Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [308,2,Mod(27,308)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(308, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("308.27");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 308.t (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.45939238226\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
27.1 | −1.41136 | − | 0.0897191i | −2.41265 | − | 1.75289i | 1.98390 | + | 0.253253i | 0.518254 | + | 0.168391i | 3.24786 | + | 2.69043i | 2.17575 | − | 1.50536i | −2.77729 | − | 0.535426i | 1.82119 | + | 5.60505i | −0.716338 | − | 0.284158i |
27.2 | −1.41136 | − | 0.0897191i | 2.41265 | + | 1.75289i | 1.98390 | + | 0.253253i | −0.518254 | − | 0.168391i | −3.24786 | − | 2.69043i | −2.10402 | + | 1.60408i | −2.77729 | − | 0.535426i | 1.82119 | + | 5.60505i | 0.716338 | + | 0.284158i |
27.3 | −1.32343 | − | 0.498531i | −1.44459 | − | 1.04956i | 1.50293 | + | 1.31954i | 1.17012 | + | 0.380196i | 1.38858 | + | 2.10919i | −2.18822 | + | 1.48717i | −1.33119 | − | 2.49558i | 0.0582261 | + | 0.179201i | −1.35904 | − | 1.08650i |
27.4 | −1.32343 | − | 0.498531i | 1.44459 | + | 1.04956i | 1.50293 | + | 1.31954i | −1.17012 | − | 0.380196i | −1.38858 | − | 2.10919i | 2.09058 | − | 1.62156i | −1.33119 | − | 2.49558i | 0.0582261 | + | 0.179201i | 1.35904 | + | 1.08650i |
27.5 | −1.30165 | + | 0.552901i | −0.433766 | − | 0.315149i | 1.38860 | − | 1.43937i | 3.05181 | + | 0.991593i | 0.738858 | + | 0.170386i | 2.57382 | + | 0.612751i | −1.01165 | + | 2.64132i | −0.838217 | − | 2.57977i | −4.52065 | + | 0.396638i |
27.6 | −1.30165 | + | 0.552901i | 0.433766 | + | 0.315149i | 1.38860 | − | 1.43937i | −3.05181 | − | 0.991593i | −0.738858 | − | 0.170386i | −0.212593 | + | 2.63720i | −1.01165 | + | 2.64132i | −0.838217 | − | 2.57977i | 4.52065 | − | 0.396638i |
27.7 | −1.23496 | − | 0.689109i | −1.21735 | − | 0.884453i | 1.05026 | + | 1.70205i | −3.50785 | − | 1.13977i | 0.893890 | + | 1.93115i | 1.48439 | + | 2.19011i | −0.124133 | − | 2.82570i | −0.227379 | − | 0.699799i | 3.54664 | + | 3.82486i |
27.8 | −1.23496 | − | 0.689109i | 1.21735 | + | 0.884453i | 1.05026 | + | 1.70205i | 3.50785 | + | 1.13977i | −0.893890 | − | 1.93115i | 1.62422 | + | 2.08852i | −0.124133 | − | 2.82570i | −0.227379 | − | 0.699799i | −3.54664 | − | 3.82486i |
27.9 | −1.13901 | + | 0.838252i | −1.68296 | − | 1.22274i | 0.594668 | − | 1.90955i | −2.50636 | − | 0.814365i | 2.94187 | − | 0.0180337i | −2.25678 | − | 1.38092i | 0.923350 | + | 2.67347i | 0.410207 | + | 1.26249i | 3.53740 | − | 1.17339i |
27.10 | −1.13901 | + | 0.838252i | 1.68296 | + | 1.22274i | 0.594668 | − | 1.90955i | 2.50636 | + | 0.814365i | −2.94187 | + | 0.0180337i | −0.615949 | − | 2.57305i | 0.923350 | + | 2.67347i | 0.410207 | + | 1.26249i | −3.53740 | + | 1.17339i |
27.11 | −0.854618 | + | 1.12678i | −1.68917 | − | 1.22726i | −0.539257 | − | 1.92593i | −0.865178 | − | 0.281114i | 2.82644 | − | 0.854488i | 2.56910 | + | 0.632227i | 2.63095 | + | 1.03831i | 0.420096 | + | 1.29292i | 1.05615 | − | 0.734619i |
27.12 | −0.854618 | + | 1.12678i | 1.68917 | + | 1.22726i | −0.539257 | − | 1.92593i | 0.865178 | + | 0.281114i | −2.82644 | + | 0.854488i | −0.192612 | + | 2.63873i | 2.63095 | + | 1.03831i | 0.420096 | + | 1.29292i | −1.05615 | + | 0.734619i |
27.13 | −0.765067 | − | 1.18940i | −0.171309 | − | 0.124464i | −0.829346 | + | 1.81994i | −1.47093 | − | 0.477935i | −0.0169739 | + | 0.298978i | 1.30415 | − | 2.30200i | 2.79914 | − | 0.405951i | −0.913195 | − | 2.81053i | 0.556905 | + | 2.11518i |
27.14 | −0.765067 | − | 1.18940i | 0.171309 | + | 0.124464i | −0.829346 | + | 1.81994i | 1.47093 | + | 0.477935i | 0.0169739 | − | 0.298978i | −2.59233 | + | 0.528968i | 2.79914 | − | 0.405951i | −0.913195 | − | 2.81053i | −0.556905 | − | 2.11518i |
27.15 | −0.549899 | − | 1.30292i | −2.49350 | − | 1.81164i | −1.39522 | + | 1.43295i | −2.98770 | − | 0.970763i | −0.989248 | + | 4.24506i | −2.10593 | − | 1.60158i | 2.63426 | + | 1.02989i | 2.00848 | + | 6.18146i | 0.378104 | + | 4.42657i |
27.16 | −0.549899 | − | 1.30292i | 2.49350 | + | 1.81164i | −1.39522 | + | 1.43295i | 2.98770 | + | 0.970763i | 0.989248 | − | 4.24506i | −0.872428 | − | 2.49777i | 2.63426 | + | 1.02989i | 2.00848 | + | 6.18146i | −0.378104 | − | 4.42657i |
27.17 | −0.320962 | − | 1.37731i | −2.49350 | − | 1.81164i | −1.79397 | + | 0.884128i | 2.98770 | + | 0.970763i | −1.69487 | + | 4.01579i | 0.872428 | + | 2.49777i | 1.79351 | + | 2.18708i | 2.00848 | + | 6.18146i | 0.378104 | − | 4.42657i |
27.18 | −0.320962 | − | 1.37731i | 2.49350 | + | 1.81164i | −1.79397 | + | 0.884128i | −2.98770 | − | 0.970763i | 1.69487 | − | 4.01579i | 2.10593 | + | 1.60158i | 1.79351 | + | 2.18708i | 2.00848 | + | 6.18146i | −0.378104 | + | 4.42657i |
27.19 | −0.0801601 | − | 1.41194i | −0.171309 | − | 0.124464i | −1.98715 | + | 0.226362i | 1.47093 | + | 0.477935i | −0.162003 | + | 0.251856i | 2.59233 | − | 0.528968i | 0.478900 | + | 2.78759i | −0.913195 | − | 2.81053i | 0.556905 | − | 2.11518i |
27.20 | −0.0801601 | − | 1.41194i | 0.171309 | + | 0.124464i | −1.98715 | + | 0.226362i | −1.47093 | − | 0.477935i | 0.162003 | − | 0.251856i | −1.30415 | + | 2.30200i | 0.478900 | + | 2.78759i | −0.913195 | − | 2.81053i | −0.556905 | + | 2.11518i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
28.d | even | 2 | 1 | inner |
44.h | odd | 10 | 1 | inner |
77.j | odd | 10 | 1 | inner |
308.t | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 308.2.t.c | ✓ | 160 |
4.b | odd | 2 | 1 | inner | 308.2.t.c | ✓ | 160 |
7.b | odd | 2 | 1 | inner | 308.2.t.c | ✓ | 160 |
11.c | even | 5 | 1 | inner | 308.2.t.c | ✓ | 160 |
28.d | even | 2 | 1 | inner | 308.2.t.c | ✓ | 160 |
44.h | odd | 10 | 1 | inner | 308.2.t.c | ✓ | 160 |
77.j | odd | 10 | 1 | inner | 308.2.t.c | ✓ | 160 |
308.t | even | 10 | 1 | inner | 308.2.t.c | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
308.2.t.c | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
308.2.t.c | ✓ | 160 | 4.b | odd | 2 | 1 | inner |
308.2.t.c | ✓ | 160 | 7.b | odd | 2 | 1 | inner |
308.2.t.c | ✓ | 160 | 11.c | even | 5 | 1 | inner |
308.2.t.c | ✓ | 160 | 28.d | even | 2 | 1 | inner |
308.2.t.c | ✓ | 160 | 44.h | odd | 10 | 1 | inner |
308.2.t.c | ✓ | 160 | 77.j | odd | 10 | 1 | inner |
308.2.t.c | ✓ | 160 | 308.t | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(308, [\chi])\):
\( T_{3}^{80} + 45 T_{3}^{78} + 1143 T_{3}^{76} + 21711 T_{3}^{74} + 346846 T_{3}^{72} + \cdots + 168283265539216 \) |
\( T_{71}^{80} - 1062 T_{71}^{78} + 577846 T_{71}^{76} - 214984652 T_{71}^{74} + 63284314539 T_{71}^{72} + \cdots + 22\!\cdots\!16 \) |