Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [308,4,Mod(13,308)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(308, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("308.13");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 308.w (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.1725882818\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | 0 | −5.88297 | − | 8.09721i | 0 | 18.0330 | − | 5.85929i | 0 | −18.1193 | − | 3.83270i | 0 | −22.6120 | + | 69.5927i | 0 | ||||||||||
13.2 | 0 | −5.22436 | − | 7.19072i | 0 | −16.6762 | + | 5.41844i | 0 | 18.4891 | − | 1.07412i | 0 | −16.0690 | + | 49.4553i | 0 | ||||||||||
13.3 | 0 | −5.12163 | − | 7.04932i | 0 | 4.34391 | − | 1.41142i | 0 | 9.70945 | − | 15.7711i | 0 | −15.1184 | + | 46.5296i | 0 | ||||||||||
13.4 | 0 | −4.13359 | − | 5.68940i | 0 | −12.0841 | + | 3.92637i | 0 | −18.5068 | + | 0.704636i | 0 | −6.93923 | + | 21.3567i | 0 | ||||||||||
13.5 | 0 | −3.84999 | − | 5.29905i | 0 | 4.60773 | − | 1.49714i | 0 | 11.4880 | + | 14.5268i | 0 | −4.91409 | + | 15.1240i | 0 | ||||||||||
13.6 | 0 | −3.77642 | − | 5.19779i | 0 | 2.80908 | − | 0.912724i | 0 | −2.94649 | + | 18.2844i | 0 | −4.41225 | + | 13.5795i | 0 | ||||||||||
13.7 | 0 | −2.54235 | − | 3.49924i | 0 | 2.06273 | − | 0.670222i | 0 | −10.8266 | − | 15.0262i | 0 | 2.56231 | − | 7.88597i | 0 | ||||||||||
13.8 | 0 | −2.29629 | − | 3.16057i | 0 | 12.0476 | − | 3.91452i | 0 | 16.4615 | − | 8.48648i | 0 | 3.62719 | − | 11.1634i | 0 | ||||||||||
13.9 | 0 | −2.00983 | − | 2.76629i | 0 | −13.3670 | + | 4.34320i | 0 | −7.33070 | − | 17.0077i | 0 | 4.73050 | − | 14.5590i | 0 | ||||||||||
13.10 | 0 | −0.802077 | − | 1.10396i | 0 | −4.83302 | + | 1.57034i | 0 | 2.45890 | + | 18.3563i | 0 | 7.76805 | − | 23.9076i | 0 | ||||||||||
13.11 | 0 | −0.468867 | − | 0.645340i | 0 | 18.3612 | − | 5.96593i | 0 | −15.1893 | + | 10.5964i | 0 | 8.14683 | − | 25.0734i | 0 | ||||||||||
13.12 | 0 | −0.129653 | − | 0.178452i | 0 | −11.1231 | + | 3.61412i | 0 | 18.0478 | − | 4.15670i | 0 | 8.32842 | − | 25.6323i | 0 | ||||||||||
13.13 | 0 | 0.129653 | + | 0.178452i | 0 | 11.1231 | − | 3.61412i | 0 | −1.62381 | − | 18.4489i | 0 | 8.32842 | − | 25.6323i | 0 | ||||||||||
13.14 | 0 | 0.468867 | + | 0.645340i | 0 | −18.3612 | + | 5.96593i | 0 | −5.38402 | + | 17.7204i | 0 | 8.14683 | − | 25.0734i | 0 | ||||||||||
13.15 | 0 | 0.802077 | + | 1.10396i | 0 | 4.83302 | − | 1.57034i | 0 | −18.2177 | + | 3.33385i | 0 | 7.76805 | − | 23.9076i | 0 | ||||||||||
13.16 | 0 | 2.00983 | + | 2.76629i | 0 | 13.3670 | − | 4.34320i | 0 | 18.4406 | + | 1.71625i | 0 | 4.73050 | − | 14.5590i | 0 | ||||||||||
13.17 | 0 | 2.29629 | + | 3.16057i | 0 | −12.0476 | + | 3.91452i | 0 | 2.98425 | − | 18.2782i | 0 | 3.62719 | − | 11.1634i | 0 | ||||||||||
13.18 | 0 | 2.54235 | + | 3.49924i | 0 | −2.06273 | + | 0.670222i | 0 | 17.6363 | + | 5.65332i | 0 | 2.56231 | − | 7.88597i | 0 | ||||||||||
13.19 | 0 | 3.77642 | + | 5.19779i | 0 | −2.80908 | + | 0.912724i | 0 | −16.4790 | + | 8.45246i | 0 | −4.41225 | + | 13.5795i | 0 | ||||||||||
13.20 | 0 | 3.84999 | + | 5.29905i | 0 | −4.60773 | + | 1.49714i | 0 | −17.3657 | − | 6.43669i | 0 | −4.91409 | + | 15.1240i | 0 | ||||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
77.l | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 308.4.w.a | ✓ | 96 |
7.b | odd | 2 | 1 | inner | 308.4.w.a | ✓ | 96 |
11.d | odd | 10 | 1 | inner | 308.4.w.a | ✓ | 96 |
77.l | even | 10 | 1 | inner | 308.4.w.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
308.4.w.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
308.4.w.a | ✓ | 96 | 7.b | odd | 2 | 1 | inner |
308.4.w.a | ✓ | 96 | 11.d | odd | 10 | 1 | inner |
308.4.w.a | ✓ | 96 | 77.l | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(308, [\chi])\).