Properties

Label 308.2.j.c.225.1
Level $308$
Weight $2$
Character 308.225
Analytic conductor $2.459$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(113,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.j (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 11x^{10} - 18x^{9} + 48x^{8} - 22x^{7} + 80x^{6} + 68x^{5} + 26x^{4} - 24x^{3} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 225.1
Root \(-0.607074 + 1.86838i\) of defining polynomial
Character \(\chi\) \(=\) 308.225
Dual form 308.2.j.c.141.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.17753 - 0.855526i) q^{3} +(0.0324904 - 0.0999953i) q^{5} +(-0.809017 + 0.587785i) q^{7} +(-0.272398 - 0.838356i) q^{9} +(0.648271 - 3.25265i) q^{11} +(-1.20429 - 3.70642i) q^{13} +(-0.123807 + 0.0899510i) q^{15} +(-0.283358 + 0.872086i) q^{17} +(-4.89471 - 3.55622i) q^{19} +1.45551 q^{21} -8.31334 q^{23} +(4.03614 + 2.93243i) q^{25} +(-1.74581 + 5.37304i) q^{27} +(5.36281 - 3.89631i) q^{29} +(-2.83253 - 8.71764i) q^{31} +(-3.54609 + 3.27548i) q^{33} +(0.0324904 + 0.0999953i) q^{35} +(1.94300 - 1.41167i) q^{37} +(-1.75285 + 5.39472i) q^{39} +(3.10660 + 2.25707i) q^{41} +12.2277 q^{43} -0.0926819 q^{45} +(4.26001 + 3.09508i) q^{47} +(0.309017 - 0.951057i) q^{49} +(1.07975 - 0.784488i) q^{51} +(0.631250 + 1.94279i) q^{53} +(-0.304187 - 0.170504i) q^{55} +(2.72124 + 8.37510i) q^{57} +(-10.4030 + 7.55822i) q^{59} +(-1.05960 + 3.26111i) q^{61} +(0.713148 + 0.518132i) q^{63} -0.409753 q^{65} +12.1194 q^{67} +(9.78920 + 7.11227i) q^{69} +(-1.49819 + 4.61095i) q^{71} +(1.16581 - 0.847008i) q^{73} +(-2.24391 - 6.90604i) q^{75} +(1.38740 + 3.01249i) q^{77} +(-1.30702 - 4.02259i) q^{79} +(4.51307 - 3.27894i) q^{81} +(0.330694 - 1.01777i) q^{83} +(0.0779981 + 0.0566689i) q^{85} -9.64826 q^{87} -7.06635 q^{89} +(3.15287 + 2.29070i) q^{91} +(-4.12277 + 12.6886i) q^{93} +(-0.514636 + 0.373905i) q^{95} +(-1.26557 - 3.89501i) q^{97} +(-2.90347 + 0.342535i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} + q^{5} - 3 q^{7} + q^{9} + 2 q^{11} - 7 q^{13} - 4 q^{15} + 3 q^{17} - 23 q^{19} - 4 q^{21} - 38 q^{23} + 2 q^{25} - 18 q^{27} + 29 q^{29} + 9 q^{31} - 4 q^{33} + q^{35} + 3 q^{37} + 25 q^{39}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.17753 0.855526i −0.679847 0.493938i 0.193460 0.981108i \(-0.438029\pi\)
−0.873307 + 0.487170i \(0.838029\pi\)
\(4\) 0 0
\(5\) 0.0324904 0.0999953i 0.0145302 0.0447192i −0.943529 0.331291i \(-0.892516\pi\)
0.958059 + 0.286572i \(0.0925158\pi\)
\(6\) 0 0
\(7\) −0.809017 + 0.587785i −0.305780 + 0.222162i
\(8\) 0 0
\(9\) −0.272398 0.838356i −0.0907994 0.279452i
\(10\) 0 0
\(11\) 0.648271 3.25265i 0.195461 0.980711i
\(12\) 0 0
\(13\) −1.20429 3.70642i −0.334010 1.02798i −0.967208 0.253987i \(-0.918258\pi\)
0.633198 0.773990i \(-0.281742\pi\)
\(14\) 0 0
\(15\) −0.123807 + 0.0899510i −0.0319668 + 0.0232253i
\(16\) 0 0
\(17\) −0.283358 + 0.872086i −0.0687244 + 0.211512i −0.979520 0.201345i \(-0.935469\pi\)
0.910796 + 0.412857i \(0.135469\pi\)
\(18\) 0 0
\(19\) −4.89471 3.55622i −1.12292 0.815852i −0.138274 0.990394i \(-0.544156\pi\)
−0.984650 + 0.174542i \(0.944156\pi\)
\(20\) 0 0
\(21\) 1.45551 0.317618
\(22\) 0 0
\(23\) −8.31334 −1.73345 −0.866725 0.498786i \(-0.833780\pi\)
−0.866725 + 0.498786i \(0.833780\pi\)
\(24\) 0 0
\(25\) 4.03614 + 2.93243i 0.807228 + 0.586486i
\(26\) 0 0
\(27\) −1.74581 + 5.37304i −0.335981 + 1.03404i
\(28\) 0 0
\(29\) 5.36281 3.89631i 0.995849 0.723526i 0.0346545 0.999399i \(-0.488967\pi\)
0.961194 + 0.275873i \(0.0889669\pi\)
\(30\) 0 0
\(31\) −2.83253 8.71764i −0.508738 1.56573i −0.794395 0.607402i \(-0.792212\pi\)
0.285657 0.958332i \(-0.407788\pi\)
\(32\) 0 0
\(33\) −3.54609 + 3.27548i −0.617294 + 0.570188i
\(34\) 0 0
\(35\) 0.0324904 + 0.0999953i 0.00549188 + 0.0169023i
\(36\) 0 0
\(37\) 1.94300 1.41167i 0.319428 0.232078i −0.416504 0.909134i \(-0.636745\pi\)
0.735931 + 0.677056i \(0.236745\pi\)
\(38\) 0 0
\(39\) −1.75285 + 5.39472i −0.280681 + 0.863847i
\(40\) 0 0
\(41\) 3.10660 + 2.25707i 0.485169 + 0.352496i 0.803323 0.595543i \(-0.203063\pi\)
−0.318154 + 0.948039i \(0.603063\pi\)
\(42\) 0 0
\(43\) 12.2277 1.86471 0.932354 0.361547i \(-0.117751\pi\)
0.932354 + 0.361547i \(0.117751\pi\)
\(44\) 0 0
\(45\) −0.0926819 −0.0138162
\(46\) 0 0
\(47\) 4.26001 + 3.09508i 0.621387 + 0.451464i 0.853406 0.521247i \(-0.174533\pi\)
−0.232019 + 0.972711i \(0.574533\pi\)
\(48\) 0 0
\(49\) 0.309017 0.951057i 0.0441453 0.135865i
\(50\) 0 0
\(51\) 1.07975 0.784488i 0.151196 0.109850i
\(52\) 0 0
\(53\) 0.631250 + 1.94279i 0.0867089 + 0.266863i 0.985004 0.172529i \(-0.0551940\pi\)
−0.898295 + 0.439392i \(0.855194\pi\)
\(54\) 0 0
\(55\) −0.304187 0.170504i −0.0410166 0.0229908i
\(56\) 0 0
\(57\) 2.72124 + 8.37510i 0.360436 + 1.10931i
\(58\) 0 0
\(59\) −10.4030 + 7.55822i −1.35435 + 0.983996i −0.355573 + 0.934649i \(0.615714\pi\)
−0.998782 + 0.0493474i \(0.984286\pi\)
\(60\) 0 0
\(61\) −1.05960 + 3.26111i −0.135668 + 0.417543i −0.995693 0.0927084i \(-0.970448\pi\)
0.860025 + 0.510251i \(0.170448\pi\)
\(62\) 0 0
\(63\) 0.713148 + 0.518132i 0.0898482 + 0.0652785i
\(64\) 0 0
\(65\) −0.409753 −0.0508236
\(66\) 0 0
\(67\) 12.1194 1.48062 0.740310 0.672266i \(-0.234679\pi\)
0.740310 + 0.672266i \(0.234679\pi\)
\(68\) 0 0
\(69\) 9.78920 + 7.11227i 1.17848 + 0.856217i
\(70\) 0 0
\(71\) −1.49819 + 4.61095i −0.177802 + 0.547219i −0.999750 0.0223436i \(-0.992887\pi\)
0.821948 + 0.569562i \(0.192887\pi\)
\(72\) 0 0
\(73\) 1.16581 0.847008i 0.136447 0.0991348i −0.517468 0.855703i \(-0.673125\pi\)
0.653915 + 0.756568i \(0.273125\pi\)
\(74\) 0 0
\(75\) −2.24391 6.90604i −0.259104 0.797441i
\(76\) 0 0
\(77\) 1.38740 + 3.01249i 0.158109 + 0.343306i
\(78\) 0 0
\(79\) −1.30702 4.02259i −0.147051 0.452577i 0.850218 0.526431i \(-0.176470\pi\)
−0.997269 + 0.0738539i \(0.976470\pi\)
\(80\) 0 0
\(81\) 4.51307 3.27894i 0.501452 0.364326i
\(82\) 0 0
\(83\) 0.330694 1.01777i 0.0362984 0.111715i −0.931266 0.364341i \(-0.881294\pi\)
0.967564 + 0.252626i \(0.0812942\pi\)
\(84\) 0 0
\(85\) 0.0779981 + 0.0566689i 0.00846008 + 0.00614661i
\(86\) 0 0
\(87\) −9.64826 −1.03440
\(88\) 0 0
\(89\) −7.06635 −0.749032 −0.374516 0.927220i \(-0.622191\pi\)
−0.374516 + 0.927220i \(0.622191\pi\)
\(90\) 0 0
\(91\) 3.15287 + 2.29070i 0.330511 + 0.240130i
\(92\) 0 0
\(93\) −4.12277 + 12.6886i −0.427511 + 1.31574i
\(94\) 0 0
\(95\) −0.514636 + 0.373905i −0.0528005 + 0.0383618i
\(96\) 0 0
\(97\) −1.26557 3.89501i −0.128499 0.395479i 0.866023 0.500003i \(-0.166668\pi\)
−0.994522 + 0.104525i \(0.966668\pi\)
\(98\) 0 0
\(99\) −2.90347 + 0.342535i −0.291809 + 0.0344261i
\(100\) 0 0
\(101\) −3.93478 12.1100i −0.391525 1.20499i −0.931635 0.363396i \(-0.881617\pi\)
0.540109 0.841595i \(-0.318383\pi\)
\(102\) 0 0
\(103\) 3.90370 2.83620i 0.384643 0.279459i −0.378614 0.925555i \(-0.623599\pi\)
0.763257 + 0.646095i \(0.223599\pi\)
\(104\) 0 0
\(105\) 0.0472900 0.145544i 0.00461504 0.0142036i
\(106\) 0 0
\(107\) −3.12240 2.26855i −0.301854 0.219309i 0.426540 0.904469i \(-0.359732\pi\)
−0.728393 + 0.685159i \(0.759732\pi\)
\(108\) 0 0
\(109\) 8.24788 0.790004 0.395002 0.918680i \(-0.370744\pi\)
0.395002 + 0.918680i \(0.370744\pi\)
\(110\) 0 0
\(111\) −3.49567 −0.331794
\(112\) 0 0
\(113\) 4.94040 + 3.58941i 0.464754 + 0.337663i 0.795393 0.606094i \(-0.207264\pi\)
−0.330640 + 0.943757i \(0.607264\pi\)
\(114\) 0 0
\(115\) −0.270104 + 0.831294i −0.0251873 + 0.0775186i
\(116\) 0 0
\(117\) −2.77925 + 2.01925i −0.256942 + 0.186679i
\(118\) 0 0
\(119\) −0.283358 0.872086i −0.0259754 0.0799440i
\(120\) 0 0
\(121\) −10.1595 4.21720i −0.923590 0.383382i
\(122\) 0 0
\(123\) −1.72713 5.31555i −0.155730 0.479287i
\(124\) 0 0
\(125\) 0.849670 0.617321i 0.0759968 0.0552149i
\(126\) 0 0
\(127\) −1.10061 + 3.38731i −0.0976629 + 0.300576i −0.987939 0.154847i \(-0.950512\pi\)
0.890276 + 0.455422i \(0.150512\pi\)
\(128\) 0 0
\(129\) −14.3985 10.4611i −1.26772 0.921050i
\(130\) 0 0
\(131\) 18.5868 1.62394 0.811970 0.583699i \(-0.198395\pi\)
0.811970 + 0.583699i \(0.198395\pi\)
\(132\) 0 0
\(133\) 6.05020 0.524619
\(134\) 0 0
\(135\) 0.480557 + 0.349145i 0.0413597 + 0.0300496i
\(136\) 0 0
\(137\) −6.83359 + 21.0316i −0.583833 + 1.79685i 0.0200727 + 0.999799i \(0.493610\pi\)
−0.603906 + 0.797056i \(0.706390\pi\)
\(138\) 0 0
\(139\) 16.7245 12.1510i 1.41855 1.03064i 0.426542 0.904468i \(-0.359732\pi\)
0.992009 0.126170i \(-0.0402684\pi\)
\(140\) 0 0
\(141\) −2.36837 7.28910i −0.199453 0.613853i
\(142\) 0 0
\(143\) −12.8364 + 1.51437i −1.07343 + 0.126638i
\(144\) 0 0
\(145\) −0.215372 0.662848i −0.0178857 0.0550465i
\(146\) 0 0
\(147\) −1.17753 + 0.855526i −0.0971210 + 0.0705626i
\(148\) 0 0
\(149\) 3.73788 11.5040i 0.306219 0.942446i −0.673000 0.739643i \(-0.734995\pi\)
0.979219 0.202804i \(-0.0650054\pi\)
\(150\) 0 0
\(151\) −14.4462 10.4958i −1.17562 0.854136i −0.183946 0.982936i \(-0.558887\pi\)
−0.991671 + 0.128801i \(0.958887\pi\)
\(152\) 0 0
\(153\) 0.808305 0.0653476
\(154\) 0 0
\(155\) −0.963753 −0.0774105
\(156\) 0 0
\(157\) 0.926333 + 0.673021i 0.0739295 + 0.0537129i 0.624136 0.781316i \(-0.285451\pi\)
−0.550207 + 0.835029i \(0.685451\pi\)
\(158\) 0 0
\(159\) 0.918789 2.82774i 0.0728647 0.224255i
\(160\) 0 0
\(161\) 6.72563 4.88646i 0.530054 0.385107i
\(162\) 0 0
\(163\) −2.84637 8.76024i −0.222945 0.686155i −0.998494 0.0548668i \(-0.982527\pi\)
0.775548 0.631288i \(-0.217473\pi\)
\(164\) 0 0
\(165\) 0.212319 + 0.461014i 0.0165290 + 0.0358899i
\(166\) 0 0
\(167\) 5.46281 + 16.8128i 0.422725 + 1.30101i 0.905156 + 0.425080i \(0.139754\pi\)
−0.482430 + 0.875934i \(0.660246\pi\)
\(168\) 0 0
\(169\) −1.77003 + 1.28601i −0.136156 + 0.0989235i
\(170\) 0 0
\(171\) −1.64806 + 5.07222i −0.126031 + 0.387882i
\(172\) 0 0
\(173\) −14.8968 10.8232i −1.13259 0.822872i −0.146517 0.989208i \(-0.546806\pi\)
−0.986069 + 0.166337i \(0.946806\pi\)
\(174\) 0 0
\(175\) −4.98895 −0.377129
\(176\) 0 0
\(177\) 18.7161 1.40679
\(178\) 0 0
\(179\) 6.36956 + 4.62775i 0.476083 + 0.345895i 0.799807 0.600257i \(-0.204935\pi\)
−0.323724 + 0.946151i \(0.604935\pi\)
\(180\) 0 0
\(181\) 4.75363 14.6302i 0.353335 1.08745i −0.603634 0.797262i \(-0.706281\pi\)
0.956969 0.290191i \(-0.0937189\pi\)
\(182\) 0 0
\(183\) 4.03768 2.93354i 0.298474 0.216854i
\(184\) 0 0
\(185\) −0.0780317 0.240157i −0.00573701 0.0176567i
\(186\) 0 0
\(187\) 2.65290 + 1.48701i 0.193999 + 0.108741i
\(188\) 0 0
\(189\) −1.74581 5.37304i −0.126989 0.390831i
\(190\) 0 0
\(191\) −6.25765 + 4.54645i −0.452787 + 0.328969i −0.790695 0.612210i \(-0.790281\pi\)
0.337908 + 0.941179i \(0.390281\pi\)
\(192\) 0 0
\(193\) 3.65232 11.2407i 0.262900 0.809122i −0.729270 0.684226i \(-0.760140\pi\)
0.992170 0.124896i \(-0.0398598\pi\)
\(194\) 0 0
\(195\) 0.482496 + 0.350554i 0.0345522 + 0.0251037i
\(196\) 0 0
\(197\) −19.8737 −1.41594 −0.707972 0.706240i \(-0.750390\pi\)
−0.707972 + 0.706240i \(0.750390\pi\)
\(198\) 0 0
\(199\) −9.16741 −0.649860 −0.324930 0.945738i \(-0.605341\pi\)
−0.324930 + 0.945738i \(0.605341\pi\)
\(200\) 0 0
\(201\) −14.2709 10.3684i −1.00659 0.731334i
\(202\) 0 0
\(203\) −2.04841 + 6.30436i −0.143770 + 0.442479i
\(204\) 0 0
\(205\) 0.326631 0.237312i 0.0228129 0.0165746i
\(206\) 0 0
\(207\) 2.26454 + 6.96954i 0.157396 + 0.484416i
\(208\) 0 0
\(209\) −14.7402 + 13.6154i −1.01960 + 0.941797i
\(210\) 0 0
\(211\) −2.52678 7.77662i −0.173950 0.535364i 0.825634 0.564207i \(-0.190818\pi\)
−0.999584 + 0.0288424i \(0.990818\pi\)
\(212\) 0 0
\(213\) 5.70894 4.14779i 0.391170 0.284202i
\(214\) 0 0
\(215\) 0.397283 1.22271i 0.0270945 0.0833883i
\(216\) 0 0
\(217\) 7.41567 + 5.38780i 0.503408 + 0.365747i
\(218\) 0 0
\(219\) −2.09741 −0.141730
\(220\) 0 0
\(221\) 3.57357 0.240384
\(222\) 0 0
\(223\) −3.20511 2.32865i −0.214630 0.155938i 0.475276 0.879837i \(-0.342348\pi\)
−0.689906 + 0.723899i \(0.742348\pi\)
\(224\) 0 0
\(225\) 1.35898 4.18251i 0.0905987 0.278834i
\(226\) 0 0
\(227\) 10.0820 7.32497i 0.669163 0.486175i −0.200582 0.979677i \(-0.564283\pi\)
0.869745 + 0.493502i \(0.164283\pi\)
\(228\) 0 0
\(229\) 7.96266 + 24.5066i 0.526188 + 1.61944i 0.761955 + 0.647630i \(0.224240\pi\)
−0.235768 + 0.971809i \(0.575760\pi\)
\(230\) 0 0
\(231\) 0.943563 4.73426i 0.0620819 0.311491i
\(232\) 0 0
\(233\) −4.10021 12.6191i −0.268614 0.826708i −0.990839 0.135050i \(-0.956881\pi\)
0.722225 0.691658i \(-0.243119\pi\)
\(234\) 0 0
\(235\) 0.447903 0.325421i 0.0292180 0.0212281i
\(236\) 0 0
\(237\) −1.90238 + 5.85491i −0.123573 + 0.380317i
\(238\) 0 0
\(239\) 6.82334 + 4.95745i 0.441365 + 0.320670i 0.786177 0.618001i \(-0.212057\pi\)
−0.344812 + 0.938672i \(0.612057\pi\)
\(240\) 0 0
\(241\) −3.46659 −0.223303 −0.111651 0.993747i \(-0.535614\pi\)
−0.111651 + 0.993747i \(0.535614\pi\)
\(242\) 0 0
\(243\) 8.82916 0.566391
\(244\) 0 0
\(245\) −0.0850610 0.0618005i −0.00543435 0.00394829i
\(246\) 0 0
\(247\) −7.28619 + 22.4246i −0.463609 + 1.42684i
\(248\) 0 0
\(249\) −1.26013 + 0.915540i −0.0798576 + 0.0580200i
\(250\) 0 0
\(251\) −2.56765 7.90242i −0.162069 0.498796i 0.836740 0.547601i \(-0.184459\pi\)
−0.998808 + 0.0488046i \(0.984459\pi\)
\(252\) 0 0
\(253\) −5.38930 + 27.0404i −0.338822 + 1.70002i
\(254\) 0 0
\(255\) −0.0433634 0.133459i −0.00271552 0.00835751i
\(256\) 0 0
\(257\) 3.22913 2.34610i 0.201427 0.146346i −0.482499 0.875896i \(-0.660271\pi\)
0.683927 + 0.729551i \(0.260271\pi\)
\(258\) 0 0
\(259\) −0.742161 + 2.28414i −0.0461156 + 0.141929i
\(260\) 0 0
\(261\) −4.72731 3.43459i −0.292613 0.212596i
\(262\) 0 0
\(263\) 5.37057 0.331163 0.165582 0.986196i \(-0.447050\pi\)
0.165582 + 0.986196i \(0.447050\pi\)
\(264\) 0 0
\(265\) 0.214779 0.0131938
\(266\) 0 0
\(267\) 8.32084 + 6.04544i 0.509227 + 0.369975i
\(268\) 0 0
\(269\) −5.54944 + 17.0794i −0.338355 + 1.04135i 0.626691 + 0.779268i \(0.284409\pi\)
−0.965046 + 0.262082i \(0.915591\pi\)
\(270\) 0 0
\(271\) 13.8740 10.0800i 0.842785 0.612319i −0.0803625 0.996766i \(-0.525608\pi\)
0.923147 + 0.384447i \(0.125608\pi\)
\(272\) 0 0
\(273\) −1.75285 5.39472i −0.106087 0.326504i
\(274\) 0 0
\(275\) 12.1547 11.2272i 0.732955 0.677023i
\(276\) 0 0
\(277\) −3.69611 11.3755i −0.222078 0.683486i −0.998575 0.0533648i \(-0.983005\pi\)
0.776497 0.630121i \(-0.216995\pi\)
\(278\) 0 0
\(279\) −6.53691 + 4.74934i −0.391354 + 0.284336i
\(280\) 0 0
\(281\) 5.39578 16.6065i 0.321885 0.990660i −0.650942 0.759127i \(-0.725626\pi\)
0.972827 0.231533i \(-0.0743741\pi\)
\(282\) 0 0
\(283\) 20.5595 + 14.9374i 1.22214 + 0.887935i 0.996276 0.0862243i \(-0.0274802\pi\)
0.225862 + 0.974159i \(0.427480\pi\)
\(284\) 0 0
\(285\) 0.925885 0.0548447
\(286\) 0 0
\(287\) −3.83997 −0.226666
\(288\) 0 0
\(289\) 13.0730 + 9.49812i 0.769003 + 0.558713i
\(290\) 0 0
\(291\) −1.84204 + 5.66922i −0.107982 + 0.332336i
\(292\) 0 0
\(293\) 7.40319 5.37873i 0.432499 0.314229i −0.350148 0.936694i \(-0.613869\pi\)
0.782647 + 0.622465i \(0.213869\pi\)
\(294\) 0 0
\(295\) 0.417788 + 1.28582i 0.0243246 + 0.0748633i
\(296\) 0 0
\(297\) 16.3449 + 9.16169i 0.948426 + 0.531615i
\(298\) 0 0
\(299\) 10.0117 + 30.8127i 0.578990 + 1.78195i
\(300\) 0 0
\(301\) −9.89242 + 7.18727i −0.570190 + 0.414267i
\(302\) 0 0
\(303\) −5.72710 + 17.6262i −0.329013 + 1.01260i
\(304\) 0 0
\(305\) 0.291669 + 0.211910i 0.0167009 + 0.0121339i
\(306\) 0 0
\(307\) 6.56076 0.374443 0.187221 0.982318i \(-0.440052\pi\)
0.187221 + 0.982318i \(0.440052\pi\)
\(308\) 0 0
\(309\) −7.02316 −0.399534
\(310\) 0 0
\(311\) 16.0457 + 11.6579i 0.909870 + 0.661059i 0.940982 0.338457i \(-0.109905\pi\)
−0.0311121 + 0.999516i \(0.509905\pi\)
\(312\) 0 0
\(313\) −1.96332 + 6.04247i −0.110973 + 0.341540i −0.991086 0.133224i \(-0.957467\pi\)
0.880113 + 0.474765i \(0.157467\pi\)
\(314\) 0 0
\(315\) 0.0749813 0.0544771i 0.00422472 0.00306944i
\(316\) 0 0
\(317\) 5.22697 + 16.0869i 0.293576 + 0.903533i 0.983696 + 0.179838i \(0.0575575\pi\)
−0.690121 + 0.723694i \(0.742442\pi\)
\(318\) 0 0
\(319\) −9.19678 19.9692i −0.514921 1.11806i
\(320\) 0 0
\(321\) 1.73591 + 5.34258i 0.0968890 + 0.298194i
\(322\) 0 0
\(323\) 4.48828 3.26093i 0.249735 0.181443i
\(324\) 0 0
\(325\) 6.00814 18.4911i 0.333271 1.02570i
\(326\) 0 0
\(327\) −9.71213 7.05627i −0.537082 0.390213i
\(328\) 0 0
\(329\) −5.26567 −0.290306
\(330\) 0 0
\(331\) 24.4054 1.34144 0.670721 0.741710i \(-0.265985\pi\)
0.670721 + 0.741710i \(0.265985\pi\)
\(332\) 0 0
\(333\) −1.71276 1.24439i −0.0938585 0.0681922i
\(334\) 0 0
\(335\) 0.393764 1.21188i 0.0215136 0.0662122i
\(336\) 0 0
\(337\) −0.680304 + 0.494270i −0.0370585 + 0.0269246i −0.606160 0.795342i \(-0.707291\pi\)
0.569102 + 0.822267i \(0.307291\pi\)
\(338\) 0 0
\(339\) −2.74664 8.45327i −0.149177 0.459119i
\(340\) 0 0
\(341\) −30.1917 + 3.56185i −1.63497 + 0.192885i
\(342\) 0 0
\(343\) 0.309017 + 0.951057i 0.0166853 + 0.0513522i
\(344\) 0 0
\(345\) 1.02925 0.747793i 0.0554129 0.0402598i
\(346\) 0 0
\(347\) −6.60583 + 20.3306i −0.354619 + 1.09141i 0.601611 + 0.798790i \(0.294526\pi\)
−0.956230 + 0.292617i \(0.905474\pi\)
\(348\) 0 0
\(349\) −16.5258 12.0067i −0.884608 0.642705i 0.0498588 0.998756i \(-0.484123\pi\)
−0.934466 + 0.356051i \(0.884123\pi\)
\(350\) 0 0
\(351\) 22.0172 1.17519
\(352\) 0 0
\(353\) 26.1056 1.38946 0.694730 0.719271i \(-0.255524\pi\)
0.694730 + 0.719271i \(0.255524\pi\)
\(354\) 0 0
\(355\) 0.412396 + 0.299623i 0.0218877 + 0.0159023i
\(356\) 0 0
\(357\) −0.412430 + 1.26933i −0.0218281 + 0.0671799i
\(358\) 0 0
\(359\) −13.4560 + 9.77638i −0.710182 + 0.515977i −0.883232 0.468936i \(-0.844638\pi\)
0.173050 + 0.984913i \(0.444638\pi\)
\(360\) 0 0
\(361\) 5.44021 + 16.7432i 0.286327 + 0.881223i
\(362\) 0 0
\(363\) 8.35518 + 13.6576i 0.438533 + 0.716837i
\(364\) 0 0
\(365\) −0.0468192 0.144095i −0.00245063 0.00754227i
\(366\) 0 0
\(367\) −1.21757 + 0.884615i −0.0635566 + 0.0461766i −0.619110 0.785304i \(-0.712506\pi\)
0.555553 + 0.831481i \(0.312506\pi\)
\(368\) 0 0
\(369\) 1.04600 3.21926i 0.0544526 0.167588i
\(370\) 0 0
\(371\) −1.65263 1.20071i −0.0858005 0.0623377i
\(372\) 0 0
\(373\) −13.0946 −0.678010 −0.339005 0.940785i \(-0.610090\pi\)
−0.339005 + 0.940785i \(0.610090\pi\)
\(374\) 0 0
\(375\) −1.52865 −0.0789390
\(376\) 0 0
\(377\) −20.8997 15.1846i −1.07639 0.782044i
\(378\) 0 0
\(379\) 5.48527 16.8819i 0.281759 0.867167i −0.705592 0.708619i \(-0.749319\pi\)
0.987351 0.158548i \(-0.0506813\pi\)
\(380\) 0 0
\(381\) 4.19393 3.04707i 0.214862 0.156106i
\(382\) 0 0
\(383\) −1.75764 5.40945i −0.0898110 0.276410i 0.896056 0.443942i \(-0.146420\pi\)
−0.985867 + 0.167532i \(0.946420\pi\)
\(384\) 0 0
\(385\) 0.346312 0.0408560i 0.0176497 0.00208221i
\(386\) 0 0
\(387\) −3.33081 10.2512i −0.169314 0.521096i
\(388\) 0 0
\(389\) 18.2685 13.2728i 0.926249 0.672959i −0.0188226 0.999823i \(-0.505992\pi\)
0.945072 + 0.326864i \(0.105992\pi\)
\(390\) 0 0
\(391\) 2.35565 7.24995i 0.119130 0.366646i
\(392\) 0 0
\(393\) −21.8866 15.9015i −1.10403 0.802125i
\(394\) 0 0
\(395\) −0.444706 −0.0223756
\(396\) 0 0
\(397\) −35.1870 −1.76599 −0.882993 0.469386i \(-0.844475\pi\)
−0.882993 + 0.469386i \(0.844475\pi\)
\(398\) 0 0
\(399\) −7.12429 5.17610i −0.356661 0.259129i
\(400\) 0 0
\(401\) 9.74002 29.9767i 0.486393 1.49696i −0.343560 0.939131i \(-0.611633\pi\)
0.829953 0.557834i \(-0.188367\pi\)
\(402\) 0 0
\(403\) −28.9001 + 20.9971i −1.43961 + 1.04594i
\(404\) 0 0
\(405\) −0.181247 0.557820i −0.00900621 0.0277183i
\(406\) 0 0
\(407\) −3.33209 7.23506i −0.165166 0.358629i
\(408\) 0 0
\(409\) 3.85148 + 11.8536i 0.190444 + 0.586125i 1.00000 0.000917558i \(-0.000292068\pi\)
−0.809556 + 0.587043i \(0.800292\pi\)
\(410\) 0 0
\(411\) 26.0399 18.9191i 1.28445 0.933209i
\(412\) 0 0
\(413\) 3.97359 12.2295i 0.195528 0.601772i
\(414\) 0 0
\(415\) −0.0910280 0.0661357i −0.00446839 0.00324647i
\(416\) 0 0
\(417\) −30.0891 −1.47347
\(418\) 0 0
\(419\) −17.8358 −0.871334 −0.435667 0.900108i \(-0.643488\pi\)
−0.435667 + 0.900108i \(0.643488\pi\)
\(420\) 0 0
\(421\) −10.3518 7.52102i −0.504516 0.366552i 0.306223 0.951960i \(-0.400935\pi\)
−0.810739 + 0.585407i \(0.800935\pi\)
\(422\) 0 0
\(423\) 1.43436 4.41450i 0.0697409 0.214640i
\(424\) 0 0
\(425\) −3.70100 + 2.68894i −0.179525 + 0.130433i
\(426\) 0 0
\(427\) −1.05960 3.26111i −0.0512776 0.157816i
\(428\) 0 0
\(429\) 16.4108 + 9.19866i 0.792323 + 0.444116i
\(430\) 0 0
\(431\) −8.46864 26.0638i −0.407920 1.25545i −0.918432 0.395578i \(-0.870544\pi\)
0.510513 0.859870i \(-0.329456\pi\)
\(432\) 0 0
\(433\) −19.0410 + 13.8341i −0.915053 + 0.664825i −0.942288 0.334804i \(-0.891330\pi\)
0.0272348 + 0.999629i \(0.491330\pi\)
\(434\) 0 0
\(435\) −0.313476 + 0.964780i −0.0150300 + 0.0462577i
\(436\) 0 0
\(437\) 40.6914 + 29.5640i 1.94653 + 1.41424i
\(438\) 0 0
\(439\) 36.4914 1.74164 0.870821 0.491601i \(-0.163588\pi\)
0.870821 + 0.491601i \(0.163588\pi\)
\(440\) 0 0
\(441\) −0.881499 −0.0419762
\(442\) 0 0
\(443\) −10.0738 7.31907i −0.478622 0.347739i 0.322170 0.946682i \(-0.395588\pi\)
−0.800792 + 0.598942i \(0.795588\pi\)
\(444\) 0 0
\(445\) −0.229589 + 0.706602i −0.0108836 + 0.0334961i
\(446\) 0 0
\(447\) −14.2435 + 10.3485i −0.673692 + 0.489466i
\(448\) 0 0
\(449\) −3.27476 10.0787i −0.154545 0.475641i 0.843569 0.537020i \(-0.180450\pi\)
−0.998115 + 0.0613790i \(0.980450\pi\)
\(450\) 0 0
\(451\) 9.35540 8.64148i 0.440528 0.406912i
\(452\) 0 0
\(453\) 8.03144 + 24.7182i 0.377350 + 1.16136i
\(454\) 0 0
\(455\) 0.331497 0.240847i 0.0155408 0.0112911i
\(456\) 0 0
\(457\) −5.32271 + 16.3816i −0.248986 + 0.766300i 0.745969 + 0.665980i \(0.231987\pi\)
−0.994955 + 0.100320i \(0.968013\pi\)
\(458\) 0 0
\(459\) −4.19107 3.04499i −0.195622 0.142128i
\(460\) 0 0
\(461\) −16.6269 −0.774394 −0.387197 0.921997i \(-0.626557\pi\)
−0.387197 + 0.921997i \(0.626557\pi\)
\(462\) 0 0
\(463\) −25.3558 −1.17839 −0.589193 0.807993i \(-0.700554\pi\)
−0.589193 + 0.807993i \(0.700554\pi\)
\(464\) 0 0
\(465\) 1.13485 + 0.824515i 0.0526273 + 0.0382360i
\(466\) 0 0
\(467\) 10.3315 31.7972i 0.478086 1.47140i −0.363665 0.931530i \(-0.618475\pi\)
0.841750 0.539867i \(-0.181525\pi\)
\(468\) 0 0
\(469\) −9.80479 + 7.12360i −0.452743 + 0.328937i
\(470\) 0 0
\(471\) −0.514999 1.58500i −0.0237299 0.0730331i
\(472\) 0 0
\(473\) 7.92687 39.7725i 0.364478 1.82874i
\(474\) 0 0
\(475\) −9.32740 28.7068i −0.427970 1.31716i
\(476\) 0 0
\(477\) 1.45680 1.05842i 0.0667021 0.0484619i
\(478\) 0 0
\(479\) 3.19586 9.83586i 0.146023 0.449412i −0.851118 0.524974i \(-0.824075\pi\)
0.997141 + 0.0755621i \(0.0240751\pi\)
\(480\) 0 0
\(481\) −7.57220 5.50153i −0.345263 0.250848i
\(482\) 0 0
\(483\) −12.1001 −0.550575
\(484\) 0 0
\(485\) −0.430602 −0.0195526
\(486\) 0 0
\(487\) −6.88305 5.00083i −0.311901 0.226609i 0.420811 0.907148i \(-0.361746\pi\)
−0.732712 + 0.680539i \(0.761746\pi\)
\(488\) 0 0
\(489\) −4.14292 + 12.7506i −0.187349 + 0.576602i
\(490\) 0 0
\(491\) −0.393026 + 0.285550i −0.0177370 + 0.0128867i −0.596618 0.802525i \(-0.703489\pi\)
0.578881 + 0.815412i \(0.303489\pi\)
\(492\) 0 0
\(493\) 1.87832 + 5.78088i 0.0845954 + 0.260358i
\(494\) 0 0
\(495\) −0.0600830 + 0.301462i −0.00270053 + 0.0135497i
\(496\) 0 0
\(497\) −1.49819 4.61095i −0.0672029 0.206829i
\(498\) 0 0
\(499\) −12.5142 + 9.09213i −0.560214 + 0.407020i −0.831537 0.555469i \(-0.812539\pi\)
0.271323 + 0.962488i \(0.412539\pi\)
\(500\) 0 0
\(501\) 7.95116 24.4712i 0.355232 1.09329i
\(502\) 0 0
\(503\) 29.6452 + 21.5385i 1.32182 + 0.960356i 0.999908 + 0.0135850i \(0.00432436\pi\)
0.321909 + 0.946771i \(0.395676\pi\)
\(504\) 0 0
\(505\) −1.33879 −0.0595752
\(506\) 0 0
\(507\) 3.18448 0.141428
\(508\) 0 0
\(509\) 9.26788 + 6.73351i 0.410792 + 0.298458i 0.773922 0.633281i \(-0.218292\pi\)
−0.363131 + 0.931738i \(0.618292\pi\)
\(510\) 0 0
\(511\) −0.445298 + 1.37049i −0.0196988 + 0.0606268i
\(512\) 0 0
\(513\) 27.6529 20.0910i 1.22091 0.887040i
\(514\) 0 0
\(515\) −0.156774 0.482501i −0.00690828 0.0212615i
\(516\) 0 0
\(517\) 12.8289 11.8499i 0.564213 0.521158i
\(518\) 0 0
\(519\) 8.28196 + 25.4892i 0.363538 + 1.11885i
\(520\) 0 0
\(521\) −5.41110 + 3.93140i −0.237065 + 0.172238i −0.699975 0.714168i \(-0.746805\pi\)
0.462910 + 0.886405i \(0.346805\pi\)
\(522\) 0 0
\(523\) −8.82855 + 27.1715i −0.386045 + 1.18813i 0.549674 + 0.835380i \(0.314752\pi\)
−0.935719 + 0.352746i \(0.885248\pi\)
\(524\) 0 0
\(525\) 5.87463 + 4.26817i 0.256390 + 0.186278i
\(526\) 0 0
\(527\) 8.40515 0.366134
\(528\) 0 0
\(529\) 46.1116 2.00485
\(530\) 0 0
\(531\) 9.17023 + 6.66256i 0.397954 + 0.289131i
\(532\) 0 0
\(533\) 4.62443 14.2325i 0.200306 0.616479i
\(534\) 0 0
\(535\) −0.328293 + 0.238519i −0.0141933 + 0.0103121i
\(536\) 0 0
\(537\) −3.54118 10.8986i −0.152813 0.470311i
\(538\) 0 0
\(539\) −2.89313 1.62167i −0.124616 0.0698502i
\(540\) 0 0
\(541\) −0.407735 1.25488i −0.0175299 0.0539515i 0.941909 0.335868i \(-0.109030\pi\)
−0.959439 + 0.281917i \(0.909030\pi\)
\(542\) 0 0
\(543\) −18.1140 + 13.1606i −0.777348 + 0.564776i
\(544\) 0 0
\(545\) 0.267977 0.824749i 0.0114789 0.0353284i
\(546\) 0 0
\(547\) −9.94180 7.22314i −0.425081 0.308839i 0.354598 0.935019i \(-0.384618\pi\)
−0.779679 + 0.626180i \(0.784618\pi\)
\(548\) 0 0
\(549\) 3.02261 0.129002
\(550\) 0 0
\(551\) −40.1055 −1.70855
\(552\) 0 0
\(553\) 3.42182 + 2.48610i 0.145511 + 0.105720i
\(554\) 0 0
\(555\) −0.113576 + 0.349550i −0.00482102 + 0.0148376i
\(556\) 0 0
\(557\) −18.8829 + 13.7192i −0.800093 + 0.581302i −0.910941 0.412536i \(-0.864643\pi\)
0.110848 + 0.993837i \(0.464643\pi\)
\(558\) 0 0
\(559\) −14.7257 45.3210i −0.622831 1.91688i
\(560\) 0 0
\(561\) −1.85169 4.02063i −0.0781785 0.169751i
\(562\) 0 0
\(563\) −0.0160521 0.0494032i −0.000676514 0.00208210i 0.950718 0.310058i \(-0.100348\pi\)
−0.951394 + 0.307976i \(0.900348\pi\)
\(564\) 0 0
\(565\) 0.519440 0.377395i 0.0218530 0.0158771i
\(566\) 0 0
\(567\) −1.72384 + 5.30543i −0.0723944 + 0.222807i
\(568\) 0 0
\(569\) 29.6167 + 21.5178i 1.24160 + 0.902073i 0.997704 0.0677290i \(-0.0215753\pi\)
0.243893 + 0.969802i \(0.421575\pi\)
\(570\) 0 0
\(571\) −28.4510 −1.19064 −0.595318 0.803490i \(-0.702974\pi\)
−0.595318 + 0.803490i \(0.702974\pi\)
\(572\) 0 0
\(573\) 11.2582 0.470317
\(574\) 0 0
\(575\) −33.5538 24.3783i −1.39929 1.01664i
\(576\) 0 0
\(577\) 2.45288 7.54920i 0.102115 0.314277i −0.886928 0.461908i \(-0.847165\pi\)
0.989042 + 0.147631i \(0.0471649\pi\)
\(578\) 0 0
\(579\) −13.9174 + 10.1116i −0.578388 + 0.420223i
\(580\) 0 0
\(581\) 0.330694 + 1.01777i 0.0137195 + 0.0422243i
\(582\) 0 0
\(583\) 6.72844 0.793783i 0.278663 0.0328751i
\(584\) 0 0
\(585\) 0.111616 + 0.343518i 0.00461475 + 0.0142027i
\(586\) 0 0
\(587\) 2.11504 1.53667i 0.0872971 0.0634251i −0.543281 0.839551i \(-0.682818\pi\)
0.630578 + 0.776126i \(0.282818\pi\)
\(588\) 0 0
\(589\) −17.1374 + 52.7434i −0.706133 + 2.17326i
\(590\) 0 0
\(591\) 23.4019 + 17.0025i 0.962626 + 0.699389i
\(592\) 0 0
\(593\) 40.6475 1.66919 0.834596 0.550862i \(-0.185701\pi\)
0.834596 + 0.550862i \(0.185701\pi\)
\(594\) 0 0
\(595\) −0.0964109 −0.00395246
\(596\) 0 0
\(597\) 10.7949 + 7.84295i 0.441806 + 0.320991i
\(598\) 0 0
\(599\) −13.9502 + 42.9342i −0.569988 + 1.75424i 0.0826565 + 0.996578i \(0.473660\pi\)
−0.652644 + 0.757664i \(0.726340\pi\)
\(600\) 0 0
\(601\) −7.98164 + 5.79900i −0.325578 + 0.236546i −0.738552 0.674197i \(-0.764490\pi\)
0.412974 + 0.910743i \(0.364490\pi\)
\(602\) 0 0
\(603\) −3.30130 10.1604i −0.134439 0.413762i
\(604\) 0 0
\(605\) −0.751786 + 0.878882i −0.0305645 + 0.0357316i
\(606\) 0 0
\(607\) 7.58694 + 23.3502i 0.307944 + 0.947755i 0.978562 + 0.205952i \(0.0660291\pi\)
−0.670618 + 0.741803i \(0.733971\pi\)
\(608\) 0 0
\(609\) 7.80561 5.67110i 0.316299 0.229805i
\(610\) 0 0
\(611\) 6.34139 19.5168i 0.256545 0.789565i
\(612\) 0 0
\(613\) −5.39914 3.92271i −0.218069 0.158437i 0.473388 0.880854i \(-0.343031\pi\)
−0.691457 + 0.722417i \(0.743031\pi\)
\(614\) 0 0
\(615\) −0.587644 −0.0236961
\(616\) 0 0
\(617\) −23.0664 −0.928620 −0.464310 0.885673i \(-0.653698\pi\)
−0.464310 + 0.885673i \(0.653698\pi\)
\(618\) 0 0
\(619\) 8.11784 + 5.89796i 0.326284 + 0.237059i 0.738852 0.673868i \(-0.235368\pi\)
−0.412568 + 0.910927i \(0.635368\pi\)
\(620\) 0 0
\(621\) 14.5135 44.6679i 0.582406 1.79246i
\(622\) 0 0
\(623\) 5.71680 4.15350i 0.229039 0.166406i
\(624\) 0 0
\(625\) 7.67422 + 23.6188i 0.306969 + 0.944753i
\(626\) 0 0
\(627\) 29.0054 3.42189i 1.15836 0.136657i
\(628\) 0 0
\(629\) 0.680536 + 2.09448i 0.0271348 + 0.0835122i
\(630\) 0 0
\(631\) −14.4567 + 10.5034i −0.575511 + 0.418133i −0.837103 0.547046i \(-0.815752\pi\)
0.261592 + 0.965178i \(0.415752\pi\)
\(632\) 0 0
\(633\) −3.67774 + 11.3189i −0.146177 + 0.449887i
\(634\) 0 0
\(635\) 0.302956 + 0.220111i 0.0120225 + 0.00873482i
\(636\) 0 0
\(637\) −3.89716 −0.154411
\(638\) 0 0
\(639\) 4.27372 0.169066
\(640\) 0 0
\(641\) −12.5144 9.09224i −0.494289 0.359122i 0.312542 0.949904i \(-0.398819\pi\)
−0.806831 + 0.590782i \(0.798819\pi\)
\(642\) 0 0
\(643\) 13.3822 41.1861i 0.527742 1.62422i −0.231088 0.972933i \(-0.574229\pi\)
0.758830 0.651289i \(-0.225771\pi\)
\(644\) 0 0
\(645\) −1.51387 + 1.09989i −0.0596088 + 0.0433083i
\(646\) 0 0
\(647\) 1.13312 + 3.48738i 0.0445474 + 0.137103i 0.970856 0.239662i \(-0.0770365\pi\)
−0.926309 + 0.376765i \(0.877037\pi\)
\(648\) 0 0
\(649\) 17.8403 + 38.7371i 0.700293 + 1.52056i
\(650\) 0 0
\(651\) −4.12277 12.6886i −0.161584 0.497305i
\(652\) 0 0
\(653\) 13.2390 9.61872i 0.518084 0.376410i −0.297798 0.954629i \(-0.596252\pi\)
0.815881 + 0.578219i \(0.196252\pi\)
\(654\) 0 0
\(655\) 0.603894 1.85860i 0.0235961 0.0726213i
\(656\) 0 0
\(657\) −1.02766 0.746637i −0.0400928 0.0291291i
\(658\) 0 0
\(659\) 11.0455 0.430271 0.215135 0.976584i \(-0.430981\pi\)
0.215135 + 0.976584i \(0.430981\pi\)
\(660\) 0 0
\(661\) 13.4724 0.524015 0.262008 0.965066i \(-0.415615\pi\)
0.262008 + 0.965066i \(0.415615\pi\)
\(662\) 0 0
\(663\) −4.20798 3.05728i −0.163424 0.118735i
\(664\) 0 0
\(665\) 0.196573 0.604991i 0.00762279 0.0234605i
\(666\) 0 0
\(667\) −44.5828 + 32.3913i −1.72625 + 1.25420i
\(668\) 0 0
\(669\) 1.78189 + 5.48410i 0.0688919 + 0.212028i
\(670\) 0 0
\(671\) 9.92036 + 5.56060i 0.382971 + 0.214664i
\(672\) 0 0
\(673\) 12.2313 + 37.6441i 0.471483 + 1.45108i 0.850643 + 0.525744i \(0.176213\pi\)
−0.379160 + 0.925331i \(0.623787\pi\)
\(674\) 0 0
\(675\) −22.8024 + 16.5669i −0.877664 + 0.637660i
\(676\) 0 0
\(677\) 9.92059 30.5324i 0.381279 1.17346i −0.557864 0.829932i \(-0.688379\pi\)
0.939144 0.343525i \(-0.111621\pi\)
\(678\) 0 0
\(679\) 3.31330 + 2.40725i 0.127153 + 0.0923818i
\(680\) 0 0
\(681\) −18.1385 −0.695069
\(682\) 0 0
\(683\) −43.5528 −1.66650 −0.833250 0.552896i \(-0.813523\pi\)
−0.833250 + 0.552896i \(0.813523\pi\)
\(684\) 0 0
\(685\) 1.88104 + 1.36665i 0.0718708 + 0.0522172i
\(686\) 0 0
\(687\) 11.5897 35.6695i 0.442175 1.36088i
\(688\) 0 0
\(689\) 6.44059 4.67936i 0.245367 0.178269i
\(690\) 0 0
\(691\) 14.5713 + 44.8458i 0.554317 + 1.70601i 0.697739 + 0.716352i \(0.254190\pi\)
−0.143422 + 0.989662i \(0.545810\pi\)
\(692\) 0 0
\(693\) 2.14762 1.98373i 0.0815812 0.0753557i
\(694\) 0 0
\(695\) −0.671661 2.06716i −0.0254776 0.0784118i
\(696\) 0 0
\(697\) −2.84864 + 2.06966i −0.107900 + 0.0783940i
\(698\) 0 0
\(699\) −5.96788 + 18.3673i −0.225726 + 0.694714i
\(700\) 0 0
\(701\) 17.5645 + 12.7613i 0.663400 + 0.481989i 0.867810 0.496897i \(-0.165527\pi\)
−0.204409 + 0.978886i \(0.565527\pi\)
\(702\) 0 0
\(703\) −14.5307 −0.548034
\(704\) 0 0
\(705\) −0.805825 −0.0303491
\(706\) 0 0
\(707\) 10.3014 + 7.48440i 0.387424 + 0.281480i
\(708\) 0 0
\(709\) −4.44353 + 13.6758i −0.166880 + 0.513605i −0.999170 0.0407364i \(-0.987030\pi\)
0.832290 + 0.554341i \(0.187030\pi\)
\(710\) 0 0
\(711\) −3.01633 + 2.19150i −0.113121 + 0.0821875i
\(712\) 0 0
\(713\) 23.5478 + 72.4727i 0.881872 + 2.71412i
\(714\) 0 0
\(715\) −0.265631 + 1.33278i −0.00993403 + 0.0498432i
\(716\) 0 0
\(717\) −3.79346 11.6751i −0.141669 0.436014i
\(718\) 0 0
\(719\) 38.6060 28.0489i 1.43976 1.04605i 0.451669 0.892186i \(-0.350829\pi\)
0.988092 0.153862i \(-0.0491711\pi\)
\(720\) 0 0
\(721\) −1.49108 + 4.58907i −0.0555307 + 0.170906i
\(722\) 0 0
\(723\) 4.08202 + 2.96576i 0.151812 + 0.110298i
\(724\) 0 0
\(725\) 33.0707 1.22821
\(726\) 0 0
\(727\) −21.3223 −0.790802 −0.395401 0.918509i \(-0.629394\pi\)
−0.395401 + 0.918509i \(0.629394\pi\)
\(728\) 0 0
\(729\) −23.9358 17.3904i −0.886511 0.644088i
\(730\) 0 0
\(731\) −3.46482 + 10.6636i −0.128151 + 0.394408i
\(732\) 0 0
\(733\) −15.1817 + 11.0302i −0.560750 + 0.407409i −0.831733 0.555175i \(-0.812651\pi\)
0.270983 + 0.962584i \(0.412651\pi\)
\(734\) 0 0
\(735\) 0.0472900 + 0.145544i 0.00174432 + 0.00536846i
\(736\) 0 0
\(737\) 7.85665 39.4202i 0.289404 1.45206i
\(738\) 0 0
\(739\) −6.89886 21.2325i −0.253779 0.781051i −0.994068 0.108762i \(-0.965311\pi\)
0.740289 0.672289i \(-0.234689\pi\)
\(740\) 0 0
\(741\) 27.7645 20.1721i 1.01995 0.741041i
\(742\) 0 0
\(743\) 5.76414 17.7402i 0.211466 0.650825i −0.787920 0.615778i \(-0.788842\pi\)
0.999386 0.0350469i \(-0.0111581\pi\)
\(744\) 0 0
\(745\) −1.02890 0.747541i −0.0376961 0.0273878i
\(746\) 0 0
\(747\) −0.943335 −0.0345148
\(748\) 0 0
\(749\) 3.85950 0.141023
\(750\) 0 0
\(751\) 9.71473 + 7.05816i 0.354495 + 0.257556i 0.750752 0.660584i \(-0.229691\pi\)
−0.396257 + 0.918140i \(0.629691\pi\)
\(752\) 0 0
\(753\) −3.73724 + 11.5020i −0.136192 + 0.419157i
\(754\) 0 0
\(755\) −1.51889 + 1.10354i −0.0552782 + 0.0401620i
\(756\) 0 0
\(757\) 7.08162 + 21.7950i 0.257386 + 0.792153i 0.993350 + 0.115132i \(0.0367292\pi\)
−0.735964 + 0.677020i \(0.763271\pi\)
\(758\) 0 0
\(759\) 29.4798 27.2302i 1.07005 0.988393i
\(760\) 0 0
\(761\) 10.4522 + 32.1687i 0.378893 + 1.16611i 0.940814 + 0.338922i \(0.110062\pi\)
−0.561921 + 0.827191i \(0.689938\pi\)
\(762\) 0 0
\(763\) −6.67268 + 4.84798i −0.241567 + 0.175509i
\(764\) 0 0
\(765\) 0.0262622 0.0808267i 0.000949511 0.00292229i
\(766\) 0 0
\(767\) 40.5422 + 29.4556i 1.46389 + 1.06358i
\(768\) 0 0
\(769\) 3.77778 0.136230 0.0681152 0.997677i \(-0.478301\pi\)
0.0681152 + 0.997677i \(0.478301\pi\)
\(770\) 0 0
\(771\) −5.80954 −0.209225
\(772\) 0 0
\(773\) −20.7042 15.0425i −0.744680 0.541042i 0.149493 0.988763i \(-0.452236\pi\)
−0.894173 + 0.447721i \(0.852236\pi\)
\(774\) 0 0
\(775\) 14.1313 43.4918i 0.507613 1.56227i
\(776\) 0 0
\(777\) 2.82805 2.05470i 0.101456 0.0737120i
\(778\) 0 0
\(779\) −7.17925 22.0955i −0.257223 0.791652i
\(780\) 0 0
\(781\) 14.0266 + 7.86222i 0.501910 + 0.281332i
\(782\) 0 0
\(783\) 11.5726 + 35.6168i 0.413571 + 1.27284i
\(784\) 0 0
\(785\) 0.0973958 0.0707622i 0.00347621 0.00252561i
\(786\) 0 0
\(787\) −12.4631 + 38.3574i −0.444260 + 1.36729i 0.439033 + 0.898471i \(0.355321\pi\)
−0.883293 + 0.468821i \(0.844679\pi\)
\(788\) 0 0
\(789\) −6.32400 4.59466i −0.225141 0.163574i
\(790\) 0 0
\(791\) −6.10667 −0.217128
\(792\) 0 0
\(793\) 13.3631 0.474539
\(794\) 0 0
\(795\) −0.252909 0.183749i −0.00896976 0.00651691i
\(796\) 0 0
\(797\) 4.01950 12.3707i 0.142378 0.438194i −0.854286 0.519802i \(-0.826006\pi\)
0.996665 + 0.0816080i \(0.0260056\pi\)
\(798\) 0 0
\(799\) −3.90629 + 2.83808i −0.138195 + 0.100404i
\(800\) 0 0
\(801\) 1.92486 + 5.92412i 0.0680117 + 0.209318i
\(802\) 0 0
\(803\) −1.99926 4.34105i −0.0705525 0.153192i
\(804\) 0 0
\(805\) −0.270104 0.831294i −0.00951991 0.0292993i
\(806\) 0 0
\(807\) 21.1465 15.3638i 0.744392 0.540832i
\(808\) 0 0
\(809\) −6.75454 + 20.7883i −0.237477 + 0.730879i 0.759306 + 0.650733i \(0.225538\pi\)
−0.996783 + 0.0801453i \(0.974462\pi\)
\(810\) 0 0
\(811\) 2.78292 + 2.02191i 0.0977214 + 0.0709988i 0.635573 0.772041i \(-0.280764\pi\)
−0.537852 + 0.843040i \(0.680764\pi\)
\(812\) 0 0
\(813\) −24.9608 −0.875412
\(814\) 0 0
\(815\) −0.968462 −0.0339238
\(816\) 0 0
\(817\) −59.8511 43.4844i −2.09393 1.52133i
\(818\) 0 0
\(819\) 1.06158 3.26721i 0.0370946 0.114166i
\(820\) 0 0
\(821\) −6.07683 + 4.41508i −0.212083 + 0.154087i −0.688756 0.724994i \(-0.741843\pi\)
0.476673 + 0.879081i \(0.341843\pi\)
\(822\) 0 0
\(823\) −11.8666 36.5217i −0.413645 1.27307i −0.913458 0.406934i \(-0.866598\pi\)
0.499813 0.866133i \(-0.333402\pi\)
\(824\) 0 0
\(825\) −23.9176 + 2.82167i −0.832705 + 0.0982379i
\(826\) 0 0
\(827\) 3.12451 + 9.61627i 0.108650 + 0.334390i 0.990570 0.137009i \(-0.0437490\pi\)
−0.881920 + 0.471400i \(0.843749\pi\)
\(828\) 0 0
\(829\) −7.38608 + 5.36630i −0.256529 + 0.186379i −0.708616 0.705595i \(-0.750680\pi\)
0.452086 + 0.891974i \(0.350680\pi\)
\(830\) 0 0
\(831\) −5.37972 + 16.5571i −0.186620 + 0.574358i
\(832\) 0 0
\(833\) 0.741841 + 0.538979i 0.0257033 + 0.0186745i
\(834\) 0 0
\(835\) 1.85869 0.0643226
\(836\) 0 0
\(837\) 51.7853 1.78996
\(838\) 0 0
\(839\) −4.23578 3.07748i −0.146235 0.106246i 0.512262 0.858829i \(-0.328808\pi\)
−0.658497 + 0.752583i \(0.728808\pi\)
\(840\) 0 0
\(841\) 4.61700 14.2097i 0.159207 0.489989i
\(842\) 0 0
\(843\) −20.5610 + 14.9384i −0.708157 + 0.514506i
\(844\) 0 0
\(845\) 0.0710852 + 0.218778i 0.00244541 + 0.00752619i
\(846\) 0 0
\(847\) 10.6980 2.55981i 0.367588 0.0879561i
\(848\) 0 0
\(849\) −11.4302 35.1784i −0.392282 1.20732i
\(850\) 0 0
\(851\) −16.1528 + 11.7357i −0.553712 + 0.402295i
\(852\) 0 0
\(853\) 14.9299 45.9495i 0.511190 1.57328i −0.278920 0.960314i \(-0.589976\pi\)
0.790109 0.612966i \(-0.210024\pi\)
\(854\) 0 0
\(855\) 0.453651 + 0.329597i 0.0155146 + 0.0112720i
\(856\) 0 0
\(857\) −37.9386 −1.29596 −0.647980 0.761658i \(-0.724386\pi\)
−0.647980 + 0.761658i \(0.724386\pi\)
\(858\) 0 0
\(859\) −17.5932 −0.600271 −0.300135 0.953897i \(-0.597032\pi\)
−0.300135 + 0.953897i \(0.597032\pi\)
\(860\) 0 0
\(861\) 4.52167 + 3.28519i 0.154098 + 0.111959i
\(862\) 0 0
\(863\) −14.5326 + 44.7269i −0.494697 + 1.52252i 0.322732 + 0.946490i \(0.395399\pi\)
−0.817429 + 0.576030i \(0.804601\pi\)
\(864\) 0 0
\(865\) −1.56627 + 1.13796i −0.0532548 + 0.0386919i
\(866\) 0 0
\(867\) −7.26801 22.3686i −0.246835 0.759679i
\(868\) 0 0
\(869\) −13.9314 + 1.64355i −0.472590 + 0.0557536i
\(870\) 0 0
\(871\) −14.5953 44.9196i −0.494541 1.52204i
\(872\) 0 0
\(873\) −2.92067 + 2.12199i −0.0988497 + 0.0718185i
\(874\) 0 0
\(875\) −0.324545 + 0.998847i −0.0109716 + 0.0337672i
\(876\) 0 0
\(877\) 16.1302 + 11.7193i 0.544677 + 0.395731i 0.825819 0.563935i \(-0.190713\pi\)
−0.281142 + 0.959666i \(0.590713\pi\)
\(878\) 0 0
\(879\) −13.3191 −0.449243
\(880\) 0 0
\(881\) −30.8943 −1.04086 −0.520428 0.853906i \(-0.674228\pi\)
−0.520428 + 0.853906i \(0.674228\pi\)
\(882\) 0 0
\(883\) 29.5828 + 21.4931i 0.995540 + 0.723302i 0.961127 0.276106i \(-0.0890441\pi\)
0.0344123 + 0.999408i \(0.489044\pi\)
\(884\) 0 0
\(885\) 0.608094 1.87152i 0.0204408 0.0629104i
\(886\) 0 0
\(887\) 3.86898 2.81098i 0.129908 0.0943834i −0.520934 0.853597i \(-0.674416\pi\)
0.650842 + 0.759214i \(0.274416\pi\)
\(888\) 0 0
\(889\) −1.10061 3.38731i −0.0369131 0.113607i
\(890\) 0 0
\(891\) −7.73955 16.8051i −0.259285 0.562991i
\(892\) 0 0
\(893\) −9.84476 30.2991i −0.329442 1.01392i
\(894\) 0 0
\(895\) 0.669703 0.486568i 0.0223857 0.0162642i
\(896\) 0 0
\(897\) 14.5721 44.8482i 0.486547 1.49744i
\(898\) 0 0
\(899\) −49.1569 35.7146i −1.63948 1.19115i
\(900\) 0 0
\(901\) −1.87315 −0.0624036
\(902\) 0 0
\(903\) 17.7975 0.592264
\(904\) 0 0
\(905\) −1.30850 0.950682i −0.0434960 0.0316017i
\(906\) 0 0
\(907\) 11.5153 35.4404i 0.382359 1.17678i −0.556020 0.831169i \(-0.687672\pi\)
0.938378 0.345610i \(-0.112328\pi\)
\(908\) 0 0
\(909\) −9.08067 + 6.59750i −0.301187 + 0.218825i
\(910\) 0 0
\(911\) 10.3650 + 31.9001i 0.343407 + 1.05690i 0.962431 + 0.271526i \(0.0875281\pi\)
−0.619025 + 0.785372i \(0.712472\pi\)
\(912\) 0 0
\(913\) −3.09608 1.73543i −0.102465 0.0574342i
\(914\) 0 0
\(915\) −0.162155 0.499061i −0.00536067 0.0164984i
\(916\) 0 0
\(917\) −15.0371 + 10.9251i −0.496568 + 0.360778i
\(918\) 0 0
\(919\) 8.68613 26.7331i 0.286529 0.881845i −0.699407 0.714723i \(-0.746553\pi\)
0.985936 0.167122i \(-0.0534473\pi\)
\(920\) 0 0
\(921\) −7.72550 5.61290i −0.254564 0.184951i
\(922\) 0 0
\(923\) 18.8944 0.621916
\(924\) 0 0
\(925\) 11.9819 0.393961
\(926\) 0 0
\(927\) −3.44111 2.50011i −0.113021 0.0821144i
\(928\) 0 0
\(929\) 0.686465 2.11272i 0.0225222 0.0693161i −0.939164 0.343470i \(-0.888398\pi\)
0.961686 + 0.274154i \(0.0883977\pi\)
\(930\) 0 0
\(931\) −4.89471 + 3.55622i −0.160418 + 0.116550i
\(932\) 0 0
\(933\) −8.92069 27.4551i −0.292050 0.898838i
\(934\) 0 0
\(935\) 0.234888 0.216964i 0.00768166 0.00709547i
\(936\) 0 0
\(937\) 10.7332 + 33.0335i 0.350639 + 1.07916i 0.958495 + 0.285109i \(0.0920299\pi\)
−0.607856 + 0.794048i \(0.707970\pi\)
\(938\) 0 0
\(939\) 7.48135 5.43552i 0.244145 0.177381i
\(940\) 0 0
\(941\) 9.83539 30.2702i 0.320625 0.986781i −0.652752 0.757571i \(-0.726386\pi\)
0.973377 0.229210i \(-0.0736142\pi\)
\(942\) 0 0
\(943\) −25.8262 18.7638i −0.841017 0.611034i
\(944\) 0 0
\(945\) −0.594001 −0.0193228
\(946\) 0 0
\(947\) 0.593379 0.0192822 0.00964111 0.999954i \(-0.496931\pi\)
0.00964111 + 0.999954i \(0.496931\pi\)
\(948\) 0 0
\(949\) −4.54334 3.30093i −0.147483 0.107153i
\(950\) 0 0
\(951\) 7.60789 23.4147i 0.246703 0.759272i
\(952\) 0 0
\(953\) 22.1287 16.0774i 0.716819 0.520799i −0.168547 0.985694i \(-0.553908\pi\)
0.885366 + 0.464894i \(0.153908\pi\)
\(954\) 0 0
\(955\) 0.251309 + 0.773451i 0.00813218 + 0.0250283i
\(956\) 0 0
\(957\) −6.25469 + 31.3824i −0.202185 + 1.01445i
\(958\) 0 0
\(959\) −6.83359 21.0316i −0.220668 0.679147i
\(960\) 0 0
\(961\) −42.8944 + 31.1646i −1.38369 + 1.00531i
\(962\) 0 0
\(963\) −1.05132 + 3.23563i −0.0338783 + 0.104267i
\(964\) 0 0
\(965\) −1.00535 0.730429i −0.0323634 0.0235134i
\(966\) 0 0
\(967\) 11.7936 0.379255 0.189628 0.981856i \(-0.439272\pi\)
0.189628 + 0.981856i \(0.439272\pi\)
\(968\) 0 0
\(969\) −8.07490 −0.259403
\(970\) 0 0
\(971\) −4.90546 3.56403i −0.157424 0.114375i 0.506285 0.862366i \(-0.331018\pi\)
−0.663709 + 0.747991i \(0.731018\pi\)
\(972\) 0 0
\(973\) −6.38818 + 19.6608i −0.204796 + 0.630296i
\(974\) 0 0
\(975\) −22.8944 + 16.6338i −0.733208 + 0.532707i
\(976\) 0 0
\(977\) 8.22051 + 25.3001i 0.262997 + 0.809423i 0.992148 + 0.125070i \(0.0399154\pi\)
−0.729150 + 0.684353i \(0.760085\pi\)
\(978\) 0 0
\(979\) −4.58091 + 22.9844i −0.146407 + 0.734584i
\(980\) 0 0
\(981\) −2.24671 6.91466i −0.0717319 0.220768i
\(982\) 0 0
\(983\) 37.3153 27.1111i 1.19017 0.864711i 0.196890 0.980426i \(-0.436916\pi\)
0.993282 + 0.115715i \(0.0369159\pi\)
\(984\) 0 0
\(985\) −0.645706 + 1.98728i −0.0205739 + 0.0633199i
\(986\) 0 0
\(987\) 6.20048 + 4.50491i 0.197363 + 0.143393i
\(988\) 0 0
\(989\) −101.653 −3.23238
\(990\) 0 0
\(991\) 28.7166 0.912214 0.456107 0.889925i \(-0.349243\pi\)
0.456107 + 0.889925i \(0.349243\pi\)
\(992\) 0 0
\(993\) −28.7381 20.8794i −0.911975 0.662589i
\(994\) 0 0
\(995\) −0.297853 + 0.916697i −0.00944258 + 0.0290613i
\(996\) 0 0
\(997\) −16.5530 + 12.0265i −0.524239 + 0.380882i −0.818198 0.574936i \(-0.805027\pi\)
0.293960 + 0.955818i \(0.405027\pi\)
\(998\) 0 0
\(999\) 4.19288 + 12.9043i 0.132657 + 0.408275i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.j.c.225.1 yes 12
11.3 even 5 3388.2.a.u.1.5 6
11.8 odd 10 3388.2.a.t.1.5 6
11.9 even 5 inner 308.2.j.c.141.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.j.c.141.1 12 11.9 even 5 inner
308.2.j.c.225.1 yes 12 1.1 even 1 trivial
3388.2.a.t.1.5 6 11.8 odd 10
3388.2.a.u.1.5 6 11.3 even 5