Properties

Label 3072.1.i.d
Level 30723072
Weight 11
Character orbit 3072.i
Analytic conductor 1.5331.533
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3072,1,Mod(257,3072)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3072, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3072.257");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3072=2103 3072 = 2^{10} \cdot 3
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3072.i (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.533127718811.53312771881
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1536)
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.9216.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+q3+q9+(i+1)q112iq17+(i1)q19+iq25+q27+(i+1)q33+(i1)q43+q492iq51+(i1)q57+(i1)q59+(i1)q67++(i+1)q99+O(q100) q + q^{3} + q^{9} + ( - i + 1) q^{11} - 2 i q^{17} + (i - 1) q^{19} + i q^{25} + q^{27} + ( - i + 1) q^{33} + ( - i - 1) q^{43} + q^{49} - 2 i q^{51} + (i - 1) q^{57} + (i - 1) q^{59} + (i - 1) q^{67} + \cdots + ( - i + 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q3+2q9+2q112q19+2q27+2q332q43+2q492q572q592q67+2q81+2q83+4q89+2q99+O(q100) 2 q + 2 q^{3} + 2 q^{9} + 2 q^{11} - 2 q^{19} + 2 q^{27} + 2 q^{33} - 2 q^{43} + 2 q^{49} - 2 q^{57} - 2 q^{59} - 2 q^{67} + 2 q^{81} + 2 q^{83} + 4 q^{89} + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3072Z)×\left(\mathbb{Z}/3072\mathbb{Z}\right)^\times.

nn 10251025 20472047 20532053
χ(n)\chi(n) 1-1 11 ii

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
257.1
1.00000i
1.00000i
0 1.00000 0 0 0 0 0 1.00000 0
1793.1 0 1.00000 0 0 0 0 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
48.i odd 4 1 inner
48.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3072.1.i.d 2
3.b odd 2 1 3072.1.i.b 2
4.b odd 2 1 3072.1.i.a 2
8.b even 2 1 3072.1.i.a 2
8.d odd 2 1 CM 3072.1.i.d 2
12.b even 2 1 3072.1.i.c 2
16.e even 4 1 3072.1.i.b 2
16.e even 4 1 3072.1.i.c 2
16.f odd 4 1 3072.1.i.b 2
16.f odd 4 1 3072.1.i.c 2
24.f even 2 1 3072.1.i.b 2
24.h odd 2 1 3072.1.i.c 2
32.g even 8 2 1536.1.e.b 4
32.g even 8 2 1536.1.h.c 4
32.h odd 8 2 1536.1.e.b 4
32.h odd 8 2 1536.1.h.c 4
48.i odd 4 1 3072.1.i.a 2
48.i odd 4 1 inner 3072.1.i.d 2
48.k even 4 1 3072.1.i.a 2
48.k even 4 1 inner 3072.1.i.d 2
96.o even 8 2 1536.1.e.b 4
96.o even 8 2 1536.1.h.c 4
96.p odd 8 2 1536.1.e.b 4
96.p odd 8 2 1536.1.h.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.1.e.b 4 32.g even 8 2
1536.1.e.b 4 32.h odd 8 2
1536.1.e.b 4 96.o even 8 2
1536.1.e.b 4 96.p odd 8 2
1536.1.h.c 4 32.g even 8 2
1536.1.h.c 4 32.h odd 8 2
1536.1.h.c 4 96.o even 8 2
1536.1.h.c 4 96.p odd 8 2
3072.1.i.a 2 4.b odd 2 1
3072.1.i.a 2 8.b even 2 1
3072.1.i.a 2 48.i odd 4 1
3072.1.i.a 2 48.k even 4 1
3072.1.i.b 2 3.b odd 2 1
3072.1.i.b 2 16.e even 4 1
3072.1.i.b 2 16.f odd 4 1
3072.1.i.b 2 24.f even 2 1
3072.1.i.c 2 12.b even 2 1
3072.1.i.c 2 16.e even 4 1
3072.1.i.c 2 16.f odd 4 1
3072.1.i.c 2 24.h odd 2 1
3072.1.i.d 2 1.a even 1 1 trivial
3072.1.i.d 2 8.d odd 2 1 CM
3072.1.i.d 2 48.i odd 4 1 inner
3072.1.i.d 2 48.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3072,[χ])S_{1}^{\mathrm{new}}(3072, [\chi]):

T5 T_{5} Copy content Toggle raw display
T1122T11+2 T_{11}^{2} - 2T_{11} + 2 Copy content Toggle raw display
T192+2T19+2 T_{19}^{2} + 2T_{19} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T1)2 (T - 1)^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
8989 (T2)2 (T - 2)^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less