Properties

Label 308.2.j.a
Level 308308
Weight 22
Character orbit 308.j
Analytic conductor 2.4592.459
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(113,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 308=22711 308 = 2^{2} \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 308.j (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.459392382262.45939238226
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ103+2ζ10)q32ζ10q5+ζ103q7+(5ζ103ζ102+5)q9+(2ζ103+ζ10+2)q11+(2ζ1032)q13++(6ζ1038ζ102+15)q99+O(q100) q + (2 \zeta_{10}^{3} + 2 \zeta_{10}) q^{3} - 2 \zeta_{10} q^{5} + \zeta_{10}^{3} q^{7} + (5 \zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 5) q^{9} + (2 \zeta_{10}^{3} + \zeta_{10} + 2) q^{11} + (2 \zeta_{10}^{3} - 2) q^{13} + \cdots + (6 \zeta_{10}^{3} - 8 \zeta_{10}^{2} + \cdots - 15) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q32q5+q713q9+11q116q13+8q15+4q17+2q194q212q23+q2520q2710q29+10q314q33+2q35+q3716q39+52q99+O(q100) 4 q + 4 q^{3} - 2 q^{5} + q^{7} - 13 q^{9} + 11 q^{11} - 6 q^{13} + 8 q^{15} + 4 q^{17} + 2 q^{19} - 4 q^{21} - 2 q^{23} + q^{25} - 20 q^{27} - 10 q^{29} + 10 q^{31} - 4 q^{33} + 2 q^{35} + q^{37} - 16 q^{39}+ \cdots - 52 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/308Z)×\left(\mathbb{Z}/308\mathbb{Z}\right)^\times.

nn 4545 5757 155155
χ(n)\chi(n) 11 ζ103-\zeta_{10}^{3} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
113.1
0.809017 + 0.587785i
−0.309017 0.951057i
0.809017 0.587785i
−0.309017 + 0.951057i
0 1.00000 + 3.07768i 0 −1.61803 1.17557i 0 −0.309017 + 0.951057i 0 −6.04508 + 4.39201i 0
141.1 0 1.00000 0.726543i 0 0.618034 + 1.90211i 0 0.809017 + 0.587785i 0 −0.454915 + 1.40008i 0
169.1 0 1.00000 3.07768i 0 −1.61803 + 1.17557i 0 −0.309017 0.951057i 0 −6.04508 4.39201i 0
225.1 0 1.00000 + 0.726543i 0 0.618034 1.90211i 0 0.809017 0.587785i 0 −0.454915 1.40008i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 308.2.j.a 4
11.c even 5 1 inner 308.2.j.a 4
11.c even 5 1 3388.2.a.k 2
11.d odd 10 1 3388.2.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.2.j.a 4 1.a even 1 1 trivial
308.2.j.a 4 11.c even 5 1 inner
3388.2.a.k 2 11.c even 5 1
3388.2.a.l 2 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T344T33+16T3224T3+16 T_{3}^{4} - 4T_{3}^{3} + 16T_{3}^{2} - 24T_{3} + 16 acting on S2new(308,[χ])S_{2}^{\mathrm{new}}(308, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T44T3++16 T^{4} - 4 T^{3} + \cdots + 16 Copy content Toggle raw display
55 T4+2T3++16 T^{4} + 2 T^{3} + \cdots + 16 Copy content Toggle raw display
77 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
1111 T411T3++121 T^{4} - 11 T^{3} + \cdots + 121 Copy content Toggle raw display
1313 T4+6T3++16 T^{4} + 6 T^{3} + \cdots + 16 Copy content Toggle raw display
1717 T44T3++256 T^{4} - 4 T^{3} + \cdots + 256 Copy content Toggle raw display
1919 T42T3++16 T^{4} - 2 T^{3} + \cdots + 16 Copy content Toggle raw display
2323 (T2+T1)2 (T^{2} + T - 1)^{2} Copy content Toggle raw display
2929 T4+10T3++25 T^{4} + 10 T^{3} + \cdots + 25 Copy content Toggle raw display
3131 T410T3++400 T^{4} - 10 T^{3} + \cdots + 400 Copy content Toggle raw display
3737 T4T3++961 T^{4} - T^{3} + \cdots + 961 Copy content Toggle raw display
4141 T410T3++400 T^{4} - 10 T^{3} + \cdots + 400 Copy content Toggle raw display
4343 (T215T+45)2 (T^{2} - 15 T + 45)^{2} Copy content Toggle raw display
4747 T4+10T3++10000 T^{4} + 10 T^{3} + \cdots + 10000 Copy content Toggle raw display
5353 T411T3++5041 T^{4} - 11 T^{3} + \cdots + 5041 Copy content Toggle raw display
5959 T4+18T3++1296 T^{4} + 18 T^{3} + \cdots + 1296 Copy content Toggle raw display
6161 T4+6T3++16 T^{4} + 6 T^{3} + \cdots + 16 Copy content Toggle raw display
6767 (T23T+1)2 (T^{2} - 3 T + 1)^{2} Copy content Toggle raw display
7171 T45T3++625 T^{4} - 5 T^{3} + \cdots + 625 Copy content Toggle raw display
7373 T4+36T3++59536 T^{4} + 36 T^{3} + \cdots + 59536 Copy content Toggle raw display
7979 T413T3++961 T^{4} - 13 T^{3} + \cdots + 961 Copy content Toggle raw display
8383 T4+26T3++1936 T^{4} + 26 T^{3} + \cdots + 1936 Copy content Toggle raw display
8989 (T2+18T+76)2 (T^{2} + 18 T + 76)^{2} Copy content Toggle raw display
9797 T432T3++30976 T^{4} - 32 T^{3} + \cdots + 30976 Copy content Toggle raw display
show more
show less