Properties

Label 308.2.i.a.221.2
Level $308$
Weight $2$
Character 308.221
Analytic conductor $2.459$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(177,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 221.2
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 308.221
Dual form 308.2.i.a.177.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.296790 - 0.514055i) q^{3} +(0.933463 + 1.61680i) q^{5} +(0.0665372 - 2.64491i) q^{7} +(1.32383 + 2.29294i) q^{9} +(0.500000 - 0.866025i) q^{11} +4.32743 q^{13} +1.10817 q^{15} +(-0.230252 + 0.398809i) q^{17} +(-0.769748 - 1.33324i) q^{19} +(-1.33988 - 0.819187i) q^{21} +(1.73025 + 2.99689i) q^{23} +(0.757295 - 1.31167i) q^{25} +3.35234 q^{27} -5.78794 q^{29} +(0.487547 - 0.844456i) q^{31} +(-0.296790 - 0.514055i) q^{33} +(4.33842 - 2.36135i) q^{35} +(0.133074 + 0.230492i) q^{37} +(1.28434 - 2.22454i) q^{39} +0.485411 q^{41} -3.70175 q^{43} +(-2.47150 + 4.28076i) q^{45} +(-3.23025 - 5.59496i) q^{47} +(-6.99115 - 0.351971i) q^{49} +(0.136673 + 0.236725i) q^{51} +(-6.21780 + 10.7695i) q^{53} +1.86693 q^{55} -0.913813 q^{57} +(-2.39037 + 4.14024i) q^{59} +(-4.64766 - 8.04999i) q^{61} +(6.15272 - 3.34886i) q^{63} +(4.03950 + 6.99661i) q^{65} +(-6.51459 + 11.2836i) q^{67} +2.05408 q^{69} -6.46050 q^{71} +(-3.20321 + 5.54812i) q^{73} +(-0.449514 - 0.778582i) q^{75} +(-2.25729 - 1.38008i) q^{77} +(-7.54163 - 13.0625i) q^{79} +(-2.97656 + 5.15555i) q^{81} +6.83482 q^{83} -0.859728 q^{85} +(-1.71780 + 2.97532i) q^{87} +(-1.30039 - 2.25234i) q^{89} +(0.287935 - 11.4457i) q^{91} +(-0.289398 - 0.501252i) q^{93} +(1.43706 - 2.48906i) q^{95} -5.35661 q^{97} +2.64766 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} + 2 q^{5} + 4 q^{7} - 4 q^{9} + 3 q^{11} + 6 q^{13} - 30 q^{15} + 5 q^{17} - 11 q^{19} - 10 q^{21} + 4 q^{23} - 11 q^{25} + 44 q^{27} - 2 q^{29} - 19 q^{31} + q^{33} - 17 q^{35} + 8 q^{37}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.296790 0.514055i 0.171352 0.296790i −0.767541 0.641000i \(-0.778520\pi\)
0.938893 + 0.344210i \(0.111853\pi\)
\(4\) 0 0
\(5\) 0.933463 + 1.61680i 0.417457 + 0.723057i 0.995683 0.0928197i \(-0.0295880\pi\)
−0.578226 + 0.815877i \(0.696255\pi\)
\(6\) 0 0
\(7\) 0.0665372 2.64491i 0.0251487 0.999684i
\(8\) 0 0
\(9\) 1.32383 + 2.29294i 0.441277 + 0.764315i
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0 0
\(13\) 4.32743 1.20021 0.600107 0.799920i \(-0.295125\pi\)
0.600107 + 0.799920i \(0.295125\pi\)
\(14\) 0 0
\(15\) 1.10817 0.286128
\(16\) 0 0
\(17\) −0.230252 + 0.398809i −0.0558444 + 0.0967254i −0.892596 0.450857i \(-0.851118\pi\)
0.836752 + 0.547582i \(0.184452\pi\)
\(18\) 0 0
\(19\) −0.769748 1.33324i −0.176592 0.305867i 0.764119 0.645075i \(-0.223174\pi\)
−0.940711 + 0.339209i \(0.889841\pi\)
\(20\) 0 0
\(21\) −1.33988 0.819187i −0.292387 0.178761i
\(22\) 0 0
\(23\) 1.73025 + 2.99689i 0.360783 + 0.624894i 0.988090 0.153878i \(-0.0491763\pi\)
−0.627307 + 0.778772i \(0.715843\pi\)
\(24\) 0 0
\(25\) 0.757295 1.31167i 0.151459 0.262335i
\(26\) 0 0
\(27\) 3.35234 0.645157
\(28\) 0 0
\(29\) −5.78794 −1.07479 −0.537396 0.843330i \(-0.680592\pi\)
−0.537396 + 0.843330i \(0.680592\pi\)
\(30\) 0 0
\(31\) 0.487547 0.844456i 0.0875660 0.151669i −0.818916 0.573914i \(-0.805424\pi\)
0.906482 + 0.422245i \(0.138758\pi\)
\(32\) 0 0
\(33\) −0.296790 0.514055i −0.0516645 0.0894855i
\(34\) 0 0
\(35\) 4.33842 2.36135i 0.733327 0.399141i
\(36\) 0 0
\(37\) 0.133074 + 0.230492i 0.0218773 + 0.0378926i 0.876757 0.480934i \(-0.159702\pi\)
−0.854879 + 0.518827i \(0.826369\pi\)
\(38\) 0 0
\(39\) 1.28434 2.22454i 0.205658 0.356211i
\(40\) 0 0
\(41\) 0.485411 0.0758084 0.0379042 0.999281i \(-0.487932\pi\)
0.0379042 + 0.999281i \(0.487932\pi\)
\(42\) 0 0
\(43\) −3.70175 −0.564511 −0.282256 0.959339i \(-0.591083\pi\)
−0.282256 + 0.959339i \(0.591083\pi\)
\(44\) 0 0
\(45\) −2.47150 + 4.28076i −0.368429 + 0.638137i
\(46\) 0 0
\(47\) −3.23025 5.59496i −0.471181 0.816109i 0.528276 0.849073i \(-0.322839\pi\)
−0.999457 + 0.0329638i \(0.989505\pi\)
\(48\) 0 0
\(49\) −6.99115 0.351971i −0.998735 0.0502815i
\(50\) 0 0
\(51\) 0.136673 + 0.236725i 0.0191381 + 0.0331481i
\(52\) 0 0
\(53\) −6.21780 + 10.7695i −0.854080 + 1.47931i 0.0234151 + 0.999726i \(0.492546\pi\)
−0.877495 + 0.479585i \(0.840787\pi\)
\(54\) 0 0
\(55\) 1.86693 0.251736
\(56\) 0 0
\(57\) −0.913813 −0.121037
\(58\) 0 0
\(59\) −2.39037 + 4.14024i −0.311200 + 0.539013i −0.978622 0.205666i \(-0.934064\pi\)
0.667423 + 0.744679i \(0.267397\pi\)
\(60\) 0 0
\(61\) −4.64766 8.04999i −0.595072 1.03070i −0.993537 0.113512i \(-0.963790\pi\)
0.398464 0.917184i \(-0.369543\pi\)
\(62\) 0 0
\(63\) 6.15272 3.34886i 0.775170 0.421916i
\(64\) 0 0
\(65\) 4.03950 + 6.99661i 0.501038 + 0.867823i
\(66\) 0 0
\(67\) −6.51459 + 11.2836i −0.795884 + 1.37851i 0.126393 + 0.991980i \(0.459660\pi\)
−0.922277 + 0.386531i \(0.873673\pi\)
\(68\) 0 0
\(69\) 2.05408 0.247283
\(70\) 0 0
\(71\) −6.46050 −0.766721 −0.383360 0.923599i \(-0.625233\pi\)
−0.383360 + 0.923599i \(0.625233\pi\)
\(72\) 0 0
\(73\) −3.20321 + 5.54812i −0.374907 + 0.649359i −0.990313 0.138852i \(-0.955659\pi\)
0.615406 + 0.788210i \(0.288992\pi\)
\(74\) 0 0
\(75\) −0.449514 0.778582i −0.0519055 0.0899029i
\(76\) 0 0
\(77\) −2.25729 1.38008i −0.257243 0.157275i
\(78\) 0 0
\(79\) −7.54163 13.0625i −0.848500 1.46964i −0.882547 0.470225i \(-0.844173\pi\)
0.0340470 0.999420i \(-0.489160\pi\)
\(80\) 0 0
\(81\) −2.97656 + 5.15555i −0.330729 + 0.572839i
\(82\) 0 0
\(83\) 6.83482 0.750219 0.375110 0.926980i \(-0.377605\pi\)
0.375110 + 0.926980i \(0.377605\pi\)
\(84\) 0 0
\(85\) −0.859728 −0.0932506
\(86\) 0 0
\(87\) −1.71780 + 2.97532i −0.184167 + 0.318987i
\(88\) 0 0
\(89\) −1.30039 2.25234i −0.137841 0.238747i 0.788838 0.614601i \(-0.210683\pi\)
−0.926679 + 0.375853i \(0.877350\pi\)
\(90\) 0 0
\(91\) 0.287935 11.4457i 0.0301838 1.19983i
\(92\) 0 0
\(93\) −0.289398 0.501252i −0.0300092 0.0519774i
\(94\) 0 0
\(95\) 1.43706 2.48906i 0.147439 0.255373i
\(96\) 0 0
\(97\) −5.35661 −0.543881 −0.271941 0.962314i \(-0.587665\pi\)
−0.271941 + 0.962314i \(0.587665\pi\)
\(98\) 0 0
\(99\) 2.64766 0.266100
\(100\) 0 0
\(101\) 9.29893 16.1062i 0.925278 1.60263i 0.134164 0.990959i \(-0.457165\pi\)
0.791114 0.611669i \(-0.209501\pi\)
\(102\) 0 0
\(103\) −8.43200 14.6047i −0.830830 1.43904i −0.897381 0.441256i \(-0.854533\pi\)
0.0665515 0.997783i \(-0.478800\pi\)
\(104\) 0 0
\(105\) 0.0737345 2.93101i 0.00719575 0.286037i
\(106\) 0 0
\(107\) 5.31498 + 9.20581i 0.513818 + 0.889959i 0.999872 + 0.0160301i \(0.00510277\pi\)
−0.486053 + 0.873929i \(0.661564\pi\)
\(108\) 0 0
\(109\) −5.12062 + 8.86918i −0.490467 + 0.849513i −0.999940 0.0109735i \(-0.996507\pi\)
0.509473 + 0.860487i \(0.329840\pi\)
\(110\) 0 0
\(111\) 0.157981 0.0149948
\(112\) 0 0
\(113\) 8.67684 0.816249 0.408124 0.912926i \(-0.366183\pi\)
0.408124 + 0.912926i \(0.366183\pi\)
\(114\) 0 0
\(115\) −3.23025 + 5.59496i −0.301223 + 0.521733i
\(116\) 0 0
\(117\) 5.72879 + 9.92256i 0.529627 + 0.917341i
\(118\) 0 0
\(119\) 1.03950 + 0.635534i 0.0952904 + 0.0582593i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 0.144065 0.249528i 0.0129899 0.0224992i
\(124\) 0 0
\(125\) 12.1623 1.08782
\(126\) 0 0
\(127\) 1.32743 0.117790 0.0588952 0.998264i \(-0.481242\pi\)
0.0588952 + 0.998264i \(0.481242\pi\)
\(128\) 0 0
\(129\) −1.09864 + 1.90290i −0.0967299 + 0.167541i
\(130\) 0 0
\(131\) 5.13521 + 8.89445i 0.448665 + 0.777111i 0.998299 0.0582942i \(-0.0185662\pi\)
−0.549634 + 0.835406i \(0.685233\pi\)
\(132\) 0 0
\(133\) −3.57753 + 1.94721i −0.310211 + 0.168844i
\(134\) 0 0
\(135\) 3.12928 + 5.42007i 0.269326 + 0.466486i
\(136\) 0 0
\(137\) −7.71780 + 13.3676i −0.659376 + 1.14207i 0.321401 + 0.946943i \(0.395846\pi\)
−0.980777 + 0.195130i \(0.937487\pi\)
\(138\) 0 0
\(139\) 11.0000 0.933008 0.466504 0.884519i \(-0.345513\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(140\) 0 0
\(141\) −3.83482 −0.322950
\(142\) 0 0
\(143\) 2.16372 3.74766i 0.180939 0.313395i
\(144\) 0 0
\(145\) −5.40282 9.35796i −0.448680 0.777136i
\(146\) 0 0
\(147\) −2.25583 + 3.48937i −0.186058 + 0.287798i
\(148\) 0 0
\(149\) 7.28794 + 12.6231i 0.597051 + 1.03412i 0.993254 + 0.115960i \(0.0369943\pi\)
−0.396203 + 0.918163i \(0.629672\pi\)
\(150\) 0 0
\(151\) 2.97656 5.15555i 0.242229 0.419552i −0.719120 0.694886i \(-0.755455\pi\)
0.961349 + 0.275333i \(0.0887882\pi\)
\(152\) 0 0
\(153\) −1.21926 −0.0985715
\(154\) 0 0
\(155\) 1.82043 0.146220
\(156\) 0 0
\(157\) 12.0146 20.8099i 0.958869 1.66081i 0.233613 0.972330i \(-0.424945\pi\)
0.725256 0.688479i \(-0.241721\pi\)
\(158\) 0 0
\(159\) 3.69076 + 6.39258i 0.292696 + 0.506965i
\(160\) 0 0
\(161\) 8.04163 4.37697i 0.633769 0.344953i
\(162\) 0 0
\(163\) −0.421010 0.729210i −0.0329760 0.0571162i 0.849066 0.528286i \(-0.177165\pi\)
−0.882042 + 0.471170i \(0.843832\pi\)
\(164\) 0 0
\(165\) 0.554084 0.959702i 0.0431354 0.0747127i
\(166\) 0 0
\(167\) 15.5218 1.20111 0.600556 0.799583i \(-0.294946\pi\)
0.600556 + 0.799583i \(0.294946\pi\)
\(168\) 0 0
\(169\) 5.72665 0.440512
\(170\) 0 0
\(171\) 2.03803 3.52998i 0.155852 0.269944i
\(172\) 0 0
\(173\) −6.67830 11.5672i −0.507742 0.879435i −0.999960 0.00896297i \(-0.997147\pi\)
0.492218 0.870472i \(-0.336186\pi\)
\(174\) 0 0
\(175\) −3.41887 2.09025i −0.258443 0.158008i
\(176\) 0 0
\(177\) 1.41887 + 2.45756i 0.106649 + 0.184722i
\(178\) 0 0
\(179\) 4.53064 7.84730i 0.338636 0.586535i −0.645540 0.763726i \(-0.723368\pi\)
0.984176 + 0.177191i \(0.0567012\pi\)
\(180\) 0 0
\(181\) 20.1986 1.50135 0.750676 0.660670i \(-0.229728\pi\)
0.750676 + 0.660670i \(0.229728\pi\)
\(182\) 0 0
\(183\) −5.51751 −0.407866
\(184\) 0 0
\(185\) −0.248440 + 0.430311i −0.0182657 + 0.0316371i
\(186\) 0 0
\(187\) 0.230252 + 0.398809i 0.0168377 + 0.0291638i
\(188\) 0 0
\(189\) 0.223055 8.86664i 0.0162249 0.644953i
\(190\) 0 0
\(191\) −7.03950 12.1928i −0.509360 0.882237i −0.999941 0.0108419i \(-0.996549\pi\)
0.490581 0.871395i \(-0.336784\pi\)
\(192\) 0 0
\(193\) 8.21780 14.2336i 0.591530 1.02456i −0.402496 0.915422i \(-0.631857\pi\)
0.994027 0.109139i \(-0.0348093\pi\)
\(194\) 0 0
\(195\) 4.79552 0.343414
\(196\) 0 0
\(197\) −8.48968 −0.604865 −0.302432 0.953171i \(-0.597799\pi\)
−0.302432 + 0.953171i \(0.597799\pi\)
\(198\) 0 0
\(199\) −13.7288 + 23.7790i −0.973208 + 1.68565i −0.287482 + 0.957786i \(0.592818\pi\)
−0.685726 + 0.727860i \(0.740515\pi\)
\(200\) 0 0
\(201\) 3.86693 + 6.69771i 0.272752 + 0.472420i
\(202\) 0 0
\(203\) −0.385113 + 15.3086i −0.0270296 + 1.07445i
\(204\) 0 0
\(205\) 0.453113 + 0.784815i 0.0316468 + 0.0548138i
\(206\) 0 0
\(207\) −4.58113 + 7.93474i −0.318410 + 0.551503i
\(208\) 0 0
\(209\) −1.53950 −0.106489
\(210\) 0 0
\(211\) 8.49688 0.584949 0.292475 0.956273i \(-0.405521\pi\)
0.292475 + 0.956273i \(0.405521\pi\)
\(212\) 0 0
\(213\) −1.91741 + 3.32105i −0.131379 + 0.227555i
\(214\) 0 0
\(215\) −3.45544 5.98500i −0.235659 0.408174i
\(216\) 0 0
\(217\) −2.20107 1.34571i −0.149419 0.0913526i
\(218\) 0 0
\(219\) 1.90136 + 3.29325i 0.128482 + 0.222537i
\(220\) 0 0
\(221\) −0.996401 + 1.72582i −0.0670252 + 0.116091i
\(222\) 0 0
\(223\) −13.9210 −0.932220 −0.466110 0.884727i \(-0.654345\pi\)
−0.466110 + 0.884727i \(0.654345\pi\)
\(224\) 0 0
\(225\) 4.01012 0.267341
\(226\) 0 0
\(227\) −12.8224 + 22.2090i −0.851051 + 1.47406i 0.0292106 + 0.999573i \(0.490701\pi\)
−0.880261 + 0.474489i \(0.842633\pi\)
\(228\) 0 0
\(229\) 5.82743 + 10.0934i 0.385087 + 0.666991i 0.991781 0.127945i \(-0.0408380\pi\)
−0.606694 + 0.794936i \(0.707505\pi\)
\(230\) 0 0
\(231\) −1.37938 + 0.750780i −0.0907564 + 0.0493977i
\(232\) 0 0
\(233\) −6.55408 11.3520i −0.429372 0.743695i 0.567445 0.823411i \(-0.307932\pi\)
−0.996818 + 0.0797164i \(0.974599\pi\)
\(234\) 0 0
\(235\) 6.03064 10.4454i 0.393396 0.681381i
\(236\) 0 0
\(237\) −8.95311 −0.581567
\(238\) 0 0
\(239\) −18.3346 −1.18597 −0.592984 0.805214i \(-0.702050\pi\)
−0.592984 + 0.805214i \(0.702050\pi\)
\(240\) 0 0
\(241\) 8.03803 13.9223i 0.517775 0.896813i −0.482012 0.876165i \(-0.660094\pi\)
0.999787 0.0206481i \(-0.00657297\pi\)
\(242\) 0 0
\(243\) 6.79533 + 11.7699i 0.435920 + 0.755036i
\(244\) 0 0
\(245\) −5.95691 11.6319i −0.380573 0.743133i
\(246\) 0 0
\(247\) −3.33103 5.76951i −0.211948 0.367105i
\(248\) 0 0
\(249\) 2.02850 3.51347i 0.128551 0.222657i
\(250\) 0 0
\(251\) 6.03638 0.381013 0.190506 0.981686i \(-0.438987\pi\)
0.190506 + 0.981686i \(0.438987\pi\)
\(252\) 0 0
\(253\) 3.46050 0.217560
\(254\) 0 0
\(255\) −0.255158 + 0.441947i −0.0159786 + 0.0276758i
\(256\) 0 0
\(257\) 8.40856 + 14.5640i 0.524511 + 0.908480i 0.999593 + 0.0285384i \(0.00908530\pi\)
−0.475081 + 0.879942i \(0.657581\pi\)
\(258\) 0 0
\(259\) 0.618485 0.336634i 0.0384308 0.0209174i
\(260\) 0 0
\(261\) −7.66225 13.2714i −0.474282 0.821480i
\(262\) 0 0
\(263\) −7.24484 + 12.5484i −0.446736 + 0.773770i −0.998171 0.0604481i \(-0.980747\pi\)
0.551435 + 0.834218i \(0.314080\pi\)
\(264\) 0 0
\(265\) −23.2163 −1.42617
\(266\) 0 0
\(267\) −1.54377 −0.0944770
\(268\) 0 0
\(269\) 2.24630 3.89071i 0.136960 0.237221i −0.789385 0.613899i \(-0.789600\pi\)
0.926344 + 0.376678i \(0.122934\pi\)
\(270\) 0 0
\(271\) −11.7484 20.3489i −0.713667 1.23611i −0.963471 0.267811i \(-0.913700\pi\)
0.249805 0.968296i \(-0.419634\pi\)
\(272\) 0 0
\(273\) −5.79825 3.54498i −0.350926 0.214552i
\(274\) 0 0
\(275\) −0.757295 1.31167i −0.0456666 0.0790968i
\(276\) 0 0
\(277\) 3.53064 6.11525i 0.212136 0.367430i −0.740247 0.672335i \(-0.765291\pi\)
0.952383 + 0.304905i \(0.0986248\pi\)
\(278\) 0 0
\(279\) 2.58172 0.154564
\(280\) 0 0
\(281\) −4.88171 −0.291218 −0.145609 0.989342i \(-0.546514\pi\)
−0.145609 + 0.989342i \(0.546514\pi\)
\(282\) 0 0
\(283\) −11.7053 + 20.2743i −0.695811 + 1.20518i 0.274096 + 0.961702i \(0.411621\pi\)
−0.969907 + 0.243477i \(0.921712\pi\)
\(284\) 0 0
\(285\) −0.853010 1.47746i −0.0505279 0.0875170i
\(286\) 0 0
\(287\) 0.0322979 1.28387i 0.00190648 0.0757845i
\(288\) 0 0
\(289\) 8.39397 + 14.5388i 0.493763 + 0.855222i
\(290\) 0 0
\(291\) −1.58979 + 2.75359i −0.0931949 + 0.161418i
\(292\) 0 0
\(293\) −18.0875 −1.05669 −0.528343 0.849031i \(-0.677186\pi\)
−0.528343 + 0.849031i \(0.677186\pi\)
\(294\) 0 0
\(295\) −8.92528 −0.519650
\(296\) 0 0
\(297\) 1.67617 2.90321i 0.0972611 0.168461i
\(298\) 0 0
\(299\) 7.48755 + 12.9688i 0.433016 + 0.750006i
\(300\) 0 0
\(301\) −0.246304 + 9.79081i −0.0141967 + 0.564333i
\(302\) 0 0
\(303\) −5.51965 9.56031i −0.317096 0.549226i
\(304\) 0 0
\(305\) 8.67684 15.0287i 0.496835 0.860543i
\(306\) 0 0
\(307\) −11.8171 −0.674438 −0.337219 0.941426i \(-0.609486\pi\)
−0.337219 + 0.941426i \(0.609486\pi\)
\(308\) 0 0
\(309\) −10.0101 −0.569456
\(310\) 0 0
\(311\) 5.98755 10.3707i 0.339523 0.588070i −0.644820 0.764334i \(-0.723068\pi\)
0.984343 + 0.176264i \(0.0564011\pi\)
\(312\) 0 0
\(313\) −6.01099 10.4113i −0.339761 0.588484i 0.644626 0.764498i \(-0.277013\pi\)
−0.984388 + 0.176014i \(0.943680\pi\)
\(314\) 0 0
\(315\) 11.1578 + 6.82172i 0.628670 + 0.384361i
\(316\) 0 0
\(317\) 10.4445 + 18.0903i 0.586619 + 1.01605i 0.994671 + 0.103095i \(0.0328747\pi\)
−0.408053 + 0.912958i \(0.633792\pi\)
\(318\) 0 0
\(319\) −2.89397 + 5.01250i −0.162031 + 0.280646i
\(320\) 0 0
\(321\) 6.30972 0.352174
\(322\) 0 0
\(323\) 0.708945 0.0394468
\(324\) 0 0
\(325\) 3.27714 5.67617i 0.181783 0.314857i
\(326\) 0 0
\(327\) 3.03950 + 5.26456i 0.168084 + 0.291131i
\(328\) 0 0
\(329\) −15.0131 + 8.17147i −0.827700 + 0.450508i
\(330\) 0 0
\(331\) 3.01459 + 5.22142i 0.165697 + 0.286995i 0.936903 0.349591i \(-0.113679\pi\)
−0.771206 + 0.636586i \(0.780346\pi\)
\(332\) 0 0
\(333\) −0.352336 + 0.610265i −0.0193079 + 0.0334423i
\(334\) 0 0
\(335\) −24.3245 −1.32899
\(336\) 0 0
\(337\) 21.2091 1.15534 0.577668 0.816272i \(-0.303963\pi\)
0.577668 + 0.816272i \(0.303963\pi\)
\(338\) 0 0
\(339\) 2.57520 4.46037i 0.139866 0.242254i
\(340\) 0 0
\(341\) −0.487547 0.844456i −0.0264021 0.0457299i
\(342\) 0 0
\(343\) −1.39610 + 18.4676i −0.0753825 + 0.997155i
\(344\) 0 0
\(345\) 1.91741 + 3.32105i 0.103230 + 0.178800i
\(346\) 0 0
\(347\) −6.05622 + 10.4897i −0.325115 + 0.563116i −0.981536 0.191279i \(-0.938736\pi\)
0.656421 + 0.754395i \(0.272070\pi\)
\(348\) 0 0
\(349\) −17.1082 −0.915779 −0.457890 0.889009i \(-0.651395\pi\)
−0.457890 + 0.889009i \(0.651395\pi\)
\(350\) 0 0
\(351\) 14.5070 0.774327
\(352\) 0 0
\(353\) 11.8186 20.4704i 0.629039 1.08953i −0.358706 0.933451i \(-0.616782\pi\)
0.987745 0.156077i \(-0.0498849\pi\)
\(354\) 0 0
\(355\) −6.03064 10.4454i −0.320073 0.554383i
\(356\) 0 0
\(357\) 0.635211 0.345738i 0.0336189 0.0182984i
\(358\) 0 0
\(359\) −17.8384 30.8971i −0.941476 1.63068i −0.762658 0.646802i \(-0.776106\pi\)
−0.178818 0.983882i \(-0.557227\pi\)
\(360\) 0 0
\(361\) 8.31498 14.4020i 0.437630 0.757998i
\(362\) 0 0
\(363\) −0.593579 −0.0311548
\(364\) 0 0
\(365\) −11.9603 −0.626031
\(366\) 0 0
\(367\) −5.51245 + 9.54785i −0.287748 + 0.498394i −0.973272 0.229656i \(-0.926240\pi\)
0.685524 + 0.728050i \(0.259573\pi\)
\(368\) 0 0
\(369\) 0.642602 + 1.11302i 0.0334525 + 0.0579415i
\(370\) 0 0
\(371\) 28.0708 + 17.1621i 1.45736 + 0.891013i
\(372\) 0 0
\(373\) 11.9897 + 20.7667i 0.620802 + 1.07526i 0.989337 + 0.145647i \(0.0465264\pi\)
−0.368534 + 0.929614i \(0.620140\pi\)
\(374\) 0 0
\(375\) 3.60963 6.25206i 0.186401 0.322855i
\(376\) 0 0
\(377\) −25.0469 −1.28998
\(378\) 0 0
\(379\) −3.53950 −0.181812 −0.0909058 0.995859i \(-0.528976\pi\)
−0.0909058 + 0.995859i \(0.528976\pi\)
\(380\) 0 0
\(381\) 0.393968 0.682372i 0.0201836 0.0349590i
\(382\) 0 0
\(383\) 5.84348 + 10.1212i 0.298588 + 0.517170i 0.975813 0.218606i \(-0.0701510\pi\)
−0.677225 + 0.735776i \(0.736818\pi\)
\(384\) 0 0
\(385\) 0.124220 4.93786i 0.00633084 0.251657i
\(386\) 0 0
\(387\) −4.90049 8.48790i −0.249106 0.431464i
\(388\) 0 0
\(389\) 0.591443 1.02441i 0.0299874 0.0519396i −0.850642 0.525745i \(-0.823787\pi\)
0.880630 + 0.473805i \(0.157120\pi\)
\(390\) 0 0
\(391\) −1.59358 −0.0805908
\(392\) 0 0
\(393\) 6.09631 0.307518
\(394\) 0 0
\(395\) 14.0797 24.3867i 0.708425 1.22703i
\(396\) 0 0
\(397\) 3.32023 + 5.75081i 0.166638 + 0.288625i 0.937236 0.348697i \(-0.113376\pi\)
−0.770598 + 0.637322i \(0.780042\pi\)
\(398\) 0 0
\(399\) −0.0608026 + 2.41696i −0.00304394 + 0.120999i
\(400\) 0 0
\(401\) −8.26449 14.3145i −0.412709 0.714833i 0.582476 0.812848i \(-0.302084\pi\)
−0.995185 + 0.0980150i \(0.968751\pi\)
\(402\) 0 0
\(403\) 2.10983 3.65433i 0.105098 0.182035i
\(404\) 0 0
\(405\) −11.1140 −0.552260
\(406\) 0 0
\(407\) 0.266149 0.0131925
\(408\) 0 0
\(409\) −14.6747 + 25.4173i −0.725617 + 1.25681i 0.233102 + 0.972452i \(0.425112\pi\)
−0.958719 + 0.284354i \(0.908221\pi\)
\(410\) 0 0
\(411\) 4.58113 + 7.93474i 0.225970 + 0.391392i
\(412\) 0 0
\(413\) 10.7915 + 6.59780i 0.531017 + 0.324657i
\(414\) 0 0
\(415\) 6.38005 + 11.0506i 0.313184 + 0.542451i
\(416\) 0 0
\(417\) 3.26469 5.65460i 0.159872 0.276907i
\(418\) 0 0
\(419\) 12.6840 0.619656 0.309828 0.950793i \(-0.399729\pi\)
0.309828 + 0.950793i \(0.399729\pi\)
\(420\) 0 0
\(421\) 30.5835 1.49055 0.745273 0.666759i \(-0.232319\pi\)
0.745273 + 0.666759i \(0.232319\pi\)
\(422\) 0 0
\(423\) 8.55262 14.8136i 0.415843 0.720261i
\(424\) 0 0
\(425\) 0.348738 + 0.604032i 0.0169163 + 0.0292998i
\(426\) 0 0
\(427\) −21.6008 + 11.7570i −1.04533 + 0.568963i
\(428\) 0 0
\(429\) −1.28434 2.22454i −0.0620084 0.107402i
\(430\) 0 0
\(431\) 13.8743 24.0310i 0.668302 1.15753i −0.310076 0.950712i \(-0.600355\pi\)
0.978379 0.206822i \(-0.0663121\pi\)
\(432\) 0 0
\(433\) 13.7778 0.662119 0.331060 0.943610i \(-0.392594\pi\)
0.331060 + 0.943610i \(0.392594\pi\)
\(434\) 0 0
\(435\) −6.41401 −0.307528
\(436\) 0 0
\(437\) 2.66372 4.61369i 0.127423 0.220703i
\(438\) 0 0
\(439\) −0.402822 0.697708i −0.0192256 0.0332998i 0.856253 0.516557i \(-0.172787\pi\)
−0.875478 + 0.483258i \(0.839453\pi\)
\(440\) 0 0
\(441\) −8.44805 16.4963i −0.402288 0.785536i
\(442\) 0 0
\(443\) 6.19961 + 10.7380i 0.294552 + 0.510180i 0.974881 0.222728i \(-0.0714961\pi\)
−0.680328 + 0.732908i \(0.738163\pi\)
\(444\) 0 0
\(445\) 2.42773 4.20495i 0.115085 0.199334i
\(446\) 0 0
\(447\) 8.65194 0.409223
\(448\) 0 0
\(449\) 40.1957 1.89695 0.948476 0.316848i \(-0.102625\pi\)
0.948476 + 0.316848i \(0.102625\pi\)
\(450\) 0 0
\(451\) 0.242705 0.420378i 0.0114286 0.0197948i
\(452\) 0 0
\(453\) −1.76682 3.06023i −0.0830126 0.143782i
\(454\) 0 0
\(455\) 18.7742 10.2186i 0.880149 0.479055i
\(456\) 0 0
\(457\) 11.6908 + 20.2490i 0.546871 + 0.947208i 0.998487 + 0.0549952i \(0.0175144\pi\)
−0.451616 + 0.892212i \(0.649152\pi\)
\(458\) 0 0
\(459\) −0.771884 + 1.33694i −0.0360284 + 0.0624031i
\(460\) 0 0
\(461\) −34.9430 −1.62746 −0.813729 0.581245i \(-0.802566\pi\)
−0.813729 + 0.581245i \(0.802566\pi\)
\(462\) 0 0
\(463\) 40.5510 1.88456 0.942282 0.334822i \(-0.108676\pi\)
0.942282 + 0.334822i \(0.108676\pi\)
\(464\) 0 0
\(465\) 0.540284 0.935800i 0.0250551 0.0433967i
\(466\) 0 0
\(467\) −0.572272 0.991204i −0.0264816 0.0458675i 0.852481 0.522758i \(-0.175097\pi\)
−0.878962 + 0.476891i \(0.841764\pi\)
\(468\) 0 0
\(469\) 29.4107 + 17.9813i 1.35806 + 0.830300i
\(470\) 0 0
\(471\) −7.13161 12.3523i −0.328607 0.569165i
\(472\) 0 0
\(473\) −1.85087 + 3.20581i −0.0851033 + 0.147403i
\(474\) 0 0
\(475\) −2.33170 −0.106986
\(476\) 0 0
\(477\) −32.9253 −1.50755
\(478\) 0 0
\(479\) 0.940855 1.62961i 0.0429887 0.0744587i −0.843730 0.536767i \(-0.819645\pi\)
0.886719 + 0.462308i \(0.152979\pi\)
\(480\) 0 0
\(481\) 0.575871 + 0.997437i 0.0262574 + 0.0454792i
\(482\) 0 0
\(483\) 0.136673 5.43288i 0.00621884 0.247204i
\(484\) 0 0
\(485\) −5.00019 8.66059i −0.227047 0.393257i
\(486\) 0 0
\(487\) −5.44445 + 9.43007i −0.246712 + 0.427317i −0.962611 0.270886i \(-0.912683\pi\)
0.715900 + 0.698203i \(0.246017\pi\)
\(488\) 0 0
\(489\) −0.499805 −0.0226020
\(490\) 0 0
\(491\) −12.5615 −0.566891 −0.283446 0.958988i \(-0.591478\pi\)
−0.283446 + 0.958988i \(0.591478\pi\)
\(492\) 0 0
\(493\) 1.33269 2.30828i 0.0600212 0.103960i
\(494\) 0 0
\(495\) 2.47150 + 4.28076i 0.111085 + 0.192406i
\(496\) 0 0
\(497\) −0.429864 + 17.0875i −0.0192820 + 0.766478i
\(498\) 0 0
\(499\) −19.2434 33.3305i −0.861452 1.49208i −0.870528 0.492120i \(-0.836222\pi\)
0.00907557 0.999959i \(-0.497111\pi\)
\(500\) 0 0
\(501\) 4.60671 7.97905i 0.205812 0.356478i
\(502\) 0 0
\(503\) 32.6519 1.45588 0.727939 0.685642i \(-0.240478\pi\)
0.727939 + 0.685642i \(0.240478\pi\)
\(504\) 0 0
\(505\) 34.7208 1.54506
\(506\) 0 0
\(507\) 1.69961 2.94381i 0.0754824 0.130739i
\(508\) 0 0
\(509\) 17.1046 + 29.6260i 0.758147 + 1.31315i 0.943795 + 0.330532i \(0.107228\pi\)
−0.185648 + 0.982616i \(0.559438\pi\)
\(510\) 0 0
\(511\) 14.4612 + 8.84137i 0.639725 + 0.391119i
\(512\) 0 0
\(513\) −2.58045 4.46948i −0.113930 0.197332i
\(514\) 0 0
\(515\) 15.7419 27.2658i 0.693672 1.20147i
\(516\) 0 0
\(517\) −6.46050 −0.284133
\(518\) 0 0
\(519\) −7.92821 −0.348010
\(520\) 0 0
\(521\) −4.81644 + 8.34232i −0.211012 + 0.365484i −0.952032 0.306000i \(-0.901009\pi\)
0.741019 + 0.671484i \(0.234343\pi\)
\(522\) 0 0
\(523\) 11.2915 + 19.5575i 0.493744 + 0.855190i 0.999974 0.00720846i \(-0.00229454\pi\)
−0.506230 + 0.862399i \(0.668961\pi\)
\(524\) 0 0
\(525\) −2.08919 + 1.13712i −0.0911798 + 0.0496281i
\(526\) 0 0
\(527\) 0.224518 + 0.388876i 0.00978015 + 0.0169397i
\(528\) 0 0
\(529\) 5.51245 9.54785i 0.239672 0.415124i
\(530\) 0 0
\(531\) −12.6578 −0.549301
\(532\) 0 0
\(533\) 2.10058 0.0909863
\(534\) 0 0
\(535\) −9.92267 + 17.1866i −0.428994 + 0.743040i
\(536\) 0 0
\(537\) −2.68929 4.65800i −0.116052 0.201007i
\(538\) 0 0
\(539\) −3.80039 + 5.87852i −0.163694 + 0.253206i
\(540\) 0 0
\(541\) 0.972958 + 1.68521i 0.0418307 + 0.0724529i 0.886183 0.463336i \(-0.153348\pi\)
−0.844352 + 0.535789i \(0.820014\pi\)
\(542\) 0 0
\(543\) 5.99474 10.3832i 0.257259 0.445586i
\(544\) 0 0
\(545\) −19.1196 −0.818995
\(546\) 0 0
\(547\) −2.29533 −0.0981411 −0.0490706 0.998795i \(-0.515626\pi\)
−0.0490706 + 0.998795i \(0.515626\pi\)
\(548\) 0 0
\(549\) 12.3054 21.3137i 0.525184 0.909645i
\(550\) 0 0
\(551\) 4.45525 + 7.71672i 0.189800 + 0.328743i
\(552\) 0 0
\(553\) −35.0510 + 19.0778i −1.49052 + 0.811272i
\(554\) 0 0
\(555\) 0.147469 + 0.255424i 0.00625971 + 0.0108421i
\(556\) 0 0
\(557\) −5.73911 + 9.94042i −0.243174 + 0.421189i −0.961617 0.274397i \(-0.911522\pi\)
0.718443 + 0.695586i \(0.244855\pi\)
\(558\) 0 0
\(559\) −16.0191 −0.677534
\(560\) 0 0
\(561\) 0.273346 0.0115407
\(562\) 0 0
\(563\) −20.9377 + 36.2652i −0.882420 + 1.52840i −0.0337782 + 0.999429i \(0.510754\pi\)
−0.848642 + 0.528967i \(0.822579\pi\)
\(564\) 0 0
\(565\) 8.09951 + 14.0288i 0.340749 + 0.590194i
\(566\) 0 0
\(567\) 13.4379 + 8.21577i 0.564340 + 0.345030i
\(568\) 0 0
\(569\) −15.5723 26.9720i −0.652824 1.13072i −0.982435 0.186607i \(-0.940251\pi\)
0.329611 0.944117i \(-0.393082\pi\)
\(570\) 0 0
\(571\) 13.2594 22.9660i 0.554890 0.961098i −0.443022 0.896511i \(-0.646094\pi\)
0.997912 0.0645869i \(-0.0205730\pi\)
\(572\) 0 0
\(573\) −8.35700 −0.349119
\(574\) 0 0
\(575\) 5.24124 0.218575
\(576\) 0 0
\(577\) −1.80185 + 3.12090i −0.0750120 + 0.129925i −0.901092 0.433629i \(-0.857233\pi\)
0.826079 + 0.563554i \(0.190566\pi\)
\(578\) 0 0
\(579\) −4.87792 8.44880i −0.202719 0.351120i
\(580\) 0 0
\(581\) 0.454770 18.0775i 0.0188670 0.749982i
\(582\) 0 0
\(583\) 6.21780 + 10.7695i 0.257515 + 0.446029i
\(584\) 0 0
\(585\) −10.6952 + 18.5247i −0.442193 + 0.765901i
\(586\) 0 0
\(587\) −21.1111 −0.871348 −0.435674 0.900105i \(-0.643490\pi\)
−0.435674 + 0.900105i \(0.643490\pi\)
\(588\) 0 0
\(589\) −1.50115 −0.0618539
\(590\) 0 0
\(591\) −2.51965 + 4.36416i −0.103645 + 0.179518i
\(592\) 0 0
\(593\) −11.8078 20.4517i −0.484887 0.839850i 0.514962 0.857213i \(-0.327806\pi\)
−0.999849 + 0.0173635i \(0.994473\pi\)
\(594\) 0 0
\(595\) −0.0572039 + 2.27391i −0.00234513 + 0.0932211i
\(596\) 0 0
\(597\) 8.14913 + 14.1147i 0.333522 + 0.577676i
\(598\) 0 0
\(599\) 11.7001 20.2652i 0.478053 0.828012i −0.521631 0.853171i \(-0.674676\pi\)
0.999683 + 0.0251597i \(0.00800944\pi\)
\(600\) 0 0
\(601\) 23.4868 0.958045 0.479022 0.877803i \(-0.340991\pi\)
0.479022 + 0.877803i \(0.340991\pi\)
\(602\) 0 0
\(603\) −34.4969 −1.40482
\(604\) 0 0
\(605\) 0.933463 1.61680i 0.0379507 0.0657325i
\(606\) 0 0
\(607\) 3.99854 + 6.92567i 0.162296 + 0.281104i 0.935692 0.352819i \(-0.114777\pi\)
−0.773396 + 0.633923i \(0.781444\pi\)
\(608\) 0 0
\(609\) 7.75516 + 4.74140i 0.314255 + 0.192131i
\(610\) 0 0
\(611\) −13.9787 24.2118i −0.565517 0.979505i
\(612\) 0 0
\(613\) 7.35234 12.7346i 0.296958 0.514346i −0.678480 0.734618i \(-0.737361\pi\)
0.975438 + 0.220272i \(0.0706945\pi\)
\(614\) 0 0
\(615\) 0.537917 0.0216909
\(616\) 0 0
\(617\) −17.5261 −0.705573 −0.352786 0.935704i \(-0.614766\pi\)
−0.352786 + 0.935704i \(0.614766\pi\)
\(618\) 0 0
\(619\) 4.32743 7.49533i 0.173934 0.301263i −0.765858 0.643010i \(-0.777685\pi\)
0.939792 + 0.341747i \(0.111019\pi\)
\(620\) 0 0
\(621\) 5.80039 + 10.0466i 0.232762 + 0.403155i
\(622\) 0 0
\(623\) −6.04377 + 3.28955i −0.242138 + 0.131793i
\(624\) 0 0
\(625\) 7.56654 + 13.1056i 0.302661 + 0.524225i
\(626\) 0 0
\(627\) −0.456906 + 0.791385i −0.0182471 + 0.0316049i
\(628\) 0 0
\(629\) −0.122563 −0.00488690
\(630\) 0 0
\(631\) −34.1488 −1.35944 −0.679721 0.733470i \(-0.737899\pi\)
−0.679721 + 0.733470i \(0.737899\pi\)
\(632\) 0 0
\(633\) 2.52179 4.36786i 0.100232 0.173607i
\(634\) 0 0
\(635\) 1.23911 + 2.14620i 0.0491725 + 0.0851692i
\(636\) 0 0
\(637\) −30.2537 1.52313i −1.19870 0.0603485i
\(638\) 0 0
\(639\) −8.55262 14.8136i −0.338336 0.586016i
\(640\) 0 0
\(641\) −23.5708 + 40.8258i −0.930991 + 1.61252i −0.149360 + 0.988783i \(0.547721\pi\)
−0.781631 + 0.623741i \(0.785612\pi\)
\(642\) 0 0
\(643\) 30.6050 1.20695 0.603473 0.797384i \(-0.293783\pi\)
0.603473 + 0.797384i \(0.293783\pi\)
\(644\) 0 0
\(645\) −4.10216 −0.161522
\(646\) 0 0
\(647\) 21.0512 36.4617i 0.827606 1.43346i −0.0723044 0.997383i \(-0.523035\pi\)
0.899911 0.436074i \(-0.143631\pi\)
\(648\) 0 0
\(649\) 2.39037 + 4.14024i 0.0938302 + 0.162519i
\(650\) 0 0
\(651\) −1.34502 + 0.732081i −0.0527156 + 0.0286925i
\(652\) 0 0
\(653\) −3.24271 5.61653i −0.126897 0.219792i 0.795576 0.605854i \(-0.207168\pi\)
−0.922473 + 0.386062i \(0.873835\pi\)
\(654\) 0 0
\(655\) −9.58706 + 16.6053i −0.374597 + 0.648821i
\(656\) 0 0
\(657\) −16.9620 −0.661752
\(658\) 0 0
\(659\) 7.74105 0.301548 0.150774 0.988568i \(-0.451823\pi\)
0.150774 + 0.988568i \(0.451823\pi\)
\(660\) 0 0
\(661\) 20.2360 35.0498i 0.787089 1.36328i −0.140655 0.990059i \(-0.544921\pi\)
0.927743 0.373219i \(-0.121746\pi\)
\(662\) 0 0
\(663\) 0.591443 + 1.02441i 0.0229698 + 0.0397848i
\(664\) 0 0
\(665\) −6.48774 3.96652i −0.251584 0.153815i
\(666\) 0 0
\(667\) −10.0146 17.3458i −0.387766 0.671631i
\(668\) 0 0
\(669\) −4.13161 + 7.15616i −0.159737 + 0.276673i
\(670\) 0 0
\(671\) −9.29533 −0.358842
\(672\) 0 0
\(673\) −8.23073 −0.317271 −0.158636 0.987337i \(-0.550710\pi\)
−0.158636 + 0.987337i \(0.550710\pi\)
\(674\) 0 0
\(675\) 2.53871 4.39717i 0.0977148 0.169247i
\(676\) 0 0
\(677\) 11.1120 + 19.2465i 0.427067 + 0.739702i 0.996611 0.0822587i \(-0.0262134\pi\)
−0.569544 + 0.821961i \(0.692880\pi\)
\(678\) 0 0
\(679\) −0.356414 + 14.1678i −0.0136779 + 0.543709i
\(680\) 0 0
\(681\) 7.61109 + 13.1828i 0.291658 + 0.505166i
\(682\) 0 0
\(683\) 14.5452 25.1931i 0.556558 0.963986i −0.441223 0.897398i \(-0.645455\pi\)
0.997781 0.0665887i \(-0.0212115\pi\)
\(684\) 0 0
\(685\) −28.8171 −1.10105
\(686\) 0 0
\(687\) 6.91808 0.263941
\(688\) 0 0
\(689\) −26.9071 + 46.6045i −1.02508 + 1.77549i
\(690\) 0 0
\(691\) −21.9502 38.0188i −0.835025 1.44630i −0.894010 0.448046i \(-0.852120\pi\)
0.0589860 0.998259i \(-0.481213\pi\)
\(692\) 0 0
\(693\) 0.176168 7.00284i 0.00669208 0.266016i
\(694\) 0 0
\(695\) 10.2681 + 17.7849i 0.389491 + 0.674618i
\(696\) 0 0
\(697\) −0.111767 + 0.193586i −0.00423348 + 0.00733260i
\(698\) 0 0
\(699\) −7.78074 −0.294295
\(700\) 0 0
\(701\) −26.1800 −0.988803 −0.494402 0.869234i \(-0.664613\pi\)
−0.494402 + 0.869234i \(0.664613\pi\)
\(702\) 0 0
\(703\) 0.204868 0.354841i 0.00772672 0.0133831i
\(704\) 0 0
\(705\) −3.57966 6.20016i −0.134818 0.233512i
\(706\) 0 0
\(707\) −41.9808 25.6665i −1.57885 0.965289i
\(708\) 0 0
\(709\) 8.60291 + 14.9007i 0.323089 + 0.559607i 0.981124 0.193381i \(-0.0619453\pi\)
−0.658035 + 0.752988i \(0.728612\pi\)
\(710\) 0 0
\(711\) 19.9677 34.5851i 0.748847 1.29704i
\(712\) 0 0
\(713\) 3.37432 0.126369
\(714\) 0 0
\(715\) 8.07899 0.302137
\(716\) 0 0
\(717\) −5.44153 + 9.42500i −0.203218 + 0.351983i
\(718\) 0 0
\(719\) −2.44085 4.22768i −0.0910285 0.157666i 0.816916 0.576757i \(-0.195682\pi\)
−0.907944 + 0.419091i \(0.862349\pi\)
\(720\) 0 0
\(721\) −39.1891 + 21.3302i −1.45948 + 0.794377i
\(722\) 0 0
\(723\) −4.77121 8.26398i −0.177443 0.307341i
\(724\) 0 0
\(725\) −4.38317 + 7.59188i −0.162787 + 0.281955i
\(726\) 0 0
\(727\) 5.17704 0.192006 0.0960028 0.995381i \(-0.469394\pi\)
0.0960028 + 0.995381i \(0.469394\pi\)
\(728\) 0 0
\(729\) −9.79221 −0.362674
\(730\) 0 0
\(731\) 0.852336 1.47629i 0.0315248 0.0546026i
\(732\) 0 0
\(733\) 5.85301 + 10.1377i 0.216186 + 0.374445i 0.953639 0.300954i \(-0.0973050\pi\)
−0.737453 + 0.675399i \(0.763972\pi\)
\(734\) 0 0
\(735\) −7.74737 0.390043i −0.285766 0.0143869i
\(736\) 0 0
\(737\) 6.51459 + 11.2836i 0.239968 + 0.415637i
\(738\) 0 0
\(739\) −11.3435 + 19.6475i −0.417277 + 0.722745i −0.995664 0.0930175i \(-0.970349\pi\)
0.578388 + 0.815762i \(0.303682\pi\)
\(740\) 0 0
\(741\) −3.95446 −0.145271
\(742\) 0 0
\(743\) −28.5949 −1.04905 −0.524523 0.851396i \(-0.675756\pi\)
−0.524523 + 0.851396i \(0.675756\pi\)
\(744\) 0 0
\(745\) −13.6060 + 23.5663i −0.498486 + 0.863404i
\(746\) 0 0
\(747\) 9.04815 + 15.6719i 0.331055 + 0.573404i
\(748\) 0 0
\(749\) 24.7022 13.4451i 0.902600 0.491274i
\(750\) 0 0
\(751\) 19.3298 + 33.4801i 0.705353 + 1.22171i 0.966564 + 0.256426i \(0.0825448\pi\)
−0.261211 + 0.965282i \(0.584122\pi\)
\(752\) 0 0
\(753\) 1.79153 3.10303i 0.0652871 0.113081i
\(754\) 0 0
\(755\) 11.1140 0.404481
\(756\) 0 0
\(757\) 37.9253 1.37842 0.689209 0.724563i \(-0.257958\pi\)
0.689209 + 0.724563i \(0.257958\pi\)
\(758\) 0 0
\(759\) 1.02704 1.77889i 0.0372793 0.0645696i
\(760\) 0 0
\(761\) −4.51819 7.82573i −0.163784 0.283683i 0.772439 0.635089i \(-0.219037\pi\)
−0.936223 + 0.351407i \(0.885703\pi\)
\(762\) 0 0
\(763\) 23.1175 + 14.1337i 0.836910 + 0.511676i
\(764\) 0 0
\(765\) −1.13814 1.97131i −0.0411494 0.0712728i
\(766\) 0 0
\(767\) −10.3442 + 17.9166i −0.373506 + 0.646931i
\(768\) 0 0
\(769\) 30.9148 1.11482 0.557408 0.830239i \(-0.311796\pi\)
0.557408 + 0.830239i \(0.311796\pi\)
\(770\) 0 0
\(771\) 9.98229 0.359503
\(772\) 0 0
\(773\) 11.8707 20.5607i 0.426960 0.739517i −0.569641 0.821894i \(-0.692918\pi\)
0.996601 + 0.0823770i \(0.0262511\pi\)
\(774\) 0 0
\(775\) −0.738433 1.27900i −0.0265253 0.0459432i
\(776\) 0 0
\(777\) 0.0105116 0.417845i 0.000377101 0.0149901i
\(778\) 0 0
\(779\) −0.373644 0.647170i −0.0133872 0.0231873i
\(780\) 0 0
\(781\) −3.23025 + 5.59496i −0.115588 + 0.200203i
\(782\) 0 0
\(783\) −19.4031 −0.693410
\(784\) 0 0
\(785\) 44.8607 1.60115
\(786\) 0 0
\(787\) −1.49115 + 2.58274i −0.0531536 + 0.0920647i −0.891378 0.453261i \(-0.850261\pi\)
0.838224 + 0.545326i \(0.183594\pi\)
\(788\) 0 0
\(789\) 4.30039 + 7.44849i 0.153098 + 0.265173i
\(790\) 0 0
\(791\) 0.577333 22.9495i 0.0205276 0.815990i
\(792\) 0 0
\(793\) −20.1124 34.8358i −0.714214 1.23705i
\(794\) 0 0
\(795\) −6.89037 + 11.9345i −0.244376 + 0.423272i
\(796\) 0 0
\(797\) −25.7410 −0.911795 −0.455897 0.890032i \(-0.650682\pi\)
−0.455897 + 0.890032i \(0.650682\pi\)
\(798\) 0 0
\(799\) 2.97509 0.105251
\(800\) 0 0
\(801\) 3.44299 5.96343i 0.121652 0.210708i
\(802\) 0 0
\(803\) 3.20321 + 5.54812i 0.113039 + 0.195789i
\(804\) 0 0
\(805\) 14.5833 + 8.91601i 0.513992 + 0.314248i
\(806\) 0 0
\(807\) −1.33336 2.30945i −0.0469365 0.0812964i
\(808\) 0 0
\(809\) −9.42821 + 16.3301i −0.331478 + 0.574137i −0.982802 0.184663i \(-0.940881\pi\)
0.651324 + 0.758800i \(0.274214\pi\)
\(810\) 0 0
\(811\) 37.0541 1.30114 0.650572 0.759444i \(-0.274529\pi\)
0.650572 + 0.759444i \(0.274529\pi\)
\(812\) 0 0
\(813\) −13.9473 −0.489152
\(814\) 0 0
\(815\) 0.785994 1.36138i 0.0275322 0.0476871i
\(816\) 0 0
\(817\) 2.84941 + 4.93533i 0.0996883 + 0.172665i
\(818\) 0 0
\(819\) 26.6255 14.4919i 0.930370 0.506389i
\(820\) 0 0
\(821\) −18.3982 31.8667i −0.642103 1.11216i −0.984962 0.172768i \(-0.944729\pi\)
0.342859 0.939387i \(-0.388605\pi\)
\(822\) 0 0
\(823\) −7.62782 + 13.2118i −0.265889 + 0.460533i −0.967796 0.251735i \(-0.918999\pi\)
0.701907 + 0.712268i \(0.252332\pi\)
\(824\) 0 0
\(825\) −0.899029 −0.0313002
\(826\) 0 0
\(827\) 19.4792 0.677357 0.338679 0.940902i \(-0.390020\pi\)
0.338679 + 0.940902i \(0.390020\pi\)
\(828\) 0 0
\(829\) −16.5995 + 28.7512i −0.576525 + 0.998570i 0.419349 + 0.907825i \(0.362258\pi\)
−0.995874 + 0.0907453i \(0.971075\pi\)
\(830\) 0 0
\(831\) −2.09572 3.62989i −0.0726996 0.125919i
\(832\) 0 0
\(833\) 1.75010 2.70709i 0.0606373 0.0937951i
\(834\) 0 0
\(835\) 14.4890 + 25.0957i 0.501413 + 0.868473i
\(836\) 0 0
\(837\) 1.63442 2.83090i 0.0564939 0.0978503i
\(838\) 0 0
\(839\) −20.1416 −0.695366 −0.347683 0.937612i \(-0.613031\pi\)
−0.347683 + 0.937612i \(0.613031\pi\)
\(840\) 0 0
\(841\) 4.50019 0.155179
\(842\) 0 0
\(843\) −1.44884 + 2.50947i −0.0499007 + 0.0864306i
\(844\) 0 0
\(845\) 5.34562 + 9.25888i 0.183895 + 0.318515i
\(846\) 0 0
\(847\) −2.32383 + 1.26483i −0.0798478 + 0.0434602i
\(848\) 0 0
\(849\) 6.94805 + 12.0344i 0.238457 + 0.413019i
\(850\) 0 0
\(851\) −0.460505 + 0.797618i −0.0157859 + 0.0273420i
\(852\) 0 0
\(853\) 46.0669 1.57730 0.788650 0.614842i \(-0.210780\pi\)
0.788650 + 0.614842i \(0.210780\pi\)
\(854\) 0 0
\(855\) 7.60971 0.260247
\(856\) 0 0
\(857\) 26.6513 46.1613i 0.910390 1.57684i 0.0968754 0.995297i \(-0.469115\pi\)
0.813514 0.581545i \(-0.197552\pi\)
\(858\) 0 0
\(859\) −26.6855 46.2206i −0.910498 1.57703i −0.813363 0.581757i \(-0.802366\pi\)
−0.0971348 0.995271i \(-0.530968\pi\)
\(860\) 0 0
\(861\) −0.650394 0.397642i −0.0221654 0.0135516i
\(862\) 0 0
\(863\) −8.55195 14.8124i −0.291112 0.504220i 0.682961 0.730455i \(-0.260692\pi\)
−0.974073 + 0.226234i \(0.927358\pi\)
\(864\) 0 0
\(865\) 12.4679 21.5950i 0.423921 0.734253i
\(866\) 0 0
\(867\) 9.96497 0.338428
\(868\) 0 0
\(869\) −15.0833 −0.511665
\(870\) 0 0
\(871\) −28.1914 + 48.8290i −0.955230 + 1.65451i
\(872\) 0 0
\(873\) −7.09125 12.2824i −0.240002 0.415696i
\(874\) 0 0
\(875\) 0.809243 32.1681i 0.0273574 1.08748i
\(876\) 0 0
\(877\) −22.6211 39.1809i −0.763860 1.32304i −0.940847 0.338832i \(-0.889968\pi\)
0.176987 0.984213i \(-0.443365\pi\)
\(878\) 0 0
\(879\) −5.36819 + 9.29798i −0.181065 + 0.313613i
\(880\) 0 0
\(881\) 31.6313 1.06569 0.532843 0.846214i \(-0.321124\pi\)
0.532843 + 0.846214i \(0.321124\pi\)
\(882\) 0 0
\(883\) 20.0613 0.675116 0.337558 0.941305i \(-0.390399\pi\)
0.337558 + 0.941305i \(0.390399\pi\)
\(884\) 0 0
\(885\) −2.64893 + 4.58808i −0.0890429 + 0.154227i
\(886\) 0 0
\(887\) −1.94971 3.37700i −0.0654648 0.113388i 0.831435 0.555622i \(-0.187520\pi\)
−0.896900 + 0.442233i \(0.854186\pi\)
\(888\) 0 0
\(889\) 0.0883236 3.51094i 0.00296228 0.117753i
\(890\) 0 0
\(891\) 2.97656 + 5.15555i 0.0997184 + 0.172717i
\(892\) 0 0
\(893\) −4.97296 + 8.61342i −0.166414 + 0.288237i
\(894\) 0 0
\(895\) 16.9167 0.565464
\(896\) 0 0
\(897\) 8.88891 0.296792
\(898\) 0 0
\(899\) −2.82189 + 4.88766i −0.0941153 + 0.163013i
\(900\) 0 0
\(901\) −2.86333 4.95943i −0.0953912 0.165222i
\(902\) 0 0
\(903\) 4.95991 + 3.03242i 0.165055 + 0.100913i
\(904\) 0 0
\(905\) 18.8547 + 32.6572i 0.626750 + 1.08556i
\(906\) 0 0
\(907\) 18.6986 32.3870i 0.620878 1.07539i −0.368445 0.929650i \(-0.620110\pi\)
0.989323 0.145742i \(-0.0465570\pi\)
\(908\) 0 0
\(909\) 49.2409 1.63322
\(910\) 0 0
\(911\) 37.3432 1.23723 0.618617 0.785693i \(-0.287693\pi\)
0.618617 + 0.785693i \(0.287693\pi\)
\(912\) 0 0
\(913\) 3.41741 5.91913i 0.113100 0.195895i
\(914\) 0 0
\(915\) −5.15039 8.92074i −0.170267 0.294911i
\(916\) 0 0
\(917\) 23.8667 12.9904i 0.788149 0.428980i
\(918\) 0 0
\(919\) 8.64027 + 14.9654i 0.285016 + 0.493663i 0.972613 0.232430i \(-0.0746677\pi\)
−0.687597 + 0.726093i \(0.741334\pi\)
\(920\) 0 0
\(921\) −3.50720 + 6.07464i −0.115566 + 0.200166i
\(922\) 0 0
\(923\) −27.9574 −0.920229
\(924\) 0 0
\(925\) 0.403106 0.0132541
\(926\) 0 0
\(927\) 22.3251 38.6682i 0.733252 1.27003i
\(928\) 0 0
\(929\) −20.2901 35.1434i −0.665696 1.15302i −0.979096 0.203398i \(-0.934802\pi\)
0.313401 0.949621i \(-0.398532\pi\)
\(930\) 0 0
\(931\) 4.91216 + 9.59182i 0.160989 + 0.314359i
\(932\) 0 0
\(933\) −3.55408 6.15585i −0.116355 0.201534i
\(934\) 0 0
\(935\) −0.429864 + 0.744547i −0.0140581 + 0.0243493i
\(936\) 0 0
\(937\) −2.98949 −0.0976623 −0.0488312 0.998807i \(-0.515550\pi\)
−0.0488312 + 0.998807i \(0.515550\pi\)
\(938\) 0 0
\(939\) −7.13600 −0.232875
\(940\) 0 0
\(941\) −1.35827 + 2.35259i −0.0442782 + 0.0766921i −0.887315 0.461164i \(-0.847432\pi\)
0.843037 + 0.537856i \(0.180765\pi\)
\(942\) 0 0
\(943\) 0.839883 + 1.45472i 0.0273504 + 0.0473722i
\(944\) 0 0
\(945\) 14.5438 7.91604i 0.473111 0.257509i
\(946\) 0 0
\(947\) 21.1498 + 36.6325i 0.687276 + 1.19040i 0.972716 + 0.232000i \(0.0745271\pi\)
−0.285440 + 0.958397i \(0.592140\pi\)
\(948\) 0 0
\(949\) −13.8617 + 24.0091i −0.449969 + 0.779369i
\(950\) 0 0
\(951\) 12.3992 0.402072
\(952\) 0 0
\(953\) −54.7500 −1.77353 −0.886763 0.462225i \(-0.847051\pi\)
−0.886763 + 0.462225i \(0.847051\pi\)
\(954\) 0 0
\(955\) 13.1422 22.7630i 0.425272 0.736593i
\(956\) 0 0
\(957\) 1.71780 + 2.97532i 0.0555286 + 0.0961783i
\(958\) 0 0
\(959\) 34.8427 + 21.3024i 1.12513 + 0.687889i
\(960\) 0 0
\(961\) 15.0246 + 26.0234i 0.484664 + 0.839463i
\(962\) 0 0
\(963\) −14.0723 + 24.3739i −0.453473 + 0.785438i
\(964\) 0 0
\(965\) 30.6840 0.987754
\(966\) 0 0
\(967\) 11.4356 0.367744 0.183872 0.982950i \(-0.441137\pi\)
0.183872 + 0.982950i \(0.441137\pi\)
\(968\) 0 0
\(969\) 0.210408 0.364437i 0.00675926 0.0117074i
\(970\) 0 0
\(971\) 18.9069 + 32.7477i 0.606751 + 1.05092i 0.991772 + 0.128016i \(0.0408609\pi\)
−0.385021 + 0.922908i \(0.625806\pi\)
\(972\) 0 0
\(973\) 0.731910 29.0941i 0.0234639 0.932713i
\(974\) 0 0
\(975\) −1.94524 3.36926i −0.0622976 0.107903i
\(976\) 0 0
\(977\) −9.93181 + 17.2024i −0.317747 + 0.550353i −0.980018 0.198911i \(-0.936259\pi\)
0.662271 + 0.749264i \(0.269593\pi\)
\(978\) 0 0
\(979\) −2.60078 −0.0831212
\(980\) 0 0
\(981\) −27.1154 −0.865727
\(982\) 0 0
\(983\) −13.7542 + 23.8229i −0.438690 + 0.759833i −0.997589 0.0694025i \(-0.977891\pi\)
0.558899 + 0.829236i \(0.311224\pi\)
\(984\) 0 0
\(985\) −7.92480 13.7262i −0.252505 0.437352i
\(986\) 0 0
\(987\) −0.255158 + 10.1428i −0.00812178 + 0.322848i
\(988\) 0 0
\(989\) −6.40496 11.0937i −0.203666 0.352760i
\(990\) 0 0
\(991\) −16.5400 + 28.6481i −0.525410 + 0.910036i 0.474152 + 0.880443i \(0.342755\pi\)
−0.999562 + 0.0295933i \(0.990579\pi\)
\(992\) 0 0
\(993\) 3.57880 0.113570
\(994\) 0 0
\(995\) −51.2613 −1.62509
\(996\) 0 0
\(997\) 1.04835 1.81579i 0.0332016 0.0575068i −0.848947 0.528478i \(-0.822763\pi\)
0.882149 + 0.470971i \(0.156096\pi\)
\(998\) 0 0
\(999\) 0.446110 + 0.772686i 0.0141143 + 0.0244467i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.i.a.221.2 yes 6
3.2 odd 2 2772.2.s.f.2377.2 6
4.3 odd 2 1232.2.q.l.529.2 6
7.2 even 3 inner 308.2.i.a.177.2 6
7.3 odd 6 2156.2.a.h.1.2 3
7.4 even 3 2156.2.a.i.1.2 3
7.5 odd 6 2156.2.i.l.177.2 6
7.6 odd 2 2156.2.i.l.1145.2 6
21.2 odd 6 2772.2.s.f.793.2 6
28.3 even 6 8624.2.a.cn.1.2 3
28.11 odd 6 8624.2.a.ci.1.2 3
28.23 odd 6 1232.2.q.l.177.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.i.a.177.2 6 7.2 even 3 inner
308.2.i.a.221.2 yes 6 1.1 even 1 trivial
1232.2.q.l.177.2 6 28.23 odd 6
1232.2.q.l.529.2 6 4.3 odd 2
2156.2.a.h.1.2 3 7.3 odd 6
2156.2.a.i.1.2 3 7.4 even 3
2156.2.i.l.177.2 6 7.5 odd 6
2156.2.i.l.1145.2 6 7.6 odd 2
2772.2.s.f.793.2 6 21.2 odd 6
2772.2.s.f.2377.2 6 3.2 odd 2
8624.2.a.ci.1.2 3 28.11 odd 6
8624.2.a.cn.1.2 3 28.3 even 6