i \(0.348128\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.72051 + 6.72051i −0.273228 + 0.273228i
\(606\) 0 0
\(607\) −22.2976 22.2976i −0.905031 0.905031i 0.0908348 0.995866i \(-0.471046\pi\)
−0.995866 + 0.0908348i \(0.971046\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.3024 1.18545
\(612\) 0 0
\(613\) 4.65730 0.188107 0.0940533 0.995567i \(-0.470018\pi\)
0.0940533 + 0.995567i \(0.470018\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29.1461 29.1461i −1.17338 1.17338i −0.981399 0.191978i \(-0.938510\pi\)
−0.191978 0.981399i \(-0.561490\pi\)
\(618\) 0 0
\(619\) 6.07033 6.07033i 0.243987 0.243987i −0.574510 0.818497i \(-0.694807\pi\)
0.818497 + 0.574510i \(0.194807\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.45594 + 8.45594i −0.338780 + 0.338780i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.3590 + 11.8934i 0.811767 + 0.474223i
\(630\) 0 0
\(631\) 17.3123i 0.689192i 0.938751 + 0.344596i \(0.111984\pi\)
−0.938751 + 0.344596i \(0.888016\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.1626 11.1626i 0.442974 0.442974i
\(636\) 0 0
\(637\) 2.68694i 0.106460i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.0134 + 11.0134i 0.435002 + 0.435002i 0.890326 0.455324i \(-0.150476\pi\)
−0.455324 + 0.890326i \(0.650476\pi\)
\(642\) 0 0
\(643\) 7.87307 + 7.87307i 0.310484 + 0.310484i 0.845097 0.534613i \(-0.179543\pi\)
−0.534613 + 0.845097i \(0.679543\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.7228 −0.618129 −0.309064 0.951041i \(-0.600016\pi\)
−0.309064 + 0.951041i \(0.600016\pi\)
\(648\) 0 0
\(649\) 3.66136 + 3.66136i 0.143721 + 0.143721i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.7020 18.7020i 0.731866 0.731866i −0.239123 0.970989i \(-0.576860\pi\)
0.970989 + 0.239123i \(0.0768600\pi\)
\(654\) 0 0
\(655\) 11.6233i 0.454161i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −31.7204 −1.23565 −0.617826 0.786315i \(-0.711986\pi\)
−0.617826 + 0.786315i \(0.711986\pi\)
\(660\) 0 0
\(661\) 41.6769i 1.62105i 0.585707 + 0.810523i \(0.300817\pi\)
−0.585707 + 0.810523i \(0.699183\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.55397i 0.370487i
\(666\) 0 0
\(667\) 95.5353 3.69914
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 13.2715i 0.512339i
\(672\) 0 0
\(673\) −1.85204 + 1.85204i −0.0713907 + 0.0713907i −0.741901 0.670510i \(-0.766075\pi\)
0.670510 + 0.741901i \(0.266075\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.46007 8.46007i −0.325147 0.325147i 0.525591 0.850738i \(-0.323844\pi\)
−0.850738 + 0.525591i \(0.823844\pi\)
\(678\) 0 0
\(679\) −7.14393 −0.274159
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.2066 + 14.2066i 0.543599 + 0.543599i 0.924582 0.380983i \(-0.124414\pi\)
−0.380983 + 0.924582i \(0.624414\pi\)
\(684\) 0 0
\(685\) −2.40539 2.40539i −0.0919052 0.0919052i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.1819i 0.464092i
\(690\) 0 0
\(691\) −14.9314 + 14.9314i −0.568017 + 0.568017i −0.931572 0.363556i \(-0.881563\pi\)
0.363556 + 0.931572i \(0.381563\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.73558i 0.293427i
\(696\) 0 0
\(697\) −24.2287 + 41.4743i −0.917727 + 1.57095i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 35.6241 1.34551 0.672753 0.739868i \(-0.265112\pi\)
0.672753 + 0.739868i \(0.265112\pi\)
\(702\) 0 0
\(703\) −13.8419 + 13.8419i −0.522056 + 0.522056i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.59031 + 5.59031i −0.210245 + 0.210245i
\(708\) 0 0
\(709\) 27.4579 + 27.4579i 1.03120 + 1.03120i 0.999497 + 0.0317069i \(0.0100943\pi\)
0.0317069 + 0.999497i \(0.489906\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 76.1328 2.85120
\(714\) 0 0
\(715\) −4.16037 −0.155589
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.29926 + 7.29926i 0.272217 + 0.272217i 0.829992 0.557775i \(-0.188345\pi\)
−0.557775 + 0.829992i \(0.688345\pi\)
\(720\) 0 0
\(721\) 9.90953 9.90953i 0.369050 0.369050i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.08106 7.08106i 0.262984 0.262984i
\(726\) 0 0
\(727\) −36.4252 −1.35094 −0.675468 0.737389i \(-0.736059\pi\)
−0.675468 + 0.737389i \(0.736059\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.84581 29.8913i −0.290188 1.10557i
\(732\) 0 0
\(733\) 33.2356i 1.22759i 0.789467 + 0.613793i \(0.210357\pi\)
−0.789467 + 0.613793i \(0.789643\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.61008 9.61008i 0.353992 0.353992i
\(738\) 0 0
\(739\) 11.8455i 0.435745i 0.975977 + 0.217872i \(0.0699116\pi\)
−0.975977 + 0.217872i \(0.930088\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.4200 12.4200i −0.455645 0.455645i 0.441578 0.897223i \(-0.354419\pi\)
−0.897223 + 0.441578i \(0.854419\pi\)
\(744\) 0 0
\(745\) −3.22558 3.22558i −0.118176 0.118176i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.74828 −0.0638807
\(750\) 0 0
\(751\) −11.8641 11.8641i −0.432927 0.432927i 0.456696 0.889623i \(-0.349033\pi\)
−0.889623 + 0.456696i \(0.849033\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.02420 9.02420i 0.328424 0.328424i
\(756\) 0 0
\(757\) 45.4038i 1.65023i −0.564966 0.825114i \(-0.691111\pi\)
0.564966 0.825114i \(-0.308889\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.72830 0.316401 0.158200 0.987407i \(-0.449431\pi\)
0.158200 + 0.987407i \(0.449431\pi\)
\(762\) 0 0
\(763\) 39.5309i 1.43111i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.4021i 0.520031i
\(768\) 0 0
\(769\) −0.280789 −0.0101255 −0.00506276 0.999987i \(-0.501612\pi\)
−0.00506276 + 0.999987i \(0.501612\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.6221i 0.525922i 0.964807 + 0.262961i \(0.0846990\pi\)
−0.964807 + 0.262961i \(0.915301\pi\)
\(774\) 0 0
\(775\) 5.64295 5.64295i 0.202701 0.202701i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −28.1979 28.1979i −1.01029 1.01029i
\(780\) 0 0
\(781\) −0.460713 −0.0164856
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.8737 + 15.8737i 0.566556 + 0.566556i
\(786\) 0 0
\(787\) −30.0405 30.0405i −1.07083 1.07083i −0.997293 0.0735341i \(-0.976572\pi\)
−0.0735341 0.997293i \(-0.523428\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 28.1132i 0.999590i
\(792\) 0 0
\(793\) 26.1019 26.1019i 0.926906 0.926906i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.4840i 1.39860i −0.714831 0.699298i \(-0.753496\pi\)
0.714831 0.699298i \(-0.246504\pi\)
\(798\) 0 0
\(799\) 34.3526 9.01682i 1.21531 0.318992i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0621 0.425664
\(804\) 0 0
\(805\) −18.8279 + 18.8279i −0.663595 + 0.663595i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.5276 22.5276i 0.792030 0.792030i −0.189794 0.981824i \(-0.560782\pi\)
0.981824 + 0.189794i \(0.0607820\pi\)
\(810\) 0 0
\(811\) −30.7078 30.7078i −1.07830 1.07830i −0.996662 0.0816334i \(-0.973986\pi\)
−0.0816334 0.996662i \(-0.526014\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.85862 0.100133
\(816\) 0 0
\(817\) 25.6570 0.897625
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.72368 + 6.72368i 0.234658 + 0.234658i 0.814634 0.579976i \(-0.196938\pi\)
−0.579976 + 0.814634i \(0.696938\pi\)
\(822\) 0 0
\(823\) −15.5249 + 15.5249i −0.541165 + 0.541165i −0.923870 0.382706i \(-0.874992\pi\)
0.382706 + 0.923870i \(0.374992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −27.8026 + 27.8026i −0.966791 + 0.966791i −0.999466 0.0326746i \(-0.989598\pi\)
0.0326746 + 0.999466i \(0.489598\pi\)
\(828\) 0 0
\(829\) −7.75039 −0.269182 −0.134591 0.990901i \(-0.542972\pi\)
−0.134591 + 0.990901i \(0.542972\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.826814 + 3.15003i 0.0286474 + 0.109142i
\(834\) 0 0
\(835\) 0.0654903i 0.00226639i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.10722 + 8.10722i −0.279892 + 0.279892i −0.833066 0.553174i \(-0.813417\pi\)
0.553174 + 0.833066i \(0.313417\pi\)
\(840\) 0 0
\(841\) 71.2827i 2.45803i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.00989 1.00989i −0.0347414 0.0347414i
\(846\) 0 0
\(847\) 18.7572 + 18.7572i 0.644504 + 0.644504i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 54.5559 1.87015
\(852\) 0 0
\(853\) 19.5663 + 19.5663i 0.669936 + 0.669936i 0.957701 0.287765i \(-0.0929123\pi\)
−0.287765 + 0.957701i \(0.592912\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.79301 + 3.79301i −0.129567 + 0.129567i −0.768916 0.639349i \(-0.779204\pi\)
0.639349 + 0.768916i \(0.279204\pi\)
\(858\) 0 0
\(859\) 8.60568i 0.293622i −0.989165 0.146811i \(-0.953099\pi\)
0.989165 0.146811i \(-0.0469009\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −54.1029 −1.84168 −0.920841 0.389937i \(-0.872497\pi\)
−0.920841 + 0.389937i \(0.872497\pi\)
\(864\) 0 0
\(865\) 14.5329i 0.494134i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 17.7335i 0.601569i
\(870\) 0 0
\(871\) −37.8016 −1.28086
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.79103i 0.0943542i
\(876\) 0 0
\(877\) 37.1480 37.1480i 1.25440 1.25440i 0.300671 0.953728i \(-0.402789\pi\)
0.953728 0.300671i \(-0.0972107\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 21.8952 + 21.8952i 0.737667 + 0.737667i 0.972126 0.234459i \(-0.0753318\pi\)
−0.234459 + 0.972126i \(0.575332\pi\)
\(882\) 0 0
\(883\) 38.5522 1.29739 0.648693 0.761051i \(-0.275316\pi\)
0.648693 + 0.761051i \(0.275316\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.4598 14.4598i −0.485512 0.485512i 0.421375 0.906887i \(-0.361548\pi\)
−0.906887 + 0.421375i \(0.861548\pi\)
\(888\) 0 0
\(889\) −31.1552 31.1552i −1.04491 1.04491i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 29.4864i 0.986725i
\(894\) 0 0
\(895\) 15.2711 15.2711i 0.510458 0.510458i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 79.9161i 2.66535i
\(900\) 0 0
\(901\) 3.74856 + 14.2814i 0.124883 + 0.475782i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.65552 −0.121514
\(906\) 0 0
\(907\) 2.10137 2.10137i 0.0697748 0.0697748i −0.671358 0.741133i \(-0.734289\pi\)
0.741133 + 0.671358i \(0.234289\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.3384 18.3384i 0.607579 0.607579i −0.334733 0.942313i \(-0.608646\pi\)
0.942313 + 0.334733i \(0.108646\pi\)
\(912\) 0 0
\(913\) 1.31455 + 1.31455i 0.0435051 + 0.0435051i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −32.4411 −1.07130
\(918\) 0 0
\(919\) −13.2875 −0.438313 −0.219157 0.975690i \(-0.570331\pi\)
−0.219157 + 0.975690i \(0.570331\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.906118 + 0.906118i 0.0298252 + 0.0298252i
\(924\) 0 0
\(925\) 4.04367 4.04367i 0.132955 0.132955i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.35997 + 3.35997i −0.110237 + 0.110237i −0.760074 0.649837i \(-0.774837\pi\)
0.649837 + 0.760074i \(0.274837\pi\)
\(930\) 0 0
\(931\) −2.70381 −0.0886138
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.87740 + 1.28021i −0.159508 + 0.0418674i
\(936\) 0 0
\(937\) 13.3082i 0.434759i 0.976087 + 0.217380i \(0.0697509\pi\)
−0.976087 + 0.217380i \(0.930249\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.04861 3.04861i 0.0993817 0.0993817i −0.655668 0.755050i \(-0.727613\pi\)
0.755050 + 0.655668i \(0.227613\pi\)
\(942\) 0 0
\(943\) 111.138i 3.61916i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.5353 + 38.5353i 1.25223 + 1.25223i 0.954719 + 0.297510i \(0.0961563\pi\)
0.297510 + 0.954719i \(0.403844\pi\)
\(948\) 0 0
\(949\) −23.7235 23.7235i −0.770096 0.770096i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −31.4405 −1.01846 −0.509229 0.860631i \(-0.670069\pi\)
−0.509229 + 0.860631i \(0.670069\pi\)
\(954\) 0 0
\(955\) −16.1702 16.1702i −0.523256 0.523256i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.71352 + 6.71352i −0.216791 + 0.216791i
\(960\) 0 0
\(961\) 32.6857i 1.05438i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.20843 −0.232048
\(966\) 0 0
\(967\) 28.4642i 0.915347i 0.889120 + 0.457674i \(0.151317\pi\)
−0.889120 + 0.457674i \(0.848683\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.9224i 1.44163i 0.693128 + 0.720815i \(0.256232\pi\)
−0.693128 + 0.720815i \(0.743768\pi\)
\(972\) 0 0
\(973\) −21.5903 −0.692153
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.8272i 1.21020i 0.796150 + 0.605100i \(0.206867\pi\)
−0.796150 + 0.605100i \(0.793133\pi\)
\(978\) 0 0
\(979\) −3.70534 + 3.70534i −0.118423 + 0.118423i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 26.7685 + 26.7685i 0.853783 + 0.853783i 0.990597 0.136814i \(-0.0436862\pi\)
−0.136814 + 0.990597i \(0.543686\pi\)
\(984\) 0 0
\(985\) −16.0793 −0.512330
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −50.5619 50.5619i −1.60777 1.60777i
\(990\) 0 0
\(991\) −12.6185 12.6185i −0.400838 0.400838i 0.477690 0.878528i \(-0.341474\pi\)
−0.878528 + 0.477690i \(0.841474\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.5825i 0.335487i
\(996\) 0 0
\(997\) 36.3754 36.3754i 1.15202 1.15202i 0.165872 0.986147i \(-0.446956\pi\)
0.986147 0.165872i \(-0.0530440\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.be.b.1441.6 12
3.2 odd 2 340.2.o.a.81.3 yes 12
12.11 even 2 1360.2.bt.c.81.4 12
15.2 even 4 1700.2.m.f.149.3 12
15.8 even 4 1700.2.m.c.149.4 12
15.14 odd 2 1700.2.o.d.1101.4 12
17.4 even 4 inner 3060.2.be.b.361.6 12
51.2 odd 8 5780.2.a.n.1.4 6
51.8 odd 8 5780.2.c.h.5201.7 12
51.26 odd 8 5780.2.c.h.5201.6 12
51.32 odd 8 5780.2.a.m.1.3 6
51.38 odd 4 340.2.o.a.21.3 12
204.191 even 4 1360.2.bt.c.1041.4 12
255.38 even 4 1700.2.m.f.1449.3 12
255.89 odd 4 1700.2.o.d.701.4 12
255.242 even 4 1700.2.m.c.1449.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.o.a.21.3 12 51.38 odd 4
340.2.o.a.81.3 yes 12 3.2 odd 2
1360.2.bt.c.81.4 12 12.11 even 2
1360.2.bt.c.1041.4 12 204.191 even 4
1700.2.m.c.149.4 12 15.8 even 4
1700.2.m.c.1449.4 12 255.242 even 4
1700.2.m.f.149.3 12 15.2 even 4
1700.2.m.f.1449.3 12 255.38 even 4
1700.2.o.d.701.4 12 255.89 odd 4
1700.2.o.d.1101.4 12 15.14 odd 2
3060.2.be.b.361.6 12 17.4 even 4 inner
3060.2.be.b.1441.6 12 1.1 even 1 trivial
5780.2.a.m.1.3 6 51.32 odd 8
5780.2.a.n.1.4 6 51.2 odd 8
5780.2.c.h.5201.6 12 51.26 odd 8
5780.2.c.h.5201.7 12 51.8 odd 8