Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [308,2,Mod(113,308)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(308, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("308.113");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 308.j (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
113.1 |
|
0 | 1.00000 | + | 3.07768i | 0 | −1.61803 | − | 1.17557i | 0 | −0.309017 | + | 0.951057i | 0 | −6.04508 | + | 4.39201i | 0 | ||||||||||||||||||||||
141.1 | 0 | 1.00000 | − | 0.726543i | 0 | 0.618034 | + | 1.90211i | 0 | 0.809017 | + | 0.587785i | 0 | −0.454915 | + | 1.40008i | 0 | |||||||||||||||||||||||
169.1 | 0 | 1.00000 | − | 3.07768i | 0 | −1.61803 | + | 1.17557i | 0 | −0.309017 | − | 0.951057i | 0 | −6.04508 | − | 4.39201i | 0 | |||||||||||||||||||||||
225.1 | 0 | 1.00000 | + | 0.726543i | 0 | 0.618034 | − | 1.90211i | 0 | 0.809017 | − | 0.587785i | 0 | −0.454915 | − | 1.40008i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 308.2.j.a | ✓ | 4 |
11.c | even | 5 | 1 | inner | 308.2.j.a | ✓ | 4 |
11.c | even | 5 | 1 | 3388.2.a.k | 2 | ||
11.d | odd | 10 | 1 | 3388.2.a.l | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
308.2.j.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
308.2.j.a | ✓ | 4 | 11.c | even | 5 | 1 | inner |
3388.2.a.k | 2 | 11.c | even | 5 | 1 | ||
3388.2.a.l | 2 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .