Properties

Label 308.2.d.a.43.4
Level $308$
Weight $2$
Character 308.43
Analytic conductor $2.459$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(43,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} - 2 x^{15} + 3 x^{14} - 3 x^{13} + 4 x^{12} - 14 x^{11} + 12 x^{10} + 16 x^{9} + \cdots + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 43.4
Root \(1.35077 + 0.418821i\) of defining polynomial
Character \(\chi\) \(=\) 308.43
Dual form 308.2.d.a.43.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35077 + 0.418821i) q^{2} +1.57463i q^{3} +(1.64918 - 1.13146i) q^{4} +1.58188 q^{5} +(-0.659487 - 2.12696i) q^{6} +1.00000 q^{7} +(-1.75378 + 2.21906i) q^{8} +0.520549 q^{9} +(-2.13676 + 0.662524i) q^{10} +(3.03811 - 1.33037i) q^{11} +(1.78164 + 2.59684i) q^{12} -2.62307i q^{13} +(-1.35077 + 0.418821i) q^{14} +2.49087i q^{15} +(1.43957 - 3.73197i) q^{16} -0.750224i q^{17} +(-0.703144 + 0.218017i) q^{18} +1.14137 q^{19} +(2.60880 - 1.78984i) q^{20} +1.57463i q^{21} +(-3.54662 + 3.06945i) q^{22} +3.83223i q^{23} +(-3.49420 - 2.76156i) q^{24} -2.49766 q^{25} +(1.09860 + 3.54318i) q^{26} +5.54355i q^{27} +(1.64918 - 1.13146i) q^{28} +9.02097i q^{29} +(-1.04323 - 3.36460i) q^{30} -4.41685i q^{31} +(-0.381509 + 5.64397i) q^{32} +(2.09483 + 4.78389i) q^{33} +(0.314210 + 1.01338i) q^{34} +1.58188 q^{35} +(0.858478 - 0.588983i) q^{36} -2.80558 q^{37} +(-1.54174 + 0.478031i) q^{38} +4.13036 q^{39} +(-2.77427 + 3.51029i) q^{40} +0.250697i q^{41} +(-0.659487 - 2.12696i) q^{42} +1.82459 q^{43} +(3.50512 - 5.63153i) q^{44} +0.823446 q^{45} +(-1.60502 - 5.17647i) q^{46} +4.73143i q^{47} +(5.87647 + 2.26679i) q^{48} +1.00000 q^{49} +(3.37377 - 1.04607i) q^{50} +1.18132 q^{51} +(-2.96791 - 4.32591i) q^{52} -9.11425 q^{53} +(-2.32176 - 7.48808i) q^{54} +(4.80592 - 2.10448i) q^{55} +(-1.75378 + 2.21906i) q^{56} +1.79724i q^{57} +(-3.77817 - 12.1853i) q^{58} -14.5290i q^{59} +(2.81833 + 4.10788i) q^{60} -7.65849i q^{61} +(1.84987 + 5.96616i) q^{62} +0.520549 q^{63} +(-1.84848 - 7.78352i) q^{64} -4.14938i q^{65} +(-4.83324 - 5.58460i) q^{66} -8.00407i q^{67} +(-0.848852 - 1.23725i) q^{68} -6.03433 q^{69} +(-2.13676 + 0.662524i) q^{70} +11.4380i q^{71} +(-0.912931 + 1.15513i) q^{72} +0.267868i q^{73} +(3.78970 - 1.17503i) q^{74} -3.93289i q^{75} +(1.88233 - 1.29142i) q^{76} +(3.03811 - 1.33037i) q^{77} +(-5.57918 + 1.72988i) q^{78} -6.72244 q^{79} +(2.27723 - 5.90353i) q^{80} -7.16738 q^{81} +(-0.104997 - 0.338635i) q^{82} +1.20081 q^{83} +(1.78164 + 2.59684i) q^{84} -1.18676i q^{85} +(-2.46461 + 0.764178i) q^{86} -14.2047 q^{87} +(-2.37602 + 9.07494i) q^{88} +10.6509 q^{89} +(-1.11229 + 0.344876i) q^{90} -2.62307i q^{91} +(4.33603 + 6.32002i) q^{92} +6.95489 q^{93} +(-1.98162 - 6.39109i) q^{94} +1.80551 q^{95} +(-8.88716 - 0.600735i) q^{96} -12.3457 q^{97} +(-1.35077 + 0.418821i) q^{98} +(1.58149 - 0.692521i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - q^{2} + q^{4} + 18 q^{7} - 7 q^{8} - 22 q^{9} + 6 q^{10} + 4 q^{11} - 8 q^{12} - q^{14} - 3 q^{16} + 5 q^{18} + 8 q^{19} - 10 q^{20} - 7 q^{22} + 28 q^{24} + 18 q^{25} - 26 q^{26} + q^{28} + 32 q^{30}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35077 + 0.418821i −0.955141 + 0.296151i
\(3\) 1.57463i 0.909111i 0.890718 + 0.454556i \(0.150202\pi\)
−0.890718 + 0.454556i \(0.849798\pi\)
\(4\) 1.64918 1.13146i 0.824589 0.565732i
\(5\) 1.58188 0.707437 0.353719 0.935352i \(-0.384917\pi\)
0.353719 + 0.935352i \(0.384917\pi\)
\(6\) −0.659487 2.12696i −0.269235 0.868330i
\(7\) 1.00000 0.377964
\(8\) −1.75378 + 2.21906i −0.620056 + 0.784557i
\(9\) 0.520549 0.173516
\(10\) −2.13676 + 0.662524i −0.675703 + 0.209509i
\(11\) 3.03811 1.33037i 0.916025 0.401121i
\(12\) 1.78164 + 2.59684i 0.514314 + 0.749643i
\(13\) 2.62307i 0.727509i −0.931495 0.363755i \(-0.881495\pi\)
0.931495 0.363755i \(-0.118505\pi\)
\(14\) −1.35077 + 0.418821i −0.361009 + 0.111935i
\(15\) 2.49087i 0.643139i
\(16\) 1.43957 3.73197i 0.359894 0.932993i
\(17\) 0.750224i 0.181956i −0.995853 0.0909781i \(-0.971001\pi\)
0.995853 0.0909781i \(-0.0289993\pi\)
\(18\) −0.703144 + 0.218017i −0.165733 + 0.0513871i
\(19\) 1.14137 0.261849 0.130924 0.991392i \(-0.458205\pi\)
0.130924 + 0.991392i \(0.458205\pi\)
\(20\) 2.60880 1.78984i 0.583345 0.400220i
\(21\) 1.57463i 0.343612i
\(22\) −3.54662 + 3.06945i −0.756141 + 0.654409i
\(23\) 3.83223i 0.799075i 0.916717 + 0.399537i \(0.130829\pi\)
−0.916717 + 0.399537i \(0.869171\pi\)
\(24\) −3.49420 2.76156i −0.713250 0.563700i
\(25\) −2.49766 −0.499532
\(26\) 1.09860 + 3.54318i 0.215453 + 0.694874i
\(27\) 5.54355i 1.06686i
\(28\) 1.64918 1.13146i 0.311665 0.213827i
\(29\) 9.02097i 1.67515i 0.546321 + 0.837576i \(0.316028\pi\)
−0.546321 + 0.837576i \(0.683972\pi\)
\(30\) −1.04323 3.36460i −0.190467 0.614289i
\(31\) 4.41685i 0.793290i −0.917972 0.396645i \(-0.870174\pi\)
0.917972 0.396645i \(-0.129826\pi\)
\(32\) −0.381509 + 5.64397i −0.0674419 + 0.997723i
\(33\) 2.09483 + 4.78389i 0.364663 + 0.832769i
\(34\) 0.314210 + 1.01338i 0.0538865 + 0.173794i
\(35\) 1.58188 0.267386
\(36\) 0.858478 0.588983i 0.143080 0.0981639i
\(37\) −2.80558 −0.461234 −0.230617 0.973045i \(-0.574074\pi\)
−0.230617 + 0.973045i \(0.574074\pi\)
\(38\) −1.54174 + 0.478031i −0.250103 + 0.0775469i
\(39\) 4.13036 0.661387
\(40\) −2.77427 + 3.51029i −0.438651 + 0.555025i
\(41\) 0.250697i 0.0391523i 0.999808 + 0.0195761i \(0.00623168\pi\)
−0.999808 + 0.0195761i \(0.993768\pi\)
\(42\) −0.659487 2.12696i −0.101761 0.328198i
\(43\) 1.82459 0.278248 0.139124 0.990275i \(-0.455571\pi\)
0.139124 + 0.990275i \(0.455571\pi\)
\(44\) 3.50512 5.63153i 0.528417 0.848985i
\(45\) 0.823446 0.122752
\(46\) −1.60502 5.17647i −0.236647 0.763229i
\(47\) 4.73143i 0.690150i 0.938575 + 0.345075i \(0.112146\pi\)
−0.938575 + 0.345075i \(0.887854\pi\)
\(48\) 5.87647 + 2.26679i 0.848195 + 0.327183i
\(49\) 1.00000 0.142857
\(50\) 3.37377 1.04607i 0.477124 0.147937i
\(51\) 1.18132 0.165418
\(52\) −2.96791 4.32591i −0.411576 0.599896i
\(53\) −9.11425 −1.25194 −0.625969 0.779848i \(-0.715296\pi\)
−0.625969 + 0.779848i \(0.715296\pi\)
\(54\) −2.32176 7.48808i −0.315951 1.01900i
\(55\) 4.80592 2.10448i 0.648031 0.283768i
\(56\) −1.75378 + 2.21906i −0.234359 + 0.296535i
\(57\) 1.79724i 0.238050i
\(58\) −3.77817 12.1853i −0.496098 1.60001i
\(59\) 14.5290i 1.89152i −0.324869 0.945759i \(-0.605320\pi\)
0.324869 0.945759i \(-0.394680\pi\)
\(60\) 2.81833 + 4.10788i 0.363845 + 0.530326i
\(61\) 7.65849i 0.980569i −0.871562 0.490284i \(-0.836893\pi\)
0.871562 0.490284i \(-0.163107\pi\)
\(62\) 1.84987 + 5.96616i 0.234934 + 0.757704i
\(63\) 0.520549 0.0655830
\(64\) −1.84848 7.78352i −0.231060 0.972939i
\(65\) 4.14938i 0.514667i
\(66\) −4.83324 5.58460i −0.594931 0.687416i
\(67\) 8.00407i 0.977853i −0.872325 0.488926i \(-0.837389\pi\)
0.872325 0.488926i \(-0.162611\pi\)
\(68\) −0.848852 1.23725i −0.102938 0.150039i
\(69\) −6.03433 −0.726448
\(70\) −2.13676 + 0.662524i −0.255392 + 0.0791868i
\(71\) 11.4380i 1.35744i 0.734398 + 0.678719i \(0.237464\pi\)
−0.734398 + 0.678719i \(0.762536\pi\)
\(72\) −0.912931 + 1.15513i −0.107590 + 0.136134i
\(73\) 0.267868i 0.0313516i 0.999877 + 0.0156758i \(0.00498997\pi\)
−0.999877 + 0.0156758i \(0.995010\pi\)
\(74\) 3.78970 1.17503i 0.440543 0.136595i
\(75\) 3.93289i 0.454130i
\(76\) 1.88233 1.29142i 0.215918 0.148136i
\(77\) 3.03811 1.33037i 0.346225 0.151609i
\(78\) −5.57918 + 1.72988i −0.631718 + 0.195871i
\(79\) −6.72244 −0.756334 −0.378167 0.925737i \(-0.623445\pi\)
−0.378167 + 0.925737i \(0.623445\pi\)
\(80\) 2.27723 5.90353i 0.254602 0.660034i
\(81\) −7.16738 −0.796376
\(82\) −0.104997 0.338635i −0.0115950 0.0373960i
\(83\) 1.20081 0.131806 0.0659029 0.997826i \(-0.479007\pi\)
0.0659029 + 0.997826i \(0.479007\pi\)
\(84\) 1.78164 + 2.59684i 0.194392 + 0.283338i
\(85\) 1.18676i 0.128723i
\(86\) −2.46461 + 0.764178i −0.265766 + 0.0824035i
\(87\) −14.2047 −1.52290
\(88\) −2.37602 + 9.07494i −0.253285 + 0.967392i
\(89\) 10.6509 1.12899 0.564494 0.825437i \(-0.309071\pi\)
0.564494 + 0.825437i \(0.309071\pi\)
\(90\) −1.11229 + 0.344876i −0.117245 + 0.0363532i
\(91\) 2.62307i 0.274973i
\(92\) 4.33603 + 6.32002i 0.452063 + 0.658908i
\(93\) 6.95489 0.721189
\(94\) −1.98162 6.39109i −0.204389 0.659190i
\(95\) 1.80551 0.185242
\(96\) −8.88716 0.600735i −0.907042 0.0613122i
\(97\) −12.3457 −1.25352 −0.626758 0.779214i \(-0.715618\pi\)
−0.626758 + 0.779214i \(0.715618\pi\)
\(98\) −1.35077 + 0.418821i −0.136449 + 0.0423073i
\(99\) 1.58149 0.692521i 0.158945 0.0696010i
\(100\) −4.11909 + 2.82602i −0.411909 + 0.282602i
\(101\) 18.5310i 1.84390i −0.387307 0.921951i \(-0.626595\pi\)
0.387307 0.921951i \(-0.373405\pi\)
\(102\) −1.59570 + 0.494763i −0.157998 + 0.0489889i
\(103\) 3.44171i 0.339122i 0.985520 + 0.169561i \(0.0542349\pi\)
−0.985520 + 0.169561i \(0.945765\pi\)
\(104\) 5.82076 + 4.60030i 0.570773 + 0.451097i
\(105\) 2.49087i 0.243084i
\(106\) 12.3113 3.81724i 1.19578 0.370763i
\(107\) −13.6088 −1.31561 −0.657807 0.753186i \(-0.728516\pi\)
−0.657807 + 0.753186i \(0.728516\pi\)
\(108\) 6.27234 + 9.14230i 0.603556 + 0.879719i
\(109\) 4.90234i 0.469559i −0.972049 0.234779i \(-0.924563\pi\)
0.972049 0.234779i \(-0.0754368\pi\)
\(110\) −5.61031 + 4.85550i −0.534922 + 0.462953i
\(111\) 4.41773i 0.419313i
\(112\) 1.43957 3.73197i 0.136027 0.352638i
\(113\) 18.6980 1.75896 0.879480 0.475936i \(-0.157891\pi\)
0.879480 + 0.475936i \(0.157891\pi\)
\(114\) −0.752721 2.42766i −0.0704987 0.227371i
\(115\) 6.06212i 0.565295i
\(116\) 10.2069 + 14.8772i 0.947688 + 1.38131i
\(117\) 1.36544i 0.126235i
\(118\) 6.08506 + 19.6254i 0.560175 + 1.80667i
\(119\) 0.750224i 0.0687729i
\(120\) −5.52739 4.36845i −0.504580 0.398783i
\(121\) 7.46025 8.08361i 0.678204 0.734873i
\(122\) 3.20754 + 10.3449i 0.290397 + 0.936582i
\(123\) −0.394754 −0.0355938
\(124\) −4.99751 7.28417i −0.448790 0.654138i
\(125\) −11.8604 −1.06083
\(126\) −0.703144 + 0.218017i −0.0626411 + 0.0194225i
\(127\) 0.249900 0.0221751 0.0110875 0.999939i \(-0.496471\pi\)
0.0110875 + 0.999939i \(0.496471\pi\)
\(128\) 5.75678 + 9.73958i 0.508833 + 0.860866i
\(129\) 2.87305i 0.252958i
\(130\) 1.73785 + 5.60487i 0.152419 + 0.491580i
\(131\) −16.9727 −1.48292 −0.741458 0.671000i \(-0.765865\pi\)
−0.741458 + 0.671000i \(0.765865\pi\)
\(132\) 8.86756 + 5.51926i 0.771822 + 0.480390i
\(133\) 1.14137 0.0989696
\(134\) 3.35227 + 10.8117i 0.289592 + 0.933987i
\(135\) 8.76923i 0.754735i
\(136\) 1.66480 + 1.31573i 0.142755 + 0.112823i
\(137\) 8.45260 0.722155 0.361077 0.932536i \(-0.382409\pi\)
0.361077 + 0.932536i \(0.382409\pi\)
\(138\) 8.15101 2.52730i 0.693860 0.215138i
\(139\) 10.4874 0.889533 0.444766 0.895647i \(-0.353287\pi\)
0.444766 + 0.895647i \(0.353287\pi\)
\(140\) 2.60880 1.78984i 0.220484 0.151269i
\(141\) −7.45024 −0.627423
\(142\) −4.79046 15.4501i −0.402007 1.29654i
\(143\) −3.48965 7.96919i −0.291819 0.666417i
\(144\) 0.749369 1.94268i 0.0624474 0.161890i
\(145\) 14.2701i 1.18506i
\(146\) −0.112189 0.361829i −0.00928482 0.0299452i
\(147\) 1.57463i 0.129873i
\(148\) −4.62689 + 3.17441i −0.380328 + 0.260935i
\(149\) 17.5806i 1.44026i 0.693841 + 0.720128i \(0.255917\pi\)
−0.693841 + 0.720128i \(0.744083\pi\)
\(150\) 1.64718 + 5.31244i 0.134491 + 0.433759i
\(151\) 1.11949 0.0911028 0.0455514 0.998962i \(-0.485496\pi\)
0.0455514 + 0.998962i \(0.485496\pi\)
\(152\) −2.00172 + 2.53278i −0.162361 + 0.205435i
\(153\) 0.390529i 0.0315724i
\(154\) −3.54662 + 3.06945i −0.285794 + 0.247343i
\(155\) 6.98692i 0.561203i
\(156\) 6.81170 4.67336i 0.545372 0.374168i
\(157\) 8.38807 0.669441 0.334720 0.942318i \(-0.391358\pi\)
0.334720 + 0.942318i \(0.391358\pi\)
\(158\) 9.08050 2.81550i 0.722406 0.223989i
\(159\) 14.3515i 1.13815i
\(160\) −0.603501 + 8.92808i −0.0477110 + 0.705827i
\(161\) 3.83223i 0.302022i
\(162\) 9.68151 3.00185i 0.760651 0.235848i
\(163\) 4.32454i 0.338725i 0.985554 + 0.169362i \(0.0541708\pi\)
−0.985554 + 0.169362i \(0.945829\pi\)
\(164\) 0.283655 + 0.413444i 0.0221497 + 0.0322845i
\(165\) 3.31377 + 7.56754i 0.257977 + 0.589132i
\(166\) −1.62202 + 0.502924i −0.125893 + 0.0390345i
\(167\) −21.2610 −1.64523 −0.822614 0.568600i \(-0.807485\pi\)
−0.822614 + 0.568600i \(0.807485\pi\)
\(168\) −3.49420 2.76156i −0.269583 0.213059i
\(169\) 6.11949 0.470730
\(170\) 0.497042 + 1.60305i 0.0381214 + 0.122948i
\(171\) 0.594141 0.0454351
\(172\) 3.00908 2.06446i 0.229440 0.157414i
\(173\) 2.41069i 0.183282i −0.995792 0.0916408i \(-0.970789\pi\)
0.995792 0.0916408i \(-0.0292112\pi\)
\(174\) 19.1873 5.94921i 1.45458 0.451009i
\(175\) −2.49766 −0.188805
\(176\) −0.591305 13.2533i −0.0445713 0.999006i
\(177\) 22.8778 1.71960
\(178\) −14.3869 + 4.46080i −1.07834 + 0.334351i
\(179\) 12.5187i 0.935689i 0.883811 + 0.467844i \(0.154969\pi\)
−0.883811 + 0.467844i \(0.845031\pi\)
\(180\) 1.35801 0.931700i 0.101220 0.0694448i
\(181\) −24.6700 −1.83371 −0.916854 0.399223i \(-0.869280\pi\)
−0.916854 + 0.399223i \(0.869280\pi\)
\(182\) 1.09860 + 3.54318i 0.0814335 + 0.262638i
\(183\) 12.0593 0.891446
\(184\) −8.50396 6.72090i −0.626920 0.495471i
\(185\) −4.43808 −0.326294
\(186\) −9.39448 + 2.91286i −0.688837 + 0.213581i
\(187\) −0.998073 2.27927i −0.0729863 0.166676i
\(188\) 5.35345 + 7.80297i 0.390440 + 0.569090i
\(189\) 5.54355i 0.403234i
\(190\) −2.43884 + 0.756187i −0.176932 + 0.0548596i
\(191\) 11.8677i 0.858720i −0.903133 0.429360i \(-0.858739\pi\)
0.903133 0.429360i \(-0.141261\pi\)
\(192\) 12.2561 2.91067i 0.884510 0.210060i
\(193\) 8.28858i 0.596625i 0.954468 + 0.298312i \(0.0964237\pi\)
−0.954468 + 0.298312i \(0.903576\pi\)
\(194\) 16.6762 5.17064i 1.19728 0.371230i
\(195\) 6.53373 0.467890
\(196\) 1.64918 1.13146i 0.117798 0.0808189i
\(197\) 19.0013i 1.35379i −0.736081 0.676893i \(-0.763326\pi\)
0.736081 0.676893i \(-0.236674\pi\)
\(198\) −1.84619 + 1.59780i −0.131203 + 0.113551i
\(199\) 16.0120i 1.13506i 0.823351 + 0.567532i \(0.192102\pi\)
−0.823351 + 0.567532i \(0.807898\pi\)
\(200\) 4.38036 5.54247i 0.309738 0.391912i
\(201\) 12.6034 0.888977
\(202\) 7.76117 + 25.0312i 0.546074 + 1.76119i
\(203\) 9.02097i 0.633148i
\(204\) 1.94821 1.33663i 0.136402 0.0935825i
\(205\) 0.396572i 0.0276978i
\(206\) −1.44146 4.64897i −0.100431 0.323909i
\(207\) 1.99486i 0.138653i
\(208\) −9.78924 3.77611i −0.678761 0.261826i
\(209\) 3.46762 1.51844i 0.239860 0.105033i
\(210\) −1.04323 3.36460i −0.0719896 0.232179i
\(211\) 0.980150 0.0674763 0.0337381 0.999431i \(-0.489259\pi\)
0.0337381 + 0.999431i \(0.489259\pi\)
\(212\) −15.0310 + 10.3125i −1.03233 + 0.708262i
\(213\) −18.0105 −1.23406
\(214\) 18.3824 5.69966i 1.25660 0.389621i
\(215\) 2.88628 0.196843
\(216\) −12.3015 9.72219i −0.837011 0.661511i
\(217\) 4.41685i 0.299835i
\(218\) 2.05320 + 6.62195i 0.139060 + 0.448495i
\(219\) −0.421793 −0.0285021
\(220\) 5.54468 8.90839i 0.373822 0.600604i
\(221\) −1.96789 −0.132375
\(222\) 1.85024 + 5.96736i 0.124180 + 0.400503i
\(223\) 7.90537i 0.529383i −0.964333 0.264691i \(-0.914730\pi\)
0.964333 0.264691i \(-0.0852700\pi\)
\(224\) −0.381509 + 5.64397i −0.0254907 + 0.377104i
\(225\) −1.30016 −0.0866770
\(226\) −25.2568 + 7.83112i −1.68005 + 0.520918i
\(227\) −8.91322 −0.591591 −0.295796 0.955251i \(-0.595585\pi\)
−0.295796 + 0.955251i \(0.595585\pi\)
\(228\) 2.03351 + 2.96396i 0.134672 + 0.196293i
\(229\) −20.0551 −1.32528 −0.662639 0.748939i \(-0.730563\pi\)
−0.662639 + 0.748939i \(0.730563\pi\)
\(230\) −2.53894 8.18855i −0.167413 0.539937i
\(231\) 2.09483 + 4.78389i 0.137830 + 0.314757i
\(232\) −20.0181 15.8208i −1.31425 1.03869i
\(233\) 7.48274i 0.490210i 0.969496 + 0.245105i \(0.0788225\pi\)
−0.969496 + 0.245105i \(0.921177\pi\)
\(234\) 0.571874 + 1.84440i 0.0373846 + 0.120572i
\(235\) 7.48454i 0.488238i
\(236\) −16.4391 23.9609i −1.07009 1.55972i
\(237\) 10.5853i 0.687592i
\(238\) 0.314210 + 1.01338i 0.0203672 + 0.0656879i
\(239\) −14.2237 −0.920057 −0.460029 0.887904i \(-0.652161\pi\)
−0.460029 + 0.887904i \(0.652161\pi\)
\(240\) 9.29586 + 3.58579i 0.600045 + 0.231462i
\(241\) 13.7418i 0.885184i −0.896723 0.442592i \(-0.854059\pi\)
0.896723 0.442592i \(-0.145941\pi\)
\(242\) −6.69152 + 14.0436i −0.430147 + 0.902759i
\(243\) 5.34471i 0.342863i
\(244\) −8.66531 12.6302i −0.554740 0.808566i
\(245\) 1.58188 0.101062
\(246\) 0.533224 0.165331i 0.0339971 0.0105411i
\(247\) 2.99390i 0.190498i
\(248\) 9.80127 + 7.74620i 0.622381 + 0.491884i
\(249\) 1.89083i 0.119826i
\(250\) 16.0207 4.96738i 1.01324 0.314165i
\(251\) 23.6620i 1.49353i −0.665086 0.746767i \(-0.731605\pi\)
0.665086 0.746767i \(-0.268395\pi\)
\(252\) 0.858478 0.588983i 0.0540790 0.0371025i
\(253\) 5.09827 + 11.6427i 0.320525 + 0.731973i
\(254\) −0.337559 + 0.104664i −0.0211803 + 0.00656718i
\(255\) 1.86871 0.117023
\(256\) −11.8553 10.7449i −0.740953 0.671557i
\(257\) 13.6739 0.852952 0.426476 0.904499i \(-0.359755\pi\)
0.426476 + 0.904499i \(0.359755\pi\)
\(258\) −1.20330 3.88085i −0.0749139 0.241611i
\(259\) −2.80558 −0.174330
\(260\) −4.69488 6.84307i −0.291164 0.424389i
\(261\) 4.69586i 0.290666i
\(262\) 22.9263 7.10854i 1.41639 0.439167i
\(263\) −1.54709 −0.0953978 −0.0476989 0.998862i \(-0.515189\pi\)
−0.0476989 + 0.998862i \(0.515189\pi\)
\(264\) −14.2896 3.74135i −0.879467 0.230264i
\(265\) −14.4176 −0.885668
\(266\) −1.54174 + 0.478031i −0.0945299 + 0.0293100i
\(267\) 16.7711i 1.02638i
\(268\) −9.05632 13.2001i −0.553203 0.806326i
\(269\) −11.1137 −0.677617 −0.338808 0.940855i \(-0.610024\pi\)
−0.338808 + 0.940855i \(0.610024\pi\)
\(270\) −3.67274 11.8452i −0.223516 0.720878i
\(271\) 12.4657 0.757235 0.378617 0.925553i \(-0.376400\pi\)
0.378617 + 0.925553i \(0.376400\pi\)
\(272\) −2.79982 1.08000i −0.169764 0.0654848i
\(273\) 4.13036 0.249981
\(274\) −11.4176 + 3.54013i −0.689760 + 0.213867i
\(275\) −7.58817 + 3.32281i −0.457584 + 0.200373i
\(276\) −9.95168 + 6.82763i −0.599021 + 0.410975i
\(277\) 21.0155i 1.26270i −0.775498 0.631350i \(-0.782501\pi\)
0.775498 0.631350i \(-0.217499\pi\)
\(278\) −14.1662 + 4.39236i −0.849629 + 0.263436i
\(279\) 2.29919i 0.137649i
\(280\) −2.77427 + 3.51029i −0.165795 + 0.209780i
\(281\) 17.7260i 1.05744i 0.848795 + 0.528721i \(0.177328\pi\)
−0.848795 + 0.528721i \(0.822672\pi\)
\(282\) 10.0636 3.12032i 0.599278 0.185812i
\(283\) 32.9128 1.95646 0.978232 0.207513i \(-0.0665370\pi\)
0.978232 + 0.207513i \(0.0665370\pi\)
\(284\) 12.9417 + 18.8632i 0.767946 + 1.11933i
\(285\) 2.84301i 0.168405i
\(286\) 8.05139 + 9.30303i 0.476089 + 0.550100i
\(287\) 0.250697i 0.0147982i
\(288\) −0.198594 + 2.93797i −0.0117023 + 0.173121i
\(289\) 16.4372 0.966892
\(290\) −5.97661 19.2756i −0.350958 1.13190i
\(291\) 19.4399i 1.13958i
\(292\) 0.303084 + 0.441762i 0.0177366 + 0.0258522i
\(293\) 29.4803i 1.72226i −0.508386 0.861130i \(-0.669757\pi\)
0.508386 0.861130i \(-0.330243\pi\)
\(294\) −0.659487 2.12696i −0.0384621 0.124047i
\(295\) 22.9831i 1.33813i
\(296\) 4.92037 6.22575i 0.285991 0.361864i
\(297\) 7.37496 + 16.8419i 0.427938 + 0.977268i
\(298\) −7.36311 23.7474i −0.426534 1.37565i
\(299\) 10.0522 0.581334
\(300\) −4.44992 6.48603i −0.256916 0.374471i
\(301\) 1.82459 0.105168
\(302\) −1.51218 + 0.468866i −0.0870160 + 0.0269802i
\(303\) 29.1794 1.67631
\(304\) 1.64309 4.25957i 0.0942377 0.244303i
\(305\) 12.1148i 0.693691i
\(306\) 0.163562 + 0.527516i 0.00935020 + 0.0301561i
\(307\) 22.5952 1.28958 0.644789 0.764361i \(-0.276945\pi\)
0.644789 + 0.764361i \(0.276945\pi\)
\(308\) 3.50512 5.63153i 0.199723 0.320886i
\(309\) −5.41941 −0.308299
\(310\) 2.92627 + 9.43774i 0.166201 + 0.536028i
\(311\) 8.11720i 0.460284i −0.973157 0.230142i \(-0.926081\pi\)
0.973157 0.230142i \(-0.0739191\pi\)
\(312\) −7.24376 + 9.16553i −0.410097 + 0.518896i
\(313\) −22.3289 −1.26210 −0.631052 0.775741i \(-0.717376\pi\)
−0.631052 + 0.775741i \(0.717376\pi\)
\(314\) −11.3304 + 3.51310i −0.639410 + 0.198256i
\(315\) 0.823446 0.0463959
\(316\) −11.0865 + 7.60621i −0.623665 + 0.427883i
\(317\) −4.24834 −0.238611 −0.119305 0.992858i \(-0.538067\pi\)
−0.119305 + 0.992858i \(0.538067\pi\)
\(318\) 6.01073 + 19.3857i 0.337065 + 1.08710i
\(319\) 12.0012 + 27.4067i 0.671938 + 1.53448i
\(320\) −2.92408 12.3126i −0.163461 0.688294i
\(321\) 21.4288i 1.19604i
\(322\) −1.60502 5.17647i −0.0894442 0.288473i
\(323\) 0.856286i 0.0476450i
\(324\) −11.8203 + 8.10964i −0.656682 + 0.450536i
\(325\) 6.55155i 0.363414i
\(326\) −1.81121 5.84148i −0.100314 0.323530i
\(327\) 7.71935 0.426881
\(328\) −0.556313 0.439668i −0.0307172 0.0242766i
\(329\) 4.73143i 0.260852i
\(330\) −7.64559 8.83415i −0.420876 0.486304i
\(331\) 0.144143i 0.00792284i −0.999992 0.00396142i \(-0.998739\pi\)
0.999992 0.00396142i \(-0.00126096\pi\)
\(332\) 1.98035 1.35867i 0.108686 0.0745669i
\(333\) −1.46044 −0.0800316
\(334\) 28.7188 8.90457i 1.57142 0.487236i
\(335\) 12.6615i 0.691770i
\(336\) 5.87647 + 2.26679i 0.320588 + 0.123664i
\(337\) 28.5950i 1.55767i 0.627230 + 0.778834i \(0.284189\pi\)
−0.627230 + 0.778834i \(0.715811\pi\)
\(338\) −8.26604 + 2.56297i −0.449614 + 0.139407i
\(339\) 29.4424i 1.59909i
\(340\) −1.34278 1.95718i −0.0728225 0.106143i
\(341\) −5.87603 13.4189i −0.318205 0.726673i
\(342\) −0.802549 + 0.248839i −0.0433969 + 0.0134557i
\(343\) 1.00000 0.0539949
\(344\) −3.19994 + 4.04889i −0.172529 + 0.218301i
\(345\) −9.54558 −0.513917
\(346\) 1.00965 + 3.25630i 0.0542791 + 0.175060i
\(347\) −23.0033 −1.23488 −0.617442 0.786616i \(-0.711831\pi\)
−0.617442 + 0.786616i \(0.711831\pi\)
\(348\) −23.4260 + 16.0721i −1.25577 + 0.861554i
\(349\) 23.7790i 1.27286i 0.771334 + 0.636430i \(0.219590\pi\)
−0.771334 + 0.636430i \(0.780410\pi\)
\(350\) 3.37377 1.04607i 0.180336 0.0559150i
\(351\) 14.5411 0.776149
\(352\) 6.34949 + 17.6546i 0.338429 + 0.940992i
\(353\) −1.29117 −0.0687220 −0.0343610 0.999409i \(-0.510940\pi\)
−0.0343610 + 0.999409i \(0.510940\pi\)
\(354\) −30.9027 + 9.58170i −1.64246 + 0.509262i
\(355\) 18.0935i 0.960302i
\(356\) 17.5652 12.0511i 0.930951 0.638705i
\(357\) 1.18132 0.0625223
\(358\) −5.24308 16.9099i −0.277105 0.893715i
\(359\) 25.2115 1.33061 0.665306 0.746571i \(-0.268301\pi\)
0.665306 + 0.746571i \(0.268301\pi\)
\(360\) −1.44415 + 1.82728i −0.0761132 + 0.0963060i
\(361\) −17.6973 −0.931435
\(362\) 33.3236 10.3323i 1.75145 0.543055i
\(363\) 12.7287 + 11.7471i 0.668082 + 0.616563i
\(364\) −2.96791 4.32591i −0.155561 0.226739i
\(365\) 0.423735i 0.0221793i
\(366\) −16.2893 + 5.05067i −0.851457 + 0.264003i
\(367\) 1.10279i 0.0575651i 0.999586 + 0.0287825i \(0.00916303\pi\)
−0.999586 + 0.0287825i \(0.990837\pi\)
\(368\) 14.3018 + 5.51678i 0.745531 + 0.287582i
\(369\) 0.130500i 0.00679357i
\(370\) 5.99484 1.85876i 0.311657 0.0966324i
\(371\) −9.11425 −0.473188
\(372\) 11.4699 7.86922i 0.594684 0.408000i
\(373\) 19.1952i 0.993888i 0.867783 + 0.496944i \(0.165545\pi\)
−0.867783 + 0.496944i \(0.834455\pi\)
\(374\) 2.30278 + 2.66076i 0.119074 + 0.137584i
\(375\) 18.6757i 0.964408i
\(376\) −10.4993 8.29790i −0.541462 0.427932i
\(377\) 23.6627 1.21869
\(378\) −2.32176 7.48808i −0.119418 0.385145i
\(379\) 7.61066i 0.390933i −0.980710 0.195467i \(-0.937378\pi\)
0.980710 0.195467i \(-0.0626221\pi\)
\(380\) 2.97761 2.04287i 0.152748 0.104797i
\(381\) 0.393500i 0.0201596i
\(382\) 4.97046 + 16.0306i 0.254311 + 0.820199i
\(383\) 22.0885i 1.12867i 0.825546 + 0.564335i \(0.190867\pi\)
−0.825546 + 0.564335i \(0.809133\pi\)
\(384\) −15.3362 + 9.06479i −0.782623 + 0.462585i
\(385\) 4.80592 2.10448i 0.244933 0.107254i
\(386\) −3.47143 11.1960i −0.176691 0.569861i
\(387\) 0.949791 0.0482806
\(388\) −20.3602 + 13.9687i −1.03363 + 0.709154i
\(389\) −27.1911 −1.37865 −0.689323 0.724454i \(-0.742092\pi\)
−0.689323 + 0.724454i \(0.742092\pi\)
\(390\) −8.82559 + 2.73646i −0.446901 + 0.138566i
\(391\) 2.87503 0.145397
\(392\) −1.75378 + 2.21906i −0.0885795 + 0.112080i
\(393\) 26.7257i 1.34814i
\(394\) 7.95814 + 25.6664i 0.400925 + 1.29306i
\(395\) −10.6341 −0.535059
\(396\) 1.82459 2.93149i 0.0916891 0.147313i
\(397\) 13.6761 0.686383 0.343192 0.939265i \(-0.388492\pi\)
0.343192 + 0.939265i \(0.388492\pi\)
\(398\) −6.70618 21.6286i −0.336151 1.08415i
\(399\) 1.79724i 0.0899744i
\(400\) −3.59557 + 9.32121i −0.179778 + 0.466060i
\(401\) 3.77907 0.188718 0.0943588 0.995538i \(-0.469920\pi\)
0.0943588 + 0.995538i \(0.469920\pi\)
\(402\) −17.0244 + 5.27858i −0.849098 + 0.263272i
\(403\) −11.5857 −0.577126
\(404\) −20.9672 30.5609i −1.04315 1.52046i
\(405\) −11.3379 −0.563386
\(406\) −3.77817 12.1853i −0.187508 0.604745i
\(407\) −8.52365 + 3.73244i −0.422502 + 0.185010i
\(408\) −2.07179 + 2.62143i −0.102569 + 0.129780i
\(409\) 28.8350i 1.42580i 0.701267 + 0.712899i \(0.252618\pi\)
−0.701267 + 0.712899i \(0.747382\pi\)
\(410\) −0.166093 0.535679i −0.00820274 0.0264553i
\(411\) 13.3097i 0.656519i
\(412\) 3.89417 + 5.67599i 0.191852 + 0.279636i
\(413\) 14.5290i 0.714927i
\(414\) −0.835491 2.69461i −0.0410621 0.132433i
\(415\) 1.89953 0.0932444
\(416\) 14.8046 + 1.00073i 0.725853 + 0.0490646i
\(417\) 16.5138i 0.808684i
\(418\) −4.04801 + 3.50339i −0.197995 + 0.171356i
\(419\) 20.7473i 1.01357i 0.862072 + 0.506786i \(0.169166\pi\)
−0.862072 + 0.506786i \(0.830834\pi\)
\(420\) 2.81833 + 4.10788i 0.137520 + 0.200444i
\(421\) 22.2373 1.08378 0.541890 0.840449i \(-0.317709\pi\)
0.541890 + 0.840449i \(0.317709\pi\)
\(422\) −1.32396 + 0.410507i −0.0644494 + 0.0199832i
\(423\) 2.46294i 0.119752i
\(424\) 15.9844 20.2251i 0.776272 0.982217i
\(425\) 1.87381i 0.0908929i
\(426\) 24.3282 7.54319i 1.17870 0.365469i
\(427\) 7.65849i 0.370620i
\(428\) −22.4434 + 15.3979i −1.08484 + 0.744286i
\(429\) 12.5485 5.49489i 0.605847 0.265296i
\(430\) −3.89872 + 1.20884i −0.188013 + 0.0582953i
\(431\) −12.3696 −0.595823 −0.297912 0.954593i \(-0.596290\pi\)
−0.297912 + 0.954593i \(0.596290\pi\)
\(432\) 20.6884 + 7.98036i 0.995371 + 0.383955i
\(433\) 14.3230 0.688318 0.344159 0.938911i \(-0.388164\pi\)
0.344159 + 0.938911i \(0.388164\pi\)
\(434\) 1.84987 + 5.96616i 0.0887966 + 0.286385i
\(435\) −22.4700 −1.07736
\(436\) −5.54682 8.08483i −0.265645 0.387193i
\(437\) 4.37400i 0.209237i
\(438\) 0.569746 0.176656i 0.0272235 0.00844093i
\(439\) −6.33190 −0.302205 −0.151103 0.988518i \(-0.548282\pi\)
−0.151103 + 0.988518i \(0.548282\pi\)
\(440\) −3.75858 + 14.3554i −0.179183 + 0.684369i
\(441\) 0.520549 0.0247881
\(442\) 2.65818 0.824195i 0.126437 0.0392030i
\(443\) 25.6345i 1.21793i −0.793197 0.608965i \(-0.791585\pi\)
0.793197 0.608965i \(-0.208415\pi\)
\(444\) −4.99851 7.28563i −0.237219 0.345761i
\(445\) 16.8484 0.798689
\(446\) 3.31093 + 10.6784i 0.156777 + 0.505635i
\(447\) −27.6828 −1.30935
\(448\) −1.84848 7.78352i −0.0873326 0.367737i
\(449\) 4.53508 0.214024 0.107012 0.994258i \(-0.465872\pi\)
0.107012 + 0.994258i \(0.465872\pi\)
\(450\) 1.75622 0.544533i 0.0827888 0.0256695i
\(451\) 0.333519 + 0.761646i 0.0157048 + 0.0358645i
\(452\) 30.8363 21.1561i 1.45042 0.995101i
\(453\) 1.76278i 0.0828226i
\(454\) 12.0397 3.73304i 0.565053 0.175200i
\(455\) 4.14938i 0.194526i
\(456\) −3.98818 3.15196i −0.186764 0.147604i
\(457\) 17.6778i 0.826932i −0.910520 0.413466i \(-0.864318\pi\)
0.910520 0.413466i \(-0.135682\pi\)
\(458\) 27.0899 8.39949i 1.26583 0.392483i
\(459\) 4.15891 0.194121
\(460\) 6.85907 + 9.99751i 0.319806 + 0.466136i
\(461\) 33.9977i 1.58343i 0.610890 + 0.791716i \(0.290812\pi\)
−0.610890 + 0.791716i \(0.709188\pi\)
\(462\) −4.83324 5.58460i −0.224863 0.259819i
\(463\) 2.00783i 0.0933117i 0.998911 + 0.0466559i \(0.0148564\pi\)
−0.998911 + 0.0466559i \(0.985144\pi\)
\(464\) 33.6660 + 12.9864i 1.56291 + 0.602876i
\(465\) 11.0018 0.510196
\(466\) −3.13393 10.1075i −0.145176 0.468220i
\(467\) 28.6605i 1.32625i −0.748508 0.663125i \(-0.769230\pi\)
0.748508 0.663125i \(-0.230770\pi\)
\(468\) −1.54495 2.25185i −0.0714151 0.104092i
\(469\) 8.00407i 0.369594i
\(470\) −3.13469 10.1099i −0.144592 0.466336i
\(471\) 13.2081i 0.608596i
\(472\) 32.2408 + 25.4808i 1.48400 + 1.17285i
\(473\) 5.54332 2.42738i 0.254882 0.111611i
\(474\) 4.43336 + 14.2984i 0.203631 + 0.656747i
\(475\) −2.85076 −0.130802
\(476\) −0.848852 1.23725i −0.0389071 0.0567094i
\(477\) −4.74441 −0.217232
\(478\) 19.2131 5.95720i 0.878785 0.272476i
\(479\) 19.7590 0.902811 0.451405 0.892319i \(-0.350923\pi\)
0.451405 + 0.892319i \(0.350923\pi\)
\(480\) −14.0584 0.950289i −0.641675 0.0433746i
\(481\) 7.35923i 0.335552i
\(482\) 5.75534 + 18.5620i 0.262149 + 0.845476i
\(483\) −6.03433 −0.274572
\(484\) 3.15696 21.7723i 0.143498 0.989651i
\(485\) −19.5294 −0.886784
\(486\) −2.23848 7.21949i −0.101539 0.327483i
\(487\) 15.3754i 0.696727i −0.937359 0.348364i \(-0.886737\pi\)
0.937359 0.348364i \(-0.113263\pi\)
\(488\) 16.9947 + 13.4313i 0.769313 + 0.608008i
\(489\) −6.80955 −0.307938
\(490\) −2.13676 + 0.662524i −0.0965289 + 0.0299298i
\(491\) −11.0024 −0.496532 −0.248266 0.968692i \(-0.579861\pi\)
−0.248266 + 0.968692i \(0.579861\pi\)
\(492\) −0.651020 + 0.446651i −0.0293502 + 0.0201366i
\(493\) 6.76775 0.304804
\(494\) 1.25391 + 4.04409i 0.0564161 + 0.181952i
\(495\) 2.50172 1.09548i 0.112444 0.0492384i
\(496\) −16.4836 6.35838i −0.740134 0.285500i
\(497\) 11.4380i 0.513063i
\(498\) −0.791918 2.55408i −0.0354867 0.114451i
\(499\) 2.31056i 0.103435i −0.998662 0.0517175i \(-0.983530\pi\)
0.998662 0.0517175i \(-0.0164695\pi\)
\(500\) −19.5599 + 13.4196i −0.874745 + 0.600143i
\(501\) 33.4782i 1.49570i
\(502\) 9.91016 + 31.9620i 0.442312 + 1.42654i
\(503\) −25.2485 −1.12578 −0.562888 0.826533i \(-0.690310\pi\)
−0.562888 + 0.826533i \(0.690310\pi\)
\(504\) −0.912931 + 1.15513i −0.0406652 + 0.0514537i
\(505\) 29.3138i 1.30444i
\(506\) −11.7628 13.5914i −0.522922 0.604213i
\(507\) 9.63592i 0.427946i
\(508\) 0.412130 0.282754i 0.0182853 0.0125452i
\(509\) 33.9007 1.50262 0.751310 0.659949i \(-0.229422\pi\)
0.751310 + 0.659949i \(0.229422\pi\)
\(510\) −2.52420 + 0.782655i −0.111774 + 0.0346566i
\(511\) 0.267868i 0.0118498i
\(512\) 20.5140 + 9.54870i 0.906597 + 0.421997i
\(513\) 6.32726i 0.279355i
\(514\) −18.4703 + 5.72690i −0.814690 + 0.252603i
\(515\) 5.44437i 0.239907i
\(516\) 3.25076 + 4.73818i 0.143107 + 0.208587i
\(517\) 6.29453 + 14.3746i 0.276833 + 0.632195i
\(518\) 3.78970 1.17503i 0.166510 0.0516280i
\(519\) 3.79594 0.166623
\(520\) 9.20774 + 7.27712i 0.403786 + 0.319123i
\(521\) −39.3095 −1.72218 −0.861090 0.508453i \(-0.830217\pi\)
−0.861090 + 0.508453i \(0.830217\pi\)
\(522\) −1.96672 6.34304i −0.0860812 0.277627i
\(523\) −21.6105 −0.944962 −0.472481 0.881341i \(-0.656641\pi\)
−0.472481 + 0.881341i \(0.656641\pi\)
\(524\) −27.9911 + 19.2041i −1.22280 + 0.838933i
\(525\) 3.93289i 0.171645i
\(526\) 2.08977 0.647955i 0.0911184 0.0282522i
\(527\) −3.31363 −0.144344
\(528\) 20.8690 0.931085i 0.908208 0.0405203i
\(529\) 8.31403 0.361480
\(530\) 19.4750 6.03841i 0.845938 0.262292i
\(531\) 7.56307i 0.328209i
\(532\) 1.88233 1.29142i 0.0816092 0.0559903i
\(533\) 0.657596 0.0284837
\(534\) −7.02410 22.6540i −0.303963 0.980334i
\(535\) −21.5275 −0.930715
\(536\) 17.7615 + 14.0374i 0.767181 + 0.606324i
\(537\) −19.7122 −0.850645
\(538\) 15.0121 4.65467i 0.647220 0.200677i
\(539\) 3.03811 1.33037i 0.130861 0.0573029i
\(540\) 9.92207 + 14.4620i 0.426978 + 0.622346i
\(541\) 14.4449i 0.621036i 0.950568 + 0.310518i \(0.100502\pi\)
−0.950568 + 0.310518i \(0.899498\pi\)
\(542\) −16.8383 + 5.22088i −0.723266 + 0.224256i
\(543\) 38.8461i 1.66704i
\(544\) 4.23425 + 0.286217i 0.181542 + 0.0122715i
\(545\) 7.75490i 0.332183i
\(546\) −5.57918 + 1.72988i −0.238767 + 0.0740321i
\(547\) −39.5985 −1.69311 −0.846555 0.532301i \(-0.821327\pi\)
−0.846555 + 0.532301i \(0.821327\pi\)
\(548\) 13.9398 9.56382i 0.595481 0.408546i
\(549\) 3.98662i 0.170145i
\(550\) 8.85824 7.66644i 0.377717 0.326898i
\(551\) 10.2963i 0.438637i
\(552\) 10.5829 13.3906i 0.450439 0.569940i
\(553\) −6.72244 −0.285867
\(554\) 8.80174 + 28.3872i 0.373950 + 1.20606i
\(555\) 6.98832i 0.296638i
\(556\) 17.2956 11.8662i 0.733499 0.503238i
\(557\) 1.26393i 0.0535543i −0.999641 0.0267771i \(-0.991476\pi\)
0.999641 0.0267771i \(-0.00852445\pi\)
\(558\) 0.962949 + 3.10568i 0.0407649 + 0.131474i
\(559\) 4.78604i 0.202428i
\(560\) 2.27723 5.90353i 0.0962306 0.249470i
\(561\) 3.58899 1.57159i 0.151527 0.0663527i
\(562\) −7.42401 23.9438i −0.313163 1.01001i
\(563\) 38.8614 1.63781 0.818906 0.573928i \(-0.194581\pi\)
0.818906 + 0.573928i \(0.194581\pi\)
\(564\) −12.2868 + 8.42968i −0.517366 + 0.354954i
\(565\) 29.5780 1.24435
\(566\) −44.4578 + 13.7846i −1.86870 + 0.579409i
\(567\) −7.16738 −0.301002
\(568\) −25.3816 20.0597i −1.06499 0.841688i
\(569\) 21.3750i 0.896085i −0.894012 0.448042i \(-0.852121\pi\)
0.894012 0.448042i \(-0.147879\pi\)
\(570\) −1.19071 3.84026i −0.0498735 0.160851i
\(571\) 26.0093 1.08846 0.544228 0.838937i \(-0.316823\pi\)
0.544228 + 0.838937i \(0.316823\pi\)
\(572\) −14.7719 9.19419i −0.617644 0.384429i
\(573\) 18.6873 0.780672
\(574\) −0.104997 0.338635i −0.00438250 0.0141343i
\(575\) 9.57161i 0.399164i
\(576\) −0.962227 4.05170i −0.0400928 0.168821i
\(577\) 11.9433 0.497206 0.248603 0.968605i \(-0.420029\pi\)
0.248603 + 0.968605i \(0.420029\pi\)
\(578\) −22.2029 + 6.88423i −0.923518 + 0.286346i
\(579\) −13.0514 −0.542399
\(580\) 16.1461 + 23.5339i 0.670430 + 0.977191i
\(581\) 1.20081 0.0498179
\(582\) 8.14183 + 26.2588i 0.337490 + 1.08846i
\(583\) −27.6901 + 12.1253i −1.14681 + 0.502178i
\(584\) −0.594417 0.469783i −0.0245971 0.0194398i
\(585\) 2.15996i 0.0893032i
\(586\) 12.3470 + 39.8212i 0.510049 + 1.64500i
\(587\) 16.6576i 0.687533i 0.939055 + 0.343767i \(0.111703\pi\)
−0.939055 + 0.343767i \(0.888297\pi\)
\(588\) 1.78164 + 2.59684i 0.0734734 + 0.107092i
\(589\) 5.04127i 0.207722i
\(590\) 9.62583 + 31.0450i 0.396289 + 1.27810i
\(591\) 29.9200 1.23074
\(592\) −4.03883 + 10.4703i −0.165995 + 0.430328i
\(593\) 25.5783i 1.05037i 0.850987 + 0.525187i \(0.176005\pi\)
−0.850987 + 0.525187i \(0.823995\pi\)
\(594\) −17.0157 19.6608i −0.698161 0.806694i
\(595\) 1.18676i 0.0486526i
\(596\) 19.8918 + 28.9935i 0.814800 + 1.18762i
\(597\) −25.2130 −1.03190
\(598\) −13.5783 + 4.21008i −0.555256 + 0.172163i
\(599\) 9.69854i 0.396272i 0.980175 + 0.198136i \(0.0634887\pi\)
−0.980175 + 0.198136i \(0.936511\pi\)
\(600\) 8.72732 + 6.89743i 0.356291 + 0.281586i
\(601\) 23.1097i 0.942664i −0.881956 0.471332i \(-0.843773\pi\)
0.881956 0.471332i \(-0.156227\pi\)
\(602\) −2.46461 + 0.764178i −0.100450 + 0.0311456i
\(603\) 4.16651i 0.169673i
\(604\) 1.84624 1.26666i 0.0751224 0.0515398i
\(605\) 11.8012 12.7873i 0.479787 0.519877i
\(606\) −39.4147 + 12.2209i −1.60111 + 0.496442i
\(607\) 3.90145 0.158355 0.0791775 0.996861i \(-0.474771\pi\)
0.0791775 + 0.996861i \(0.474771\pi\)
\(608\) −0.435444 + 6.44188i −0.0176596 + 0.261253i
\(609\) −14.2047 −0.575602
\(610\) 5.07393 + 16.3643i 0.205438 + 0.662573i
\(611\) 12.4109 0.502090
\(612\) −0.441869 0.644051i −0.0178615 0.0260342i
\(613\) 26.4674i 1.06901i 0.845165 + 0.534505i \(0.179502\pi\)
−0.845165 + 0.534505i \(0.820498\pi\)
\(614\) −30.5210 + 9.46336i −1.23173 + 0.381910i
\(615\) −0.624453 −0.0251804
\(616\) −2.37602 + 9.07494i −0.0957328 + 0.365640i
\(617\) 3.74920 0.150937 0.0754685 0.997148i \(-0.475955\pi\)
0.0754685 + 0.997148i \(0.475955\pi\)
\(618\) 7.32040 2.26976i 0.294469 0.0913033i
\(619\) 1.06345i 0.0427436i 0.999772 + 0.0213718i \(0.00680338\pi\)
−0.999772 + 0.0213718i \(0.993197\pi\)
\(620\) −7.90545 11.5227i −0.317491 0.462762i
\(621\) −21.2442 −0.852499
\(622\) 3.39966 + 10.9645i 0.136314 + 0.439636i
\(623\) 10.6509 0.426717
\(624\) 5.94596 15.4144i 0.238029 0.617070i
\(625\) −6.27338 −0.250935
\(626\) 30.1613 9.35181i 1.20549 0.373773i
\(627\) 2.39098 + 5.46021i 0.0954867 + 0.218060i
\(628\) 13.8334 9.49080i 0.552013 0.378724i
\(629\) 2.10481i 0.0839243i
\(630\) −1.11229 + 0.344876i −0.0443146 + 0.0137402i
\(631\) 45.3102i 1.80377i 0.431975 + 0.901885i \(0.357817\pi\)
−0.431975 + 0.901885i \(0.642183\pi\)
\(632\) 11.7897 14.9175i 0.468970 0.593387i
\(633\) 1.54337i 0.0613435i
\(634\) 5.73855 1.77930i 0.227907 0.0706649i
\(635\) 0.395312 0.0156875
\(636\) −16.2383 23.6682i −0.643889 0.938507i
\(637\) 2.62307i 0.103930i
\(638\) −27.6894 31.9939i −1.09623 1.26665i
\(639\) 5.95403i 0.235538i
\(640\) 9.10653 + 15.4068i 0.359967 + 0.609009i
\(641\) −11.3560 −0.448535 −0.224268 0.974528i \(-0.571999\pi\)
−0.224268 + 0.974528i \(0.571999\pi\)
\(642\) 8.97484 + 28.9455i 0.354209 + 1.14239i
\(643\) 24.4202i 0.963040i 0.876435 + 0.481520i \(0.159915\pi\)
−0.876435 + 0.481520i \(0.840085\pi\)
\(644\) 4.33603 + 6.32002i 0.170864 + 0.249044i
\(645\) 4.54482i 0.178952i
\(646\) 0.358630 + 1.15665i 0.0141101 + 0.0455077i
\(647\) 41.2607i 1.62213i −0.584959 0.811063i \(-0.698890\pi\)
0.584959 0.811063i \(-0.301110\pi\)
\(648\) 12.5700 15.9049i 0.493798 0.624802i
\(649\) −19.3289 44.1408i −0.758727 1.73268i
\(650\) −2.74393 8.84965i −0.107626 0.347112i
\(651\) 6.95489 0.272584
\(652\) 4.89307 + 7.13194i 0.191627 + 0.279308i
\(653\) −39.0128 −1.52669 −0.763345 0.645991i \(-0.776444\pi\)
−0.763345 + 0.645991i \(0.776444\pi\)
\(654\) −10.4271 + 3.23303i −0.407732 + 0.126421i
\(655\) −26.8488 −1.04907
\(656\) 0.935595 + 0.360897i 0.0365288 + 0.0140907i
\(657\) 0.139439i 0.00544002i
\(658\) −1.98162 6.39109i −0.0772517 0.249151i
\(659\) 19.6952 0.767217 0.383609 0.923496i \(-0.374681\pi\)
0.383609 + 0.923496i \(0.374681\pi\)
\(660\) 14.0274 + 8.73080i 0.546016 + 0.339846i
\(661\) 2.52788 0.0983233 0.0491616 0.998791i \(-0.484345\pi\)
0.0491616 + 0.998791i \(0.484345\pi\)
\(662\) 0.0603703 + 0.194705i 0.00234636 + 0.00756743i
\(663\) 3.09870i 0.120343i
\(664\) −2.10596 + 2.66467i −0.0817271 + 0.103409i
\(665\) 1.80551 0.0700148
\(666\) 1.97272 0.611663i 0.0764415 0.0237015i
\(667\) −34.5704 −1.33857
\(668\) −35.0632 + 24.0561i −1.35664 + 0.930759i
\(669\) 12.4480 0.481268
\(670\) 5.30289 + 17.1028i 0.204868 + 0.660737i
\(671\) −10.1886 23.2673i −0.393326 0.898226i
\(672\) −8.88716 0.600735i −0.342829 0.0231738i
\(673\) 46.2104i 1.78128i −0.454708 0.890640i \(-0.650256\pi\)
0.454708 0.890640i \(-0.349744\pi\)
\(674\) −11.9762 38.6253i −0.461305 1.48779i
\(675\) 13.8459i 0.532930i
\(676\) 10.0921 6.92399i 0.388159 0.266307i
\(677\) 21.2646i 0.817263i 0.912699 + 0.408632i \(0.133994\pi\)
−0.912699 + 0.408632i \(0.866006\pi\)
\(678\) −12.3311 39.7700i −0.473573 1.52736i
\(679\) −12.3457 −0.473784
\(680\) 2.63350 + 2.08133i 0.100990 + 0.0798152i
\(681\) 14.0350i 0.537822i
\(682\) 13.5573 + 15.6649i 0.519136 + 0.599839i
\(683\) 5.77734i 0.221064i 0.993873 + 0.110532i \(0.0352555\pi\)
−0.993873 + 0.110532i \(0.964745\pi\)
\(684\) 0.979844 0.672249i 0.0374653 0.0257041i
\(685\) 13.3710 0.510879
\(686\) −1.35077 + 0.418821i −0.0515728 + 0.0159907i
\(687\) 31.5793i 1.20482i
\(688\) 2.62664 6.80933i 0.100140 0.259603i
\(689\) 23.9073i 0.910797i
\(690\) 12.8939 3.99789i 0.490863 0.152197i
\(691\) 45.1630i 1.71808i −0.511907 0.859041i \(-0.671061\pi\)
0.511907 0.859041i \(-0.328939\pi\)
\(692\) −2.72762 3.97566i −0.103688 0.151132i
\(693\) 1.58149 0.692521i 0.0600757 0.0263067i
\(694\) 31.0723 9.63429i 1.17949 0.365713i
\(695\) 16.5899 0.629289
\(696\) 24.9119 31.5210i 0.944283 1.19480i
\(697\) 0.188079 0.00712400
\(698\) −9.95914 32.1200i −0.376959 1.21576i
\(699\) −11.7825 −0.445656
\(700\) −4.11909 + 2.82602i −0.155687 + 0.106813i
\(701\) 4.89016i 0.184699i 0.995727 + 0.0923494i \(0.0294377\pi\)
−0.995727 + 0.0923494i \(0.970562\pi\)
\(702\) −19.6418 + 6.09014i −0.741331 + 0.229857i
\(703\) −3.20221 −0.120774
\(704\) −15.9708 21.1880i −0.601923 0.798554i
\(705\) −11.7854 −0.443863
\(706\) 1.74408 0.540769i 0.0656392 0.0203521i
\(707\) 18.5310i 0.696929i
\(708\) 37.7296 25.8854i 1.41796 0.972834i
\(709\) 15.6950 0.589436 0.294718 0.955584i \(-0.404774\pi\)
0.294718 + 0.955584i \(0.404774\pi\)
\(710\) −7.57793 24.4402i −0.284395 0.917224i
\(711\) −3.49936 −0.131236
\(712\) −18.6793 + 23.6349i −0.700036 + 0.885756i
\(713\) 16.9264 0.633898
\(714\) −1.59570 + 0.494763i −0.0597176 + 0.0185160i
\(715\) −5.52020 12.6063i −0.206444 0.471448i
\(716\) 14.1644 + 20.6455i 0.529349 + 0.771558i
\(717\) 22.3971i 0.836435i
\(718\) −34.0550 + 10.5591i −1.27092 + 0.394062i
\(719\) 11.7761i 0.439176i 0.975593 + 0.219588i \(0.0704713\pi\)
−0.975593 + 0.219588i \(0.929529\pi\)
\(720\) 1.18541 3.07308i 0.0441777 0.114527i
\(721\) 3.44171i 0.128176i
\(722\) 23.9050 7.41199i 0.889652 0.275846i
\(723\) 21.6381 0.804731
\(724\) −40.6852 + 27.9133i −1.51206 + 1.03739i
\(725\) 22.5313i 0.836792i
\(726\) −22.1135 10.5367i −0.820708 0.391052i
\(727\) 10.6509i 0.395019i −0.980301 0.197509i \(-0.936715\pi\)
0.980301 0.197509i \(-0.0632853\pi\)
\(728\) 5.82076 + 4.60030i 0.215732 + 0.170499i
\(729\) −29.9181 −1.10808
\(730\) −0.177469 0.572370i −0.00656843 0.0211844i
\(731\) 1.36885i 0.0506289i
\(732\) 19.8879 13.6446i 0.735077 0.504320i
\(733\) 27.9850i 1.03365i −0.856091 0.516824i \(-0.827114\pi\)
0.856091 0.516824i \(-0.172886\pi\)
\(734\) −0.461871 1.48962i −0.0170480 0.0549828i
\(735\) 2.49087i 0.0918771i
\(736\) −21.6290 1.46203i −0.797255 0.0538911i
\(737\) −10.6483 24.3173i −0.392237 0.895738i
\(738\) −0.0546562 0.176276i −0.00201192 0.00648881i
\(739\) 25.9409 0.954252 0.477126 0.878835i \(-0.341679\pi\)
0.477126 + 0.878835i \(0.341679\pi\)
\(740\) −7.31918 + 5.02153i −0.269058 + 0.184595i
\(741\) 4.71428 0.173183
\(742\) 12.3113 3.81724i 0.451961 0.140135i
\(743\) 12.3792 0.454147 0.227074 0.973878i \(-0.427084\pi\)
0.227074 + 0.973878i \(0.427084\pi\)
\(744\) −12.1974 + 15.4333i −0.447178 + 0.565814i
\(745\) 27.8103i 1.01889i
\(746\) −8.03934 25.9283i −0.294341 0.949304i
\(747\) 0.625080 0.0228705
\(748\) −4.22491 2.62963i −0.154478 0.0961487i
\(749\) −13.6088 −0.497255
\(750\) 7.82177 + 25.2266i 0.285611 + 0.921146i
\(751\) 11.2531i 0.410632i 0.978696 + 0.205316i \(0.0658223\pi\)
−0.978696 + 0.205316i \(0.934178\pi\)
\(752\) 17.6576 + 6.81124i 0.643905 + 0.248380i
\(753\) 37.2589 1.35779
\(754\) −31.9629 + 9.91042i −1.16402 + 0.360916i
\(755\) 1.77090 0.0644495
\(756\) 6.27234 + 9.14230i 0.228123 + 0.332502i
\(757\) −23.9144 −0.869184 −0.434592 0.900627i \(-0.643107\pi\)
−0.434592 + 0.900627i \(0.643107\pi\)
\(758\) 3.18750 + 10.2803i 0.115775 + 0.373396i
\(759\) −18.3330 + 8.02787i −0.665445 + 0.291393i
\(760\) −3.16648 + 4.00655i −0.114860 + 0.145333i
\(761\) 43.0293i 1.55981i 0.625897 + 0.779905i \(0.284733\pi\)
−0.625897 + 0.779905i \(0.715267\pi\)
\(762\) −0.164806 0.531529i −0.00597029 0.0192553i
\(763\) 4.90234i 0.177477i
\(764\) −13.4279 19.5720i −0.485806 0.708091i
\(765\) 0.617769i 0.0223355i
\(766\) −9.25114 29.8366i −0.334257 1.07804i
\(767\) −38.1107 −1.37610
\(768\) 16.9192 18.6676i 0.610520 0.673609i
\(769\) 43.5881i 1.57183i 0.618337 + 0.785913i \(0.287807\pi\)
−0.618337 + 0.785913i \(0.712193\pi\)
\(770\) −5.61031 + 4.85550i −0.202182 + 0.174980i
\(771\) 21.5312i 0.775429i
\(772\) 9.37824 + 13.6693i 0.337530 + 0.491970i
\(773\) −34.7584 −1.25017 −0.625087 0.780555i \(-0.714937\pi\)
−0.625087 + 0.780555i \(0.714937\pi\)
\(774\) −1.28295 + 0.397792i −0.0461148 + 0.0142984i
\(775\) 11.0318i 0.396274i
\(776\) 21.6517 27.3959i 0.777250 0.983454i
\(777\) 4.41773i 0.158485i
\(778\) 36.7291 11.3882i 1.31680 0.408288i
\(779\) 0.286139i 0.0102520i
\(780\) 10.7753 7.39269i 0.385817 0.264701i
\(781\) 15.2167 + 34.7498i 0.544496 + 1.24345i
\(782\) −3.88351 + 1.20412i −0.138874 + 0.0430594i
\(783\) −50.0082 −1.78715
\(784\) 1.43957 3.73197i 0.0514134 0.133285i
\(785\) 13.2689 0.473587
\(786\) 11.1933 + 36.1004i 0.399252 + 1.28766i
\(787\) 2.81410 0.100312 0.0501560 0.998741i \(-0.484028\pi\)
0.0501560 + 0.998741i \(0.484028\pi\)
\(788\) −21.4993 31.3365i −0.765881 1.11632i
\(789\) 2.43609i 0.0867273i
\(790\) 14.3642 4.45378i 0.511057 0.158458i
\(791\) 18.6980 0.664824
\(792\) −1.23684 + 4.72395i −0.0439491 + 0.167858i
\(793\) −20.0888 −0.713373
\(794\) −18.4733 + 5.72784i −0.655593 + 0.203273i
\(795\) 22.7024i 0.805171i
\(796\) 18.1171 + 26.4067i 0.642142 + 0.935961i
\(797\) 43.2960 1.53362 0.766811 0.641872i \(-0.221842\pi\)
0.766811 + 0.641872i \(0.221842\pi\)
\(798\) −0.752721 2.42766i −0.0266460 0.0859382i
\(799\) 3.54963 0.125577
\(800\) 0.952881 14.0967i 0.0336894 0.498395i
\(801\) 5.54429 0.195898
\(802\) −5.10467 + 1.58275i −0.180252 + 0.0558890i
\(803\) 0.356363 + 0.813814i 0.0125758 + 0.0287189i
\(804\) 20.7853 14.2603i 0.733040 0.502923i
\(805\) 6.06212i 0.213662i
\(806\) 15.6497 4.85234i 0.551236 0.170917i
\(807\) 17.5000i 0.616029i
\(808\) 41.1214 + 32.4993i 1.44665 + 1.14332i
\(809\) 3.65797i 0.128607i −0.997930 0.0643037i \(-0.979517\pi\)
0.997930 0.0643037i \(-0.0204826\pi\)
\(810\) 15.3150 4.74856i 0.538113 0.166847i
\(811\) 43.8841 1.54098 0.770489 0.637453i \(-0.220012\pi\)
0.770489 + 0.637453i \(0.220012\pi\)
\(812\) 10.2069 + 14.8772i 0.358192 + 0.522087i
\(813\) 19.6288i 0.688411i
\(814\) 9.95030 8.61157i 0.348758 0.301835i
\(815\) 6.84090i 0.239626i
\(816\) 1.70060 4.40867i 0.0595330 0.154334i
\(817\) 2.08254 0.0728589
\(818\) −12.0767 38.9495i −0.422252 1.36184i
\(819\) 1.36544i 0.0477123i
\(820\) 0.448707 + 0.654018i 0.0156695 + 0.0228393i
\(821\) 4.70257i 0.164121i −0.996627 0.0820604i \(-0.973850\pi\)
0.996627 0.0820604i \(-0.0261500\pi\)
\(822\) −5.57438 17.9784i −0.194429 0.627068i
\(823\) 27.6445i 0.963627i 0.876274 + 0.481814i \(0.160022\pi\)
−0.876274 + 0.481814i \(0.839978\pi\)
\(824\) −7.63737 6.03602i −0.266060 0.210275i
\(825\) −5.23218 11.9485i −0.182161 0.415995i
\(826\) 6.08506 + 19.6254i 0.211726 + 0.682856i
\(827\) 38.9620 1.35484 0.677422 0.735595i \(-0.263097\pi\)
0.677422 + 0.735595i \(0.263097\pi\)
\(828\) 2.25712 + 3.28988i 0.0784403 + 0.114331i
\(829\) 45.2248 1.57072 0.785361 0.619038i \(-0.212478\pi\)
0.785361 + 0.619038i \(0.212478\pi\)
\(830\) −2.56584 + 0.795565i −0.0890616 + 0.0276145i
\(831\) 33.0916 1.14793
\(832\) −20.4167 + 4.84871i −0.707823 + 0.168099i
\(833\) 0.750224i 0.0259937i
\(834\) −6.91633 22.3064i −0.239493 0.772408i
\(835\) −33.6324 −1.16390
\(836\) 4.00065 6.42767i 0.138365 0.222306i
\(837\) 24.4850 0.846327
\(838\) −8.68940 28.0249i −0.300170 0.968104i
\(839\) 49.5274i 1.70987i 0.518732 + 0.854937i \(0.326404\pi\)
−0.518732 + 0.854937i \(0.673596\pi\)
\(840\) −5.52739 4.36845i −0.190713 0.150726i
\(841\) −52.3778 −1.80613
\(842\) −30.0376 + 9.31345i −1.03516 + 0.320963i
\(843\) −27.9118 −0.961333
\(844\) 1.61644 1.10901i 0.0556402 0.0381735i
\(845\) 9.68029 0.333012
\(846\) −1.03153 3.32688i −0.0354648 0.114380i
\(847\) 7.46025 8.08361i 0.256337 0.277756i
\(848\) −13.1206 + 34.0141i −0.450565 + 1.16805i
\(849\) 51.8254i 1.77864i
\(850\) −0.784790 2.53109i −0.0269181 0.0868156i
\(851\) 10.7516i 0.368560i
\(852\) −29.7026 + 20.3783i −1.01759 + 0.698149i
\(853\) 6.05040i 0.207162i 0.994621 + 0.103581i \(0.0330301\pi\)
−0.994621 + 0.103581i \(0.966970\pi\)
\(854\) 3.20754 + 10.3449i 0.109760 + 0.353995i
\(855\) 0.939858 0.0321425
\(856\) 23.8669 30.1988i 0.815755 1.03217i
\(857\) 54.7756i 1.87110i −0.353198 0.935549i \(-0.614906\pi\)
0.353198 0.935549i \(-0.385094\pi\)
\(858\) −14.6488 + 12.6779i −0.500102 + 0.432818i
\(859\) 13.9017i 0.474318i −0.971471 0.237159i \(-0.923784\pi\)
0.971471 0.237159i \(-0.0762163\pi\)
\(860\) 4.76000 3.26573i 0.162315 0.111360i
\(861\) −0.394754 −0.0134532
\(862\) 16.7085 5.18065i 0.569095 0.176454i
\(863\) 55.7602i 1.89810i 0.315128 + 0.949049i \(0.397953\pi\)
−0.315128 + 0.949049i \(0.602047\pi\)
\(864\) −31.2877 2.11492i −1.06443 0.0719509i
\(865\) 3.81342i 0.129660i
\(866\) −19.3471 + 5.99876i −0.657441 + 0.203846i
\(867\) 25.8824i 0.879013i
\(868\) −4.99751 7.28417i −0.169627 0.247241i
\(869\) −20.4235 + 8.94331i −0.692821 + 0.303381i
\(870\) 30.3519 9.41093i 1.02903 0.319060i
\(871\) −20.9953 −0.711397
\(872\) 10.8786 + 8.59764i 0.368396 + 0.291153i
\(873\) −6.42654 −0.217505
\(874\) −1.83192 5.90828i −0.0619657 0.199851i
\(875\) −11.8604 −0.400954
\(876\) −0.695611 + 0.477244i −0.0235025 + 0.0161246i
\(877\) 11.2468i 0.379777i −0.981806 0.189888i \(-0.939187\pi\)
0.981806 0.189888i \(-0.0608126\pi\)
\(878\) 8.55297 2.65193i 0.288649 0.0894985i
\(879\) 46.4205 1.56573
\(880\) −0.935373 20.9651i −0.0315314 0.706734i
\(881\) 15.3650 0.517662 0.258831 0.965923i \(-0.416663\pi\)
0.258831 + 0.965923i \(0.416663\pi\)
\(882\) −0.703144 + 0.218017i −0.0236761 + 0.00734102i
\(883\) 20.8359i 0.701183i −0.936528 0.350592i \(-0.885981\pi\)
0.936528 0.350592i \(-0.114019\pi\)
\(884\) −3.24540 + 2.22660i −0.109155 + 0.0748887i
\(885\) 36.1899 1.21651
\(886\) 10.7363 + 34.6264i 0.360692 + 1.16330i
\(887\) 14.5362 0.488079 0.244039 0.969765i \(-0.421527\pi\)
0.244039 + 0.969765i \(0.421527\pi\)
\(888\) 9.80323 + 7.74775i 0.328975 + 0.259998i
\(889\) 0.249900 0.00838139
\(890\) −22.7583 + 7.05645i −0.762860 + 0.236533i
\(891\) −21.7753 + 9.53524i −0.729500 + 0.319443i
\(892\) −8.94465 13.0374i −0.299489 0.436523i
\(893\) 5.40032i 0.180715i
\(894\) 37.3932 11.5942i 1.25062 0.387767i
\(895\) 19.8030i 0.661941i
\(896\) 5.75678 + 9.73958i 0.192321 + 0.325377i
\(897\) 15.8285i 0.528498i
\(898\) −6.12586 + 1.89939i −0.204423 + 0.0633834i
\(899\) 39.8443 1.32888
\(900\) −2.14419 + 1.47108i −0.0714729 + 0.0490360i
\(901\) 6.83773i 0.227798i
\(902\) −0.769502 0.889126i −0.0256216 0.0296047i
\(903\) 2.87305i 0.0956093i
\(904\) −32.7923 + 41.4920i −1.09065 + 1.38000i
\(905\) −39.0250 −1.29723
\(906\) −0.738289 2.38112i −0.0245280 0.0791073i
\(907\) 53.5839i 1.77922i 0.456718 + 0.889611i \(0.349025\pi\)
−0.456718 + 0.889611i \(0.650975\pi\)
\(908\) −14.6995 + 10.0850i −0.487819 + 0.334682i
\(909\) 9.64629i 0.319947i
\(910\) 1.73785 + 5.60487i 0.0576091 + 0.185800i
\(911\) 31.4308i 1.04135i 0.853755 + 0.520675i \(0.174320\pi\)
−0.853755 + 0.520675i \(0.825680\pi\)
\(912\) 6.70724 + 2.58726i 0.222099 + 0.0856726i
\(913\) 3.64819 1.59752i 0.120738 0.0528701i
\(914\) 7.40383 + 23.8787i 0.244897 + 0.789837i
\(915\) 19.0763 0.630643
\(916\) −33.0744 + 22.6916i −1.09281 + 0.749752i
\(917\) −16.9727 −0.560489
\(918\) −5.61774 + 1.74184i −0.185413 + 0.0574892i
\(919\) 40.2618 1.32811 0.664057 0.747682i \(-0.268833\pi\)
0.664057 + 0.747682i \(0.268833\pi\)
\(920\) −13.4522 10.6316i −0.443507 0.350515i
\(921\) 35.5791i 1.17237i
\(922\) −14.2390 45.9232i −0.468935 1.51240i
\(923\) 30.0026 0.987549
\(924\) 8.86756 + 5.51926i 0.291721 + 0.181570i
\(925\) 7.00738 0.230401
\(926\) −0.840921 2.71212i −0.0276344 0.0891258i
\(927\) 1.79158i 0.0588432i
\(928\) −50.9141 3.44158i −1.67134 0.112975i
\(929\) −7.61834 −0.249950 −0.124975 0.992160i \(-0.539885\pi\)
−0.124975 + 0.992160i \(0.539885\pi\)
\(930\) −14.8609 + 4.60778i −0.487309 + 0.151095i
\(931\) 1.14137 0.0374070
\(932\) 8.46646 + 12.3404i 0.277328 + 0.404222i
\(933\) 12.7816 0.418450
\(934\) 12.0036 + 38.7139i 0.392771 + 1.26676i
\(935\) −1.57883 3.60552i −0.0516333 0.117913i
\(936\) 3.02999 + 2.39468i 0.0990385 + 0.0782727i
\(937\) 2.79736i 0.0913858i 0.998956 + 0.0456929i \(0.0145496\pi\)
−0.998956 + 0.0456929i \(0.985450\pi\)
\(938\) 3.35227 + 10.8117i 0.109456 + 0.353014i
\(939\) 35.1597i 1.14739i
\(940\) 8.46850 + 12.3433i 0.276212 + 0.402595i
\(941\) 32.7923i 1.06900i 0.845169 + 0.534499i \(0.179500\pi\)
−0.845169 + 0.534499i \(0.820500\pi\)
\(942\) −5.53182 17.8411i −0.180236 0.581295i
\(943\) −0.960728 −0.0312856
\(944\) −54.2219 20.9156i −1.76477 0.680745i
\(945\) 8.76923i 0.285263i
\(946\) −6.47113 + 5.60050i −0.210395 + 0.182088i
\(947\) 7.15816i 0.232609i −0.993214 0.116305i \(-0.962895\pi\)
0.993214 0.116305i \(-0.0371049\pi\)
\(948\) −11.9769 17.4571i −0.388993 0.566981i
\(949\) 0.702638 0.0228086
\(950\) 3.85073 1.19396i 0.124934 0.0387372i
\(951\) 6.68956i 0.216924i
\(952\) 1.66480 + 1.31573i 0.0539563 + 0.0426431i
\(953\) 38.2832i 1.24011i 0.784557 + 0.620057i \(0.212891\pi\)
−0.784557 + 0.620057i \(0.787109\pi\)
\(954\) 6.40863 1.98706i 0.207487 0.0643335i
\(955\) 18.7733i 0.607491i
\(956\) −23.4575 + 16.0937i −0.758669 + 0.520506i
\(957\) −43.1553 + 18.8974i −1.39501 + 0.610866i
\(958\) −26.6899 + 8.27548i −0.862312 + 0.267369i
\(959\) 8.45260 0.272949
\(960\) 19.3877 4.60433i 0.625736 0.148604i
\(961\) 11.4914 0.370691
\(962\) −3.08220 9.94065i −0.0993741 0.320499i
\(963\) −7.08406 −0.228281
\(964\) −15.5483 22.6626i −0.500778 0.729913i
\(965\) 13.1115i 0.422075i
\(966\) 8.15101 2.52730i 0.262255 0.0813147i
\(967\) 60.3137 1.93956 0.969778 0.243988i \(-0.0784559\pi\)
0.969778 + 0.243988i \(0.0784559\pi\)
\(968\) 4.85437 + 30.7317i 0.156025 + 0.987753i
\(969\) 1.34833 0.0433146
\(970\) 26.3798 8.17932i 0.847003 0.262622i
\(971\) 7.52865i 0.241606i 0.992676 + 0.120803i \(0.0385469\pi\)
−0.992676 + 0.120803i \(0.961453\pi\)
\(972\) 6.04735 + 8.81437i 0.193969 + 0.282721i
\(973\) 10.4874 0.336212
\(974\) 6.43955 + 20.7687i 0.206337 + 0.665473i
\(975\) −10.3162 −0.330384
\(976\) −28.5813 11.0250i −0.914864 0.352900i
\(977\) 36.8738 1.17970 0.589849 0.807513i \(-0.299187\pi\)
0.589849 + 0.807513i \(0.299187\pi\)
\(978\) 9.19815 2.85198i 0.294125 0.0911963i
\(979\) 32.3585 14.1695i 1.03418 0.452861i
\(980\) 2.60880 1.78984i 0.0833350 0.0571743i
\(981\) 2.55191i 0.0814762i
\(982\) 14.8618 4.60805i 0.474258 0.147049i
\(983\) 5.97352i 0.190526i 0.995452 + 0.0952628i \(0.0303691\pi\)
−0.995452 + 0.0952628i \(0.969631\pi\)
\(984\) 0.692314 0.875985i 0.0220702 0.0279254i
\(985\) 30.0577i 0.957719i
\(986\) −9.14169 + 2.83448i −0.291131 + 0.0902681i
\(987\) −7.45024 −0.237144
\(988\) −3.38750 4.93748i −0.107771 0.157082i
\(989\) 6.99226i 0.222341i
\(990\) −2.92044 + 2.52752i −0.0928178 + 0.0803300i
\(991\) 17.3869i 0.552312i 0.961113 + 0.276156i \(0.0890606\pi\)
−0.961113 + 0.276156i \(0.910939\pi\)
\(992\) 24.9286 + 1.68507i 0.791484 + 0.0535010i
\(993\) 0.226972 0.00720274
\(994\) −4.79046 15.4501i −0.151944 0.490048i
\(995\) 25.3291i 0.802987i
\(996\) 2.13940 + 3.11831i 0.0677896 + 0.0988074i
\(997\) 39.6637i 1.25616i −0.778148 0.628081i \(-0.783841\pi\)
0.778148 0.628081i \(-0.216159\pi\)
\(998\) 0.967713 + 3.12105i 0.0306324 + 0.0987950i
\(999\) 15.5529i 0.492071i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.d.a.43.4 yes 18
4.3 odd 2 308.2.d.b.43.16 yes 18
11.10 odd 2 308.2.d.b.43.15 yes 18
44.43 even 2 inner 308.2.d.a.43.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.d.a.43.3 18 44.43 even 2 inner
308.2.d.a.43.4 yes 18 1.1 even 1 trivial
308.2.d.b.43.15 yes 18 11.10 odd 2
308.2.d.b.43.16 yes 18 4.3 odd 2