Defining parameters
Level: | \( N \) | \(=\) | \( 3064 = 2^{3} \cdot 383 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3064.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3064))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 388 | 96 | 292 |
Cusp forms | 381 | 96 | 285 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(383\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(21\) |
\(+\) | \(-\) | \(-\) | \(27\) |
\(-\) | \(+\) | \(-\) | \(27\) |
\(-\) | \(-\) | \(+\) | \(21\) |
Plus space | \(+\) | \(42\) | |
Minus space | \(-\) | \(54\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3064))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 383 | |||||||
3064.2.a.a | $2$ | $24.466$ | \(\Q(\sqrt{21}) \) | None | \(0\) | \(1\) | \(-3\) | \(-6\) | $-$ | $-$ | \(q+\beta q^{3}+(-2+\beta )q^{5}-3q^{7}+(2+\beta )q^{9}+\cdots\) | |
3064.2.a.b | $3$ | $24.466$ | 3.3.469.1 | None | \(0\) | \(1\) | \(-1\) | \(-2\) | $-$ | $+$ | \(q+\beta _{1}q^{3}-\beta _{1}q^{5}+(-\beta _{1}+\beta _{2})q^{7}+\cdots\) | |
3064.2.a.c | $19$ | $24.466$ | \(\mathbb{Q}[x]/(x^{19} - \cdots)\) | None | \(0\) | \(-4\) | \(-7\) | \(11\) | $-$ | $-$ | \(q-\beta _{1}q^{3}+\beta _{5}q^{5}+(-\beta _{8}-\beta _{10})q^{7}+\cdots\) | |
3064.2.a.d | $21$ | $24.466$ | None | \(0\) | \(-5\) | \(-2\) | \(-11\) | $+$ | $+$ | |||
3064.2.a.e | $24$ | $24.466$ | None | \(0\) | \(0\) | \(11\) | \(-5\) | $-$ | $+$ | |||
3064.2.a.f | $27$ | $24.466$ | None | \(0\) | \(7\) | \(0\) | \(13\) | $+$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3064))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3064)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(383))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(766))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1532))\)\(^{\oplus 2}\)